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DE LA PHYSIQUE AUTOUR D’UN TORE

Ce sujet comporte quatre parties totalement indépendantes qui explorent les propriétés phy-
siques d’objets de forme torique. Un tore est le volume généré par la révolution autour d’un
axe d’une figure géométrique donnée (dans le probleme, ce sera un rectangle ou un cercle, voir
figure 1) appelée section et inscrite dans un plan passant par 1’axe. Les vecteurs sont surmontés
d’un chapeau s’ils sont unitaires (u,) ou d’une fleche dans le cas général (p).

Axe Axe

Tore a section
rectangulaire

Tore & section
circulaire (bouée)
I I

FI1GURE 1 — Deux types de tores



De la physique autour d’un tore

I. — Modélisation d’un hulahoop

Le hulahoop est un cerceau en plastique que ’on fait principalement tourner autour de la taille
par un déhanchement rythmé tres en vogue dans les années 1960. Pour notre modélisation,
nous 'assimilerons a un tore de section rectangulaire en rotation autour d’un arbre cylindrique
fize et vertical, d’axe (O,z) et de rayon r, dans le référentiel terrestre supposé galiléen Ry. Le
tore est de masse volumique p homogene, ses dimensions sont les suivantes : le rayon du cercle
intérieur est a, celui du cercle extérieur b et son épaisseur selon (O,z) vaut ¢. On note G son
centre d’inertie et A son axe de symétrie, dont la direction reste parallele a (O,z) : on peut donc
identifier A = (G,z). On donne l'expression du moment d’inertie d'un cylindre de rayon R et
de masse M par rapport a un axe de révolution confondu avec ’axe du cylindre : J = %M R2.

G

Tore °

0
\/’ﬁr
{L\y!
w, Uy
Base cartésienne
FIGURE 2 — Rotation du hulahoop
d 1 — Justifier que le moment d’inertie autour d’un axe A donné de I’ensemble constitué par

la superposition de deux distribution de masses S; et S disjointes est la somme des moments
d’inertie de Sy et Sy par rapport a cet axe.

‘A 2 — Déterminer le moment d’inertie J du tore par rapport a 'axe (G,z) en fonction de p,
a, betc.

Le contact entre la paroi intérieure du tore et le cylindre vertical se répartit sur un segment
vertical dont on note I le milieu. Il y a roulement sans glissement entre les deux solides. On note
f le coeflicient de frottement statique au niveau de ce contact. On note Q = Q 4, le vecteur
vitesse angulaire de rotation du tore autour de son axe A. La position de G est repérée par

I'angle 6 = (ﬁI,O(é)
4 3 — Etablir la relation entre § et  associée & I’hypothese de roulement sans glissement.

En déduire I'expression de l’énergie cinétique du tore dans le référentiel Ry en fonction de
2 2
Jo = pme(b* — a®)2 et Q.

'd 4 — On suppose que € est constante. Déterminer les composantes des forces subies par le
tore au contact avec le cylindre vertical. En déduire a quelle condition sur €2 I’hypothese de
roulement sans glissement est justifiée. Décrire qualitativement ce qui se passe lorsque cette
condition n’est plus vérifiée.
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Physique I, année 2014 — filiere MP

On suppose maintenant que I’hypothese de roulement sans glissement est vérifiée mais qu’on
observe une adhérence du tore sur le cylindre qu’on modélise par la création d’une force de
liaison attractive A = A%, entre le cylindre et le tore localisée en un point B représenté sur
la partie droite de la figure 2 et voisin de I tel que I? = [uy. On donne la vitesse angulaire
initiale 2y du tore.

'd 5 — En utilisant par exemple le théoreme de la puissance cinétique, établir la loi d’évolution
Q(t) et conclure quant a la pratique du hulahoop.

FIN DE LA PARTIE I

II. — Etude d’un conducteur ohmique torique

Un conducteur ohmique est caractérisé
par une conductivité électrique v de 1'or-
dre de 10® S- m™!. II forme un tore
tronqué de section rectangulaire de ra-
yon intérieur a, de rayon extérieur b,
d’épaisseur c.

On cherche a déterminer la résistance
orthoradiale R d’une portion de ce con-
ducteur comprise entre les angles § = 0
oll on applique un potentiel uniforme
V =U et §# = « ou on applique un
potentiel V = 0.

FIGURE 3 — Portion d’un conducteur torique

'd 6 — On rappelle la valeur numérique

1
de la constante ¢y = e 1072 dans les unités du systeéme international. Rappeler le nom et
T

I'unité pratique de cette constante.

1 7 — Etablir, dans un conducteur ohmique, I'équation différentielle vérifiée par la densité
volumique de charge p. En déduire que p ~ 0 tant que la durée T' caractéristique de variation
des grandeurs électromagnétiques est tres supérieure a une durée 7 dont on donnera I’expression
en fonction de v et gy ainsi que la valeur numérique.

‘1 8 — Montrer qu’un terme peut étre négligé dans 1’équation de Maxwell-Ampere si T > 7.

d 9 — Etablir I’équation vérifiée en régime permanent et dans le conducteur ohmique par le
potentiel électrique V.

'd 10 — On suppose que V ne dépend que de ’angle # en coordonnées cylindriques et on donne,
dans ce systeme de coordonnées, les expressions du gradient du potentiel gradV = %%—‘gﬂg et de
son laplacien AV = T%%ZT‘;. Déterminer les expressions de V' (@), du champ E et de la densité

de courant j

'd 11 — Déterminer I'expression de 'intensité totale I traversant une section rectangulaire
droite quelconque de ce tore. En déduire sa résistance orthoradiale R en fonction de a, b, ¢,
et a.

'd 12 — Rappeler I'expression de la résistance d'un conducteur filiforme de section S et de
longueur L. Vérifier qu’elle est cohérente avec ’expression du conducteur torique quand b est
tres proche de a.

FIN DE LA PARTIE II
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De la physique autour d’un tore

I1I. — Etude d’une pince amperemétrique

Une pince amperemétrique est un appareil dont 'extrémité possede
la forme d’un tore. En disposant ce tore autour d’un conducteur
parcouru par un certain courant le dispositif équipant la pince
permet d’en mesurer l'intensité.

Son principal intérét est 1’absence de contact physique avec le
conducteur et le fait qu’il ne soit pas nécessaire d’ouvrir le circuit
pour mesurer le courant qui le traverse contrairement a 'implan-
tation d’'un amperemetre classique.

IANSFIL A tester  Le dispositif de mesure de la pince amperemétrique est formé d’un
bobinage torique comportant N spires enroulées sur un tore de
section rectangulaire de rayon intérieur a, de rayon extérieur b,
d’épaisseur ¢, d’axe (O,z). Le fil conducteur utilisé pour le bobi-
nage possede une résistance linéique A. N

Un point M intérieur au tore est repéré par ses coordonnées cylindriques : OM = ru, + zu,
avec r € [a,b] et z € [0,c].

Un fil rectiligne infini de méme axe (O,z) est parcouru par un courant d’intensité i(¢). On note
i1(t) Uintensité du courant circulant dans la bobine torique. On se place dans I'approximation
des états quasi-stationnaires.

FIGURE 4 — Partie active
de la pince

'd 13 — Rappeler ce qu’on appelle approximation des états quasi-stationnaires. Montrer que
cette approximation permet de simplifier I’équation de Maxwell-Ampere. Enoncer dans ce cas
le théoreme d’Ampere.

'd 14 — Montrer qu’au point M intérieur au tore, le champ magnétique peut se mettre sous
la forme B = B(r)uy ou l'on précisera 'expression de B (r) en fonction de pyg, i(t), i1(t), N et
r.

3 15 — Calculer le flux ® de B a travers le bobinage et en déduire les expressions des
coefficients d’autoinductance L du bobinage et de mutuelle inductance M entre le fil et le
bobinage.

'd 16 — Déterminer I'expression de la résistance totale R, du bobinage en fonction de a, b, c,
N et \.

On se place en régime sinusoidal forcé avec i(t) = Ipv/2 cos(wt) associée a I'intensité complexe
i = Ipv/2e7% et iy (t) = I,\/2 cos(wt + 1) associde & l'intensité complexe i, = I;y/2e/%tei?1
'd 17 — Le bobinage formant un circuit fermé, déterminer I'expression de la fonction de

i
transfert H = = en fonction de M, w, R, et L.
i

'd 18 — Dans quel régime de pulsation ce dispositif peut-il former une pince amperemétrique ?

FIN DE LA PARTIE III
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IV. — Etude thermique d’un objet torique

Un tore de section carrée a X a et de rayon intérieur
a (donc de rayon extérieur 2a) est fabriqué dans un
matériau de masse volumique pu, de capacité calorifique
massique ¢ et de conductivité thermique .

Le profil des températures possede la symétrie cylin-
drique : T ne dépend que du rayon r et du temps ¢ soit
T(r,t). La face intérieure (r = a, 6 € [0,27[, z € [0,a])
et la face extérieure (r = 2a, 0 € [0,27], z € [0,a]) sont
placées dans le vide.

Disques isolants

ot réflochissants  Sur les faces paralleles (2 = 0 ou z = a), on pose

deux disques parfaitement isolants thermiquement et
o de surface parfaitement réfléchissantes.

1 19 — En effectuant un bilan thermique sur la por-
FIGURE 5 — Vue éclatée du systeme. tion torique définie par I'intervalle [r,r + dr], montrer

L’axe (O,2) est celui du tore que le champ des températures vérifie I’équation
¢ or 0 (r%—f)
r—=—2%-
ot or

ou l'on exprimera £ en fonction des grandeurs caractéristiques du matériau et I’'on précisera son
unité.

'd 20 — On cherche, pour cette équation, une solution stationnaire & variables séparées sous
la forme T'(r,t) = p(r)n(t). Etablir les deux équations différentielles vérifiées respectivement par
p(r) et n(t) en faisant apparaitre une constante x commune a ces deux équations.

'd 21 — Déterminer 'expression de 7(t) sans chercher a caractériser la ou les constantes
d’intégration. Quel est le signe de x 7

A4 22 — Pour la fonction p(r), on cherche une solution développable en série entiere sous la
(o]

forme p(r) = Z a,r". Apres avoir rapidement justifié cette recherche, déterminer les expres-
n=0

sions des ay, et des gy pour tout entier p positif ou nul.

'd 23 — En examinant tous les transferts thermiques possibles sur la face interne, justifier le

d
fait que e = 0.
dr|,._,
AP(7) La fonction p(r) qui admet le développement en série déterminé
1,07 a la question 22 et qui vérifie la condition aux limites imposée
1 par la question 23 s’exprime en utilisant les fonctions de Bessel
0,8 1 de premiere (J) et de deuxieme (Y') especes. Elle s’écrit
0,6 1 Ji(a)
p(r) =K |Jo(r) — —=Yo(r
| ) (7 (1) = 7 (g Vo)
0,4 i " —>
0,5 Lo L5 2,0 ou K est une constante d’intégration. La courbe représentative

FIGURE 6 — La fonction p(r)  de cette fonction sur le domaine d’étude et pour K = leta = 1
fait 'objet de la figure 6.
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De la physique autour d’un tore

4 24 — A un instant ¢ donné, on suppose que la face externe, assimilée a un corps noir,
est en quasi équilibre thermique. En utilisant la loi de Stefan-Boltzmann, établir la deuxieme
condition aux limites vérifiée par p en r = 2a. Montrer que 1’on arrive alors a une contradiction.
Quelle hypothese doit-elle étre remise en question ?

‘1 25 — En admettant que la solution précédente convienne malgré tout, décrire I’évolution
de la température dans le tore au cours du temps en tracant sur un méme graphique les profils
des températures a diverses dates. Justifier en particulier le fait que 71" tend uniformément vers
7€ro.

FIN DE LA PARTIE IV

FIN DE L’EPREUVE
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ASPECTS DE LA PROPULSION SPATIALE

Pour les applications numériques on utilisera 3 chiffres significatifs. Les vecteurs sont surmontés

d’un chapeau s’ils sont unitaires u, ou d’'une fleche dans le cas général v. A I'exception de i tel

que 72 = —1, les grandeurs complexes sont soulignées : z € C.

Données valables dans tout le probleme
e Masse de I'électron, m, = 9,11 - 1073 kg ;
e Charge élémentaire, e = 1,60 - 1071 C;
e Constante de Newton de la gravitation universelle, G = 6,67 - 10~" m? - kg™ - s?;
e Permitivité diélectrique du vide, ¢y = 8,85-10712F -m™!;
e Constante d’Avogadro, Ny = 6,02 - 10* mol ™' ;
e Rayon de la Terre, R, = 6,37 - 103km ;
e Masse de la Terre, M, = 5,97 - 10** kg ;
e Intensité du champ de pesanteur a la surface de la Terre, ¢ = 9,81 m -s72;
e Constante de Boltzmann, k = 1,38 1023 J - K~!;
e Constante de Planck, h = 6,62-1073* J - s;
e Constante des gaz parfaits, R = 8,31 J-K~!-mol™!;



Aspects de la propulsion spatiale

Ce probleme s’intéresse a la propulsion d’engins spatiaux et plus particulierement au moteur
ionique, dans lequel le carburant n’est pas brilé mais ionisé. Les ions alors libérés passent
par deux grilles fortement chargées électriquement et subissent ainsi une accélération. La force
d’accélération des ions cause une force de réaction de sens opposé : c¢’est la force de propulsion
du moteur a ions. Les différentes parties du probleme sont tres largement indépendantes.

I. — Généralités
I.A. — Aspect cinétique - Lois de vitesse

A Tlinstant ¢ = 0 , une fusée de masse totale mg décolle verticalement dans
le référentiel terrestre (voir figure 1). On définit le débit de masse D,, > 0
des gaz brilés, par D, = —dd—’;‘ , m(t) désignant la masse de la fusée a un
instant ¢ > 0 quelconque. On note @ = —uu, avec u > 0, la vitesse d’éjection
des gaz par rapport a la fusée. On note ¥ = v(t)u, la vitesse de la fusée dans
le référentiel terrestre supposé galiléen. On suppose que D,, et u restent

constants et que le champ de pesanteur g reste uniforme lors du lancement.

'd 1 — En prenant pour systeme la fusée a I'instant ¢, exprimer sa quantité
de mouvement py aux instants ¢ et ¢t 4+ d¢ . Déterminer de méme la quantité
de mouvement p, a 'instant ¢ + dt¢ du gaz éjecté pendant dt .

(A 2 — On rappelle que la dérivée temporelle d'un vecteur @(t) est définie
. du . w(t+dt) — di(¢) . o
par la relation — = lim . En utilisant le principe fonda-
dt dt—0 dt
mental de la dynamique pour I'ensemble {fusée + gaz}, établir I’équation
différentielle
@] dv

"t
FIGURE 1 — Fusée
(4 3 — Identifier, dans le second membre de ’équation (1), l'intensité F

de la force de poussée. A quelle condition la fusée décolle-t-elle ?

= D,,u —mg (1)

'd 4 — On nomme impulsion spécifique I, d'un ergol (gaz propulseur) le temps pendant lequel
une masse m de cet ergol peut fournir une poussée équivalente au poids ressenti par m a la
surface de la terre. Exprimer I en fonction de u et g.

'd 5 — Déterminer I'expression de la vitesse v(t) de la fusée a l'instant ¢, en fonction de t,
m(t), g, u et de la masse de la fusée a l'instant ¢ = 0 notée my.

‘A 6 — On suppose le vaisseau extrait de Pattraction terrestre (mission interplanétaire), sa
masse totale est alors m; et sa vitesse ¥ = v;u,. On allume a nouveau un moteur pendant une
durée At conduisant a une variation de masse Am = m; —my. Adapter I’expression précédente
pour obtenir la relation de Tsiolkovski donnant ’accroissement de vitesse correspondant, noté
AV = vy —v;, en fonction de u, m; et my.

L’exemple qui suit a pour objet de montrer I'intérét des fusées a plusieurs étages. Soit une fusée
de masse totale m; = 134 tonnes constituée de deux étages. La masse totale du premier étage
est my, = 110 tonnes dont 100 tonnes d’ergols, et celle du second est m;, = 24,0 tonnes dont
20,0 tonnes d’ergols.

'd 7 — En considérant que la vitesse d’éjection des gaz v = 4,00km - s~! est la méme lors de
la poussée de chaque étage, calculer les accroissements de vitesse apportés successivement par
chacun des étages de la fusée. Comparer avec le cas d’une fusée ne possédant qu’un seul étage
et la méme répartition de masses, c¢’est-a-dire 14,0 tonnes de structure et 120 tonnes d’ergols.
Les calculs seront effectués dans ’hypothese d'une absence de pesanteur.
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Une autre maniere de minimiser les dépenses en carburant est d’augmenter la vitesse d’éjection,
limitée a quelques kilometres par seconde dans le cas d’une propulsion chimique comme nous
le verrons dans la suite de ce probleme.

'd 8 — Pour une charge utile de masse m,, = 500 kg, calculer les masses m., et m., de carburant
(la masse initiale du vaisseau est mg = m, +m.) & prévoir pour obtenir une variation de vitesse
AV = 5,00km - s, dans le cas d’une propulsion chimique (v = 4,00km - s™') et d’une
propulsion ionique (u = 20,0km -s71).

I.B. — Aspect énergétique - Rendement propulsif du moteur fusée

d 9 — Le vaisseau se déplace a une vitesse de norme v dans le référentiel d’étude galiléen.
Exprimer ’énergie cinétique dans ce référentiel de la masse dm du gaz éjectée pendant dt, en
déduire la puissance cinétique Pj.; contenue dans le jet de gaz issu du moteur. Exprimer de
méme la puissance recue par le vaisseau de la part de la force de poussée. On exprimera ces
deux termes en fonction de D,,, u et v.

‘4 10 — On définit le rendement propulsif comme le rapport de la puissance cinétique gagnée
par le vaisseau sur la puissance totale dépensée. En admettant une conversion parfaite de
I’énergie stockée dans le vaisseau en énergie cinétique du jet et du vaisseau, montrer que le
rendement propulsif peut se mettre sous la forme

2z

=1

ou 'on précisera ’expression de x en fonction des données du probleme.

‘A 11 — Tracer la courbe n(z), pour quelle valeur de x le rendement propulsif est-il maximal ?
Pour quelles valeurs de x le rendement est il nul 7 Montrer que I'on pouvait prévoir ces résultats
sans calcul.

En fait, bien que des moteurs a vitesse d’éjection variable soient étudiés et quelquefois exploités,
le rendement énergétique de la propulsion est souvent considéré comme secondaire : 1’énergie
fournie par une pile nucléaire ou des panneaux solaires est presque illimitée, ce qui n’est pas le
cas des réserves de gaz propulsif.

FIN DE LA PARTIE I

II. — Limites de la propulsion chimique

Considérons I’écoulement d’une tranche de fluide, comprise entre les sections S; et Sy a I'instant
t et entre S| et S} a l'instant ¢ + d¢ . Durant le laps de temps d¢ cette tranche échange un
certain travail W et une certaine quantité de chaleur ) avec I'extérieur. On note par ailleurs
W' le travail échangé sans mettre en jeu les forces de pression.

d 12 — Appliquer le premier principe de la thermodynamique a cette tranche, établir, en
régime permanent, la relation entre W', ) et les variations d’énergie massique de la tranche
considérée.

On se place dans la tuyere d’un moteur fusée, lorsque 1’écoulement est permanent et s’effectue a
altitude constante sans travail autre que celui des forces de pression. Le gaz éjecté est considéré
comme parfait, de masse molaire M, d’indice adiabatique v = 1,4 . Il provient d'une chambre
de combustion, ou ses température et pression sont notées T, et P. . Le gaz est initialement au
repos, v, = 0. Par ailleurs, on considere que le transit du gaz dans la tuyere est suffisamment
rapide et les échanges suffisamment lents pour que I’on puisse négliger les transferts thermiques.

'd 13 — Exprimer la vitesse maximale atteinte par le gaz en sortie de la tuyere en fonction
de v, R, T, et M. On négligera la température de sortie devant T..
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Aspects de la propulsion spatiale

'd 14 — Les ergols utilisés pour la propulsion sont du dihydrogene et du dioxygene, leur
réaction stoechiométrique permet d’obtenir une température de combustion de l'ordre de T, =
3,0 - 10% K. Calculer la vitesse maximale d’éjection des gaz issus de la tuyere et I'impulsion
spécifique correspondante.

FIN DE LA PARTIE II
III. — Le moteur plasma micro-ondes

III.A. — Principe de fonctionnement

Pour diminuer la consommation de gaz propulsif, il est nécessaire d’accélérer fortement le gaz
éjecté par apport extérieur d’énergie . Cette accélération est rendue possible par l'ionisation
de ce gaz (on obtient alors un plasma), les particules chargées pouvant étre accélérées par un
champ électrique.

Le gaz propulsif utilisé est par exemple du Xénon, il est ionisé par trois types de mécanismes po-
tentiels, on suppose que tous les ions produits sont Xe™. Ces trois mécanismes sont représentés
sur la figure 2. La premiere source potentielle d’ion est la collision entre un atome et un
électron produit par un canon a électrons (défini au début de la partie II1.B). Il s’agit de
la voie a. Outre I'ion produit cette voie produit deux électrons lents. L’application d’une onde
électromagnétique micro-onde permet d’accélérer ces électrons afin qu’ils puissent également
ioniser d’autres atomes de Xénon. Il s’agit de la voie b. Enfin, dans certaines conditions, les
photons micro-onde sont également susceptibles de photo-ioniser les atomes de Xénon. Il s’agit
de la voie c.

Une forte densité du plasma est assurée par la présence d’aimants permanents. Les ions Xe™ sont
finalement accélérés par une différence de potentiel dans une région appelée grille accélératrice.
Des canons a électrons assurent une neutralisation du gaz émis. L’ensemble est schématisé sur
la figure 2.

Grille
Grille acceleratrice
micro-onde

Canon a électrons

%de neutralisation

o—>0-0—>

FIGURE 2 — Représentation schématique du moteur ionique : les symboles @ sont des atomes
de Xénon, @ des ions Xe™ et o des électrons.

On considere le plasma comme un milieu électriquement neutre, de permittivité ey et de
perméabilité magnétique p , qui renferme n ions par unité de volume et autant d’électrons de
masse m, et de charge —e. Au sein du plasma, les ions possedent une vitesse caractéristique
bien plus faible que celle des électrons, ils peuvent ainsi étre considérés comme immobiles.
Les électrons sont dits libres pour les distinguer de ceux qui restent attachés aux ions. Le

Page 4/6



Physique I, année 2015 — filiere MP

plasma étudié ici est non-collisionnel, c’est-a-dire que 'on néglige 'effet des chocs entre ions
et électrons ou entre particules de méme espece. On suppose également qu’il est non relati-
viste ce qui signifie que la vitesse caractéristique des électrons libres est faible devant celle
de la lumiere ||7.|| < ¢. Afin d’assurer une ionisation la plus complete possible, on souhaite
finalement que ce plasma soit le siege de la propagation d’un rayonnement micro-onde. L’onde
électromagnétiqu(i correspondante est associée a un champ électrique dont la représentation

complexe s'écrit £ = Fye!@—ko)y, .
'd 15 — On suppose la propagation effective. Faire I'inventaire de toutes les forces appliquées

a un électron libre et préciser lesquelles sont négligeables.

'd 16 — Déterminer, en régime de propagation établi, la représentation complexe v, de la
vitesse des électrons libres et en déduire la conductivité complexe ¢ du plasma définie par
j=cE.

d 17 — Vérifier que dans ce régime de propagation la densité volumique de charge p est
bien nulle puis en revenant a la notation réelle établir I’équation de propagation du champ
E(z,t). On rappelle que rot(rotE) = grad(divE) — AE, en déduire Péquation de dispersion
dans laquelle apparait la pulsation de plasma

ne?
W, = .
P E0MMe

1 18 — A quelle condition 'onde appliquée au plasma peut-elle s’y propager ? Sinon que lui
arrive-t-il 7

Un intense champ magnétique statique axial éo = Byu,, supposé uniforme, est appliqué a
I'intérieur du plasma par des aimants permanents.

'd 19 — Ecrire I’équation vectorielle qui décrirait le mouvement de 1’électron s’il n’était soumis
qu’a ce champ magnétique. Montrer que pour une vitesse initiale de 1’électron contenue dans
le plan perpendiculaire au champ magnétique, son mouvement serait circulaire uniforme dans
ce plan, et que sa période de rotation serait indépendante de sa vitesse. Exprimer la pulsation
w, correspondante, appelée pulsation cyclotron, et calculer sa valeur numérique pour un champ
magnétique appliqué d’intensité By = 0,20 T.

‘d 20 — Montrer qualitativement que I'application du champ micro-onde (E, EO) avec w ~ W,
permet d’accélérer les électrons en augmentant la norme de leur vitesse.

d 21 — D’apres ce qui précede, exprimer et calculer numériquement la densité particulaire
maximale que I'on peut espérer pour un champ magnétique appliqué d’intensité By = 0,20 T.

Un champ magnétique permanent intense permet donc d’obtenir une densité importante de
plasma et ainsi d’augmenter le courant ionique engendré par les grilles accélératrices. Il aide
par ailleurs a maintenir I'ionisation : les lignes de champ magnétique < piegent > les électrons
en les forcant a décrire des cercles plutot que de diffuser librement vers les parois ; la probabilité
qu'un électron chaud ionise une molécule est accrue en raison de I'augmentation de la longueur
de son trajet.

d 22 — L’énergie de premiere ionisation du Xénon est de I'ordre de 12,0 eV. La configuration
précédente permet-elle d’envisager une réelle contribution de la photo-dissociation (voie ¢). On
justifiera sa réponse par un calcul.

I11.B. — Poussée

On néglige la masse m, des électrons devant celle des ions notée p.

d 23 — Exprimer la relation entre 'intensité du courant électrique I di aux ions traversant
le moteur, le débit D,, de masse de gaz issu du vaisseau et des caractéristiques des ions.
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d 24 — On suppose que les ions ont une vitesse caractéristique nulle a l'entrée de la grille
accélératrice. On note V, > 0 la tension présente entre les deux électrodes de la grille accélératrice.
Déterminer la vitesse caractéristique de sortie des ions du moteur. En déduire I'intensité F' de
la force de poussée du moteur (identifiée a la question 3) en fonction de I, u, V, et e.

‘1 25 — La densité volumique de courant dans le moteur est liée a la tension d’accélération
par la loi de Child-Langmuir que nous admettrons

. deg [2e V;?’/ 2

U VRRRT
la distance d étant celle séparant les deux électrodes de la grille accélératrice . Exprimer F' en
fonction de V,, d, ¢y et du diametre D du jet de gaz.

On consideére un moteur ionique utilisant du Xénon, de masse molaire M = 131g - mol™" et
possédant les caractéristiques suivantes :

e tension accélératrice V, = 700V ;
e distance d entre les deux électrodes de la grille accélératrice : d = 2,50 mm ;
e diametre de chaque trou dans les électrodes de grille délimitant les jets élémentaires
D =2,00mm;
e nombre de trous en vis-a-vis dans chaque électrode : N = 2,20 - 103
1 26 — Calculer les valeurs numériques de la poussée F' de ce moteur, de la vitesse de sortie

des ions et de la masse de Xénon consommée sur une période de 90 jours de fonctionnement.
Evaluer la puissance cinétique totale transmise au jet de gaz propulsé.

1 27 — Justifier sans calcul la nécessité de neutraliser le jet d’ions issu du moteur en lui
fournissant des électrons.

IV. — Application du moteur ionique au maintien d’un
satellite en orbite basse

On considere un satellite terrestre de masse m, = 250 kg en orbite circulaire basse a I’altitude
h = 300 km. Cette altitude est telle que les hautes couches de I’atmosphere le freinent.

'd 28 — Exprimer ’énergie cinétique E. du satellite en fonction de son énergie mécanique
E,, ; en déduire que, paradoxalement, le freinage entraine une augmentation de la vitesse.

'd 29 — Lorsque le moteur est éteint, les forces de frottement font perdre au satellite une
altitude Ah = 20 m a chaque révolution. Exprimer la variation d’énergie mécanique correspon-
dante, effectuer ’application numérique.

'd 30 — Le moteur ionique étudié précédemment permet-il de maintenir I'altitude de ce sa-
tellite ?

FIN DE LA PARTIE IV

FIN DE L’EPREUVE
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Le Millennium Bridge

Le Millennium Bridge

Pour marquer le millénaire, une nouvelle passerelle a
été construite au dessus de la Tamise a Londres pour
un cout total de plus de 20 millions de Livres Ster-
ling. Quand elle fut ouverte aux piétons on remar-
qua tres vite qu’elle se balancait latéralement et ver-
ticalement en cas de forte affluence. Avec un grand
nombre de piétons, son mouvement oblique était tel
que la plupart d’entre eux s’arrétaient et s’accrochaient
aux rampes. Des images et des vidéos ont montré que
ces mouvements latéraux pouvaient avoir une ampli-
tude moyenne de 75 mm et qu’ils se produisaient avec
des fréquences de l'ordre du hertz. Le pont fut donc
fermé deux jours apres son ouverture au public. Dix-
huit mois de recherches furent nécessaire pour résoudre
le probleme et faire les modifications préconisées par les
ingénieurs qui furent donc finalement consultés.
L’objectif de ce probleme est la modélisation de plus en
plus fine d’une passerelle piétonne et la compréhension
de certains problemes posés par le Millennium Bridge
de Londres.
Les vecteurs sont surmontés d’un chapeau s’ils sont
unitaires U, ou d'une fleche dans le cas général v.
A Texception de i tel que i2 = —1, les grandeurs complexes sont soulignées : z € C. Un point
dx

sur une grandeur indique la dérivée par rapport au temps de cette grandeur : & = 7.

I. — Oscillateur simple

3
Q|

Un oscillateur est constitué d’une masse m dont le centre d’inertie G est ¢ l
repéré par la position x dans le référentiel galiléen (O, u,) — voir figure 1. k T
L’origine O se situe au niveau du sol. L’oscillateur est relié a un support U, —j
fixe par l'intermédiaire d'un ressort linéaire de raideur £ et de longueur

a vide £ ainsi que d’un amortisseur linéaire de viscosité a, exerant sur @)
m une force de frottement F = —adi,, avec a > 0. A tout instant t, 7.

on assimile la distance OG & la longueur £(t) du ressort. L’ensemble est FI1G. 1 — Oscillateur
soumis & 'accélération de la pesanteur § = —g U, avec g = 9,81 m - s~2.

'd 1 — En appliquant la relation fondamentale de la dynamique établir I'’équation différentielle
X + 26weX + w2X = 0 dans laquelle on a introduit la fonction X (t) = z (t) — Z ol & est une
constante que 'on déterminera en fonction de g, wy et fy. On précisera les expressions et
significations de wy et &.

'd 2 — Dans le régime libre, le systeme est mis en vibration uniquement par des conditions
initiales non nulles X(0) = Xy # 0 et X (0) = V; # 0. Déterminer les solutions du régime
libre (en fonction de wy, &, Xo, Vo et t) pour les cas £ = 0 et 0 < £ < 1 et préciser leur
comportement. Dans certains cas, le vent peut induire sur le systeme une force proportionnelle
au vecteur vitesse que 'on écrit ﬁv = fzu,, avec 5 > 0. Quelle peut-étre la conséquence de ce
phénomene ?

Différents cas peuvent étre examinés pour l'excitation (ou forgage) F'(t) de l'oscillateur étudié
lors des deux premieres questions. Nous nous placerons dans ’optique d’une passerelle piétonne.
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L’action de la marche d’un piéton est caractérisée par un contact continu sur la surface du sol
puisque le second pied touche le sol avant que le premier ne le quitte. La force engendrée
comprend une composante verticale et une composante horizontale non prise en compte dans
cette partie.

Lo Pied

Charge par .
\‘gauche

pied 1,07,
[unités arbitraires] "
0,5F/ -

S
7

02 04 06 08 10 12 14 16 18

2,0t
Charge $Charge 7,
combinée 1,0
[unités arbitraires]
0,0f

Temps [seconde] R
0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 18 7

FIGURE 2 — Forcage d’une passerelle par la marche d’un piéton.

Dans le cadre d’'un modele simplifié, nous représenterons cette force, appelée charge, par un
vecteur périodique F(t) — Fy + F) cos (27 ft).

Le vecteur ﬁg correspond a la force statique, c’est-a-dire au poids du piéton, la fréquence
f correspond a celle d’'une marche normale. Nous considérerons que F’l =04 F’o. Ces deux
vecteurs seront supposés constants et orientés comme —1,,.
On note Fy = H F’OH le module de la force statique, ¥ = X +

twt

Fo_ 1a réponse en déplacement de
mwo

l'oscillateur et Y=Y,,e"" sa représentation complexe.

'd 3 — Que devient ’équation de 'oscillateur en Y sous le forcage piéton ? Déterminer la fonc-
tion de transfert H(w), rapport de la représentation complexe de la réponse en déplacement Y
sur la représentation complexe de 'excitation EF= #ﬂ . On exprimera H= Y /E en fonction de
€ wo et =2

d 4 — Sous quelle condition portant sur £, un phénomene de résonance peut-il se produire ?
Pour quelle pulsation w, obtient-on alors ce phénomene ? Exprimer le gain en amplitude a la
résonance |H| (w,) dans la limite £ < 1 .

'd 5 — En se plagant dans I'hypothese €2 < 1 et a partir d’'une analyse de la courbe 1 de
la figure 3, déterminer un ordre de grandeur de £ ainsi que la valeur de la pulsation propre
wo de loscillateur modélisant le Millennium Bridge avant la mise en place des amortisseurs
harmoniques.

'd 6 — Pourquoi est-il important de déterminer les fréquences de résonance d’une structure
soumise a une action périodique ?

Afin d’étudier précisément les propriétés du forcage que constitue la marche d’un piéton, on
réalise 'acquisition en laboratoire du signal correspondant a cette sollicitation.

d 7 — Quel(s) type(s) de capteur(s) est-il envisageable d’utiliser pour obtenir un signal
électrique issu de la marche d’un piéton ?
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3 5 7 9 11 13 15 17 19
Etage d’amortissement 10 ‘ T T
harmonique 4 — Courbe 2
7 1 Wo X |_| —avec amortisseur \
[ dB] — harmonique RN // \
5 AL ‘\ ,\\'-\
ka |::| Oéa "',' \\ " \ \“
"o¢' // \“ "' \ ‘1“
--"‘ / ‘\ ,' \ \
Tm . G ey i ~ ‘s‘ K \
== - e AT Y
— / \
0 NS
Courbe 1 \\ A\
L sans amortisseur (LY
b I—J @ harmonique )
w [rad.s] \
-5 1
7 4 6 8 10 12 14 16 18 20

FIGURE 3 — Schéma et réponse d’un amortisseur harmonique appliqué au modele du Millennium
Bridge.

L’acquisition est effectuée sur des durées allant de quelques secondes a quelques minutes. Les
signaux ainsi obtenus sont similaires mais pas parfaitement identiques. Chacun de ces signaux
présente les caractéristiques essentielles du signal de la charge combinée représentée sur la
figure 2. On calcule alors le spectre de ces signaux en les échantillonnant en N = 300 points
équidistants sur un intervalle [tyin,tmax|. Les différents spectres obtenus sont rassemblés sur la
figure 4.

'd 8 — Analyser et interpréter aussi précisément que possible ces différents spectres. Sont-ils
tous exploitables ? Lequel vous parait le plus pertinent 7 En déduire la (ou les) fréquence(s)
caractéristique(s) de la marche étudiée. Etait-ce qualitativement prévisible ?

10

107

O

N =300 ; tpm=10s; tn.= 180,0 s

[ 7] WP’MV%M
0.3 0.4 0.5 0.6 0.7 0.8

N=300; tyin=108; ty.,=270s 7

0.1 02
0 ' ' ' ' ' ' ' '

10 @ N=300; tpin=108; ty.=90,0s"

107} - |
L L 1y L L L f[HZ] L L L \f[HZ] L L L L

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 2 4 6 8 10 12 14
FIGURE 4 — Spectres des signaux correspondants a la marche d’un piéton
'd 9 — A partir d’une exploitation des données fournies dans le sujet, expliquer 1'origine du

probleme concernant le Millennium Bridge et justifier que 'installation d’amortisseurs harmo-
niques ait pu le résoudre.

FIN DE LA PARTIE 1
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II. — Systeme élastique continu

Les systemes réels sont rarement discrets. Ainsi la poutre de structure d’une passerelle est
déformable en tout point. Nous sommes donc en présence d’un probleme de dynamique des
milieux continus mais d’'un point de vue pratique 1I'étude des systemes continus se ramene
finalement a celle liée aux systemes discrets : ¢’est la discrétisation des systemes continus.

On négligera dans la suite du probleme 'action de la pesanteur.

On considere un solide homogene, de masse volumique p constante, qui a la forme d’un cylindre
de section S et d’axe (O,u,) horizontal, le long duquel on étudie les petits mouvements de
déformation.

Dans le domaine d’élasticité du matériau, la norme F' de la force de traction permettant a un
solide de longueur L de s’allonger de AL est donnée par la loi de Hooke : F' = ES % ou E est
une constante appelée module d’Young du matériau.

1 10 — Quelle est I'unité d’un module d’Young ? On motivera sa réponse pour laquelle on
utilisera une seule unité du systeme international.

'd 11 — On note X (z,t) le déplacement par rapport & la position de repos d’une section plane
d’abscisse x. Calculer la variation relative de longueur d’une tranche élémentaire du cylindre
de longueur au repos dx et en déduire la force de traction F'(z,t) = F(x,t)u, exercée par la
partie < droite » (du coté des x croissants) sur la partie < gauche » (du coté des x décroissants)
en fonction de E, S et %—f. Ecrire I’équation du mouvement de la tranche de longueur dz et en
déduire I’équation aux dérivées partielles vérifiée par X (x,t).

Afin de prendre en compte le mouvement transverse de la passerelle on introduit un axe vertical
dirigé selon le vecteur unitaire u, et on adopte le modele de la corde. Dans ce modele bidi-
mensionnel, la passerelle est représentée a I'instant ¢ par une ligne d’équation y (z,t) de masse
linéique p uniforme.

En un point M (z,y) de la passerelle, on définit
le vecteur unitaire tangent u, a la passerelle tel
que Uy, (z,t) = cos[a (x,t)] Uy + sin [ (z,t)] @,. Les
déplacements sont contenus dans un plan verti- y(x)
cal et sont de faible amplitude. On suppose donc / L
qu’a chaque instant « (z,t) ~ % < 1. Sous o ‘ —T(w,t)
ces hypotheses, la longueur de la corde ne varie Y

pas et chaque troncon infinitésimal de la passe-
relle n’est déplacé que selon la verticale. En chaque
point M (z,y) de la passerelle regne a chaque ins-

T(x+dz,t)

x r+dx
Uy
FIGURE 5 — Troncon de corde élastique

tant ¢ une tension T (x,t) portée par w,. Un trongon de corde est représenté sur la figure 5.

'd 12 — En appliquant un théoreme de mécanique a un troncon de corde infinitésimal de
longueur df¢ = /dx? + dy?, montrer que, sous les hypotheses effectuées, le module de la tension
de la corde est indépendant de x. On le notera Tj.

0%y 0%y
1 13 — Montrer alors que lon peut écrire —= = ¢2—=
d P 92~ Loz

ou l'on exprimera ¢, en fonction de

TO et L.

FIN DE LA PARTIE II
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III. — Modele de la poutre élancée

Dans un modele couramment utilisé, on peut assimiler une passerelle a une poutre homogene de
section rectangulaire de largeur b selon (O,u,) et de hauteur & selon (O,u,). Pour des contraintes
modérées, induisant un déplacement vertical petit devant les dimensions transversales de la
poutre, c’est-a-~dire y(x) tres petit devant h ou b, on peut alors se placer dans une extension du
modele de la corde.

On considere une passerelle de section S, de masse volumique p, de module d’Young E et dont
le moment quadratique de la section droite par rapport a l'axe (O,u,) est I = %bh?’. L’écriture
des contraintes conduit alors a une équation aux dérivées partielles de la forme

0%y My

%Y pZY
= ot? * oxt 0

'd 14 — On cherche des solutions sous la forme y (z,t) = f(x)g(t). De quel type d’onde
s’agit-il 7 Sous quelles hypotheses de telles ondes apparaissent-elles dans ce genre de structure ?

A 15 — Déterminer les équations différentielles vérifiées par f (z) et ¢ (¢). En déduire que
g (t) est une fonction périodique de pulsation w constante. Combien de constantes d’intégrations
sont nécessaires a la détermination complete de la solution y (x,t) correspondant a la situation
étudiée ?

d 16 — Justifier précisément que 1’on puisse écrire
f(z) = Acos (Bz) + Bsin (fx) + C ch (Bz) + Dsh (fz)

ou A,B,C' et D sont des constantes d’intégration, on précisera l’expression de 3 en fonction des
données du probleme.

On se place dans I'hypothese d'une passerelle de longueur L en appui simple a ses extrémités,
0? 0?

les conditions aux limites s’écrivent y|,_,, = vy|,_;, =0 et gy = a—g = 0.

’ 7 z z=Lt

ox?

z=0,t

‘d 17 — Déterminer les pulsations propres w,, de vibration transversale d’une poutre en appui
simple en fonction de L, E, I, p, S et d'un entier n caractérisant le mode.

‘1 18 — Différents modes de vibrations d’une passerelle ont été représentés sur la figure 6,
quels sont ceux correspondants a I’étude proposée dans cette section ? Identifier de fagon argu-
mentée pour chacun de ces modes, ’entier n le caractérisant.

La passerelle du Millennium Bridge est globalement une poutre en aluminium de 322 m de
longueur, d’épaisseur h = 1,07m (42 pouces) et de largeur b = 4m (158 pouces). Elle repose
sur 4 appuis en créant 3 travées solidaires de L1 = 70m, Ly = 144 m et L3 = 108 m. On donne
la masse volumique de I'aluminium p = 2700 kg - m~2 et son module d"Young £ = 69 x 10° SI.

1 19 — Dans le cadre du modele de la poutre sur appui simple, existe-t-il des modes de
vibration transversale du Millennium Bridge susceptibles d’entrer en résonance avec un forgage
par des piétons? Discuter également de la possibilité d’une excitation résonante de certains
modes de vibration latérale, c’est-a-dire dans le sens de la largeur b. On motivera ses réponses
par une argumentation précise.
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F1GURE 6 — Différents modes de vibration d’une passerelle en appui libre aux deux extrémités

FIN DE LA PARTIE III

FIN DE L’EPREUVE
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En 1971, le professeur LEON CHUA - qui exer¢a a 1’Université de Berkeley - prédit 'exis-
tence d'un dipole passif nouveau capable de servir de mémoire!, ce dipole venant compléter la
liste des trois dipoles fondamentaux de 1’électricité a savoir le résistor, la bobine et le conden-
sateur. Le terme de memristor qu’il inventa résulte de la contraction des deux termes memory
et resistor.

En 2008, des chercheurs? des HP Labs ont pu-
blié un article® dans la revue Nature© intitulé The
missing memristor is found, dans lequel ils annoncent
avoir mis au point un memristor présentant les pro-
priétés prévues par LEON CHUA en 1971. La pho-
tographie de la figure 1 montre un ensemble de ces
memristors.

En 2015, HP® et SanDisk® se sont associés
pour développer la technologie des mémoires a base
de memristors. Les atouts espérés de ce type de
mémoires peuvent laisser réveur : 1000 fois plus ra-
pides que les mémoires flashs actuelles, 1000 fois
plus de cycles lecture-écriture qu’actuellement et,
pour couronner le tout, une densité inégalée au point g
de pouvoir doter un smartphone d’'une mémoire de FIGURE 1 — Un ensemble de memristors
100 To en 2020! (échelle nanométrique) (©) HP Labs

Le probleme proposé comporte 4 parties largement indépendantes qui abordent différents
aspects des memristors. L’ensemble des données fournies sont dans le formulaire situé a la fin
du sujet.

I. — Généralités sur les memristors
I.A. — Le quatrieme dipdle @ """ P
Les 4 grandeurs fondamentales de 1’électricité sont la charge ¢, le

courant i, le flux magnétique ¢ et la tension u. Elles sont en général
dépendantes du temps t. On considere les 3 dipoles classiques que sont

le résistor de résistance R, la bobine d’inductance L et le condensateur

de capacité C. Ces trois dipoles sont considérés comme parfaits. Il est @ 4} @

possible de représenter les 4 grandeurs fondamentales de 1’électricité au FIGURE 2 — Le
sommet d'un graphe — carré en 'occurrence — ou les arétes représentent carré fondamental
des relations fondamentales ou des relations fonctionnelles des dipoles. de I’électricité

Ce carré est représenté sur la figure 2. Avant 1971, on connaissait 5 relations entre les sommets
de ce graphe et une était manquante. On se placera systématiquement en convention récepteur
pour tout dipodle étudié dans la suite du probleme.

'd 1 — Rappeler 'expression de la relation fondamentale liant ¢, i et t ainsi que les relations
fonctionnelles des 3 dipoles parfaits classiques. Ces 4 relations seront exprimées sous la forme
différentielle suivante : dr = y dz. a chaque fois, on précisera le sens physique de y et on donnera
son unité.

1. IEEE Transactions on circuit theory, vol. CT-18, no5, September 1971
2. Dmitri Strukov, Gregory Snider, Duncan Stewart & Stanley Williams
3. Nature, Vol 453— 1 May 2008— doi :10.1038 /nature06932



t
(A 2 — La relation fondamentale entre le flux ¢ et la tension u s'écrit ¢(t) = / u(t')dt'.

—00

Ecrire la cinquieme relation dans le graphe de la figure 2 sous forme différentielle.

'd 3 — Dans son article de 1971, LEON CHUA prédit l'existence d’une relation f(¢,q) = 0
que l'on peut soit expliciter sous la forme ¢ = ¢(q), on dit que 'on a un memristor controlé
par la charge; soit sous la forme ¢ = ¢(¢), on dit alors que 'on a un memristor controlé par
le flux. La sixieme relation différentielle est posée sous la forme d¢ = M (q)dq ou M(q) est la
memristance. Quelle est 1'unité usuelle de la memristance 7 Justifier la réponse.

‘d 4 — On associe deux memristors de memristances M; et M, en série. Quelle est la mem-
ristance M du dipole équivalent 7 On justifiera sa réponse. Méme question si on associe M; et
Ms en parallele.

Afin de concrétiser la notion de memristor, on propose de le modéliser par la relation
o(q) =aq+ g ¢ ot a et 3 sont des coefficients réels positifs. On impose dans le memristor une
intensité i(t) = ipsinwt pour ¢ > 0 et on suppose que pour ¢t < 0, ¢ = 0. Enfin, on considere
qu’a la date t =0, on a ¢(t = 0) = 0.

(1) ‘4 5 — Déterminer I'expression de ¢(t) et tracer sur
un méme graphique les courbes représentatives de
i(t) et q(t).

5 * o 5 * 4 'd 6 — On donne sur la figure 3 la courbe représen-
| m/w m/w m/w tative de ¢(t). Reproduire cette courbe en y rajou-
tant sans calcul I'allure de la courbe représentative

FIGURE 3 — Graphe de ¢(t) de u(t).

'd 7 — En analysant la courbe u(7) du memristor précédent
représentée sur la figure 4, pourquoi peut-on dire, en simpli-
fiant un peu, que le memristor étudié présente deux régimes /
de fonctionnement : I'un dans lequel il laisse passer le cou-
rant et l'autre dans lequel ce n’est pas le cas.

4 8 — La courbe u(i) de la figure 4 présente donc un 0
phénomene particulier. De quoi dépend la résistance du = i
memristor 7 Expliquer la possibilité d’'utiliser le memristor

pour mémoriser une information. /

d 9 — LeEON CHUA qualifia le memristor de non wvo-
latile memory, c’est-a-dire de mémoire permanente. Quel
élément sur le graphique de la figure 4 permet de dire que
le memristor est une telle mémoire ?

FIGURE 4 — Courbe (i) du mem-
ristor proposé

I.B. — Conductivité

On considere un milieu conducteur ou les porteurs de charge possedent chacun une charge
¢ et une masse m. Ils sont présents dans le milieu conducteur supposé homogene et isotrope
a raison d'une densité volumique n en m~3. Ces porteurs sont soumis & un champ électrique
qui va les mettre en mouvement pour créer un courant. Lorsqu’elles se déplacent, ces charges
interagissent avec d’autres porteurs en mouvement mais aussi avec leur environnement fixe
constitué par le réseau cristallin du conducteur. Elles subissent alors des interactions que 1’on

m
peut assimiler a des chocs. Il résulte de 'ensemble des interactions une force de type —— ¢ ou
T

U est la vitesse des porteurs mobiles et 7 la durée moyenne qui sépare deux chocs successifs
subis par une charge q.



On étudie un conducteur cylindrique de section S, de rayon a et de longueur ¢ constitué du
milieu conducteur défini ci-dessus. Ce conducteur est soumis a une différence de potentiel Uy
indépendante du temps qui impose un champ électrique Ey uniforme et indépendant du temps.

Q1 10 — Etablir I’équation différentielle a laquelle satisfait la vitesse des porteurs de charge.
Donner la solution ¢(t) sans se préoccuper de déterminer la constante d’intégration. Quelle est
I’expression de la vitesse en régime permanent ? Sauf précision contraire, on considere que 1’on
est en régime permanent. Faire I'hypothese du régime permanent est-il contraignant ou non ?

'd 11 — La mobilité u des porteurs de charge est définie de telle sorte que v = uﬁo. Donner
I’expression de la mobilité d’une charge g. Apres avoir rappelé la définition de la densité volu-
mique de courant jo, établir Uexpression de la conductivité électrique 7o du conducteur définie
par la loi 3'0 = EO. Quel est le nom de la loi précédente ?

1 12 — Exprimer la résistance électrique Ry du cylindre conducteur en fonction de 7y, ¢ et

S.

'd 13 — LeEON CHUA indiqua dans son article fondateur que la résistance était un dipole
memory less? car la tension suivait instantanément les évolutions du courant. Qu’en pensez-
vous ?

'd 14 — On impose maintenant au dipole non plus le champ électrique Ey mais un champ
électrique El toujours uniforme mais dépendant du temps selon El = Elm coswt. Montrer que
le dipdle peut étre décrit au moyen d’une impédance complexe Z correspondant a 1’association
de deux dipoles et que la tension ne suit plus instantanément les évolutions de l'intensité. On
exprimera Z en fonction, entre autres, de Rj. A quelle condition retrouve-t-on la situation
ou le dipodle est un résistor de résistance Ry? Qualifier le comportement du conducteur et
I'interpréter.

On revient a la situation ou le champ électrique o imposé est indépendant du temps. On
étudie a nouveau la situation du régime permanent.

4 15 — Quelle est la puissance transférée a la charge ¢ par le champ électrique Ey? Quelle
est la puissance volumique associée a ce transfert d’énergie ?

'd 16 — En considérant I’ensemble du conducteur cylindrique, montrer que la puissance qu’il
recoit est p = wi. Cette expression peut étre généralisée aux régimes lentement variables puisque
la puissance instantanée p(t) est alors donnée par : p(t) = u(t) i(t).

d 17 — Dans le cas ou le dipole est un memristor, exprimer la puissance qu’il recgoit en
fonction de sa memristance et de l'intensité du courant.

II. — Le memristor des HP Labs

Le memristor mis au point aux HP Labs est constitué par un mince film de dioxyde de
titane de 5 nm d’épaisseur et de longueur ¢ = 10 nm. A chaque extrémité de ce dipole, le
contact électrique est assuré par 2 électrodes de platine. La particularité de ce memristor est
que le dioxyde de titane présente dans une zone des lacunes en oxygene, la formule brute du
dioxyde de titane étant alors TiO,_, si = représente les lacunes. On admet que cette situation
est équivalente a celle d’'un milieu dopé dans lequel les charges mobiles portent deux charges
élémentaires positives ¢ = +2e. Dans le reste du film, on trouve du dioxyde de titane sans
lacune de formule TiO,. Si le film est totalement dopé, sa résistance électrique est faible et vaut
R,, ~ 1 k€. Au contraire, si le film n’est pas dopé du tout alors sa résistance électrique est
élevée : Ryrp ~ 100 R,,. Supposons que la frontiere entre la zone dopée et la zone non dopée
soit située a l'abscisse z, voir le schéma de la figure 5.

4. sans mémoire
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FIGURE 5 — Représentation schématique du memristor des HP Labs

‘d 18 — Donner I'expression de la résistance électrique du memristor lorsque la frontiére entre
la zone dopée et la zone non dopée se situe a I'abscisse zy, on notera cette résistance R,,emo-

La particularité du film de dioxyde de titane est que la position de la frontiere évolue au
cours du temps en fonction de l'intensité du courant qui est passée mais aussi en fonction du
sens de ce courant. C’est cela qui en fait un memristor. On peut donc passer d’un dispositif
bon conducteur & un autre presque isolant. On note dorénavant z(t) la position de la frontiere
entre la zone dopée et la zone non dopée.

Pour le déplacement de la frontiere, on reprend le modele linéaire de la mobilité étudié a la
question 11 ou l'on note toujours u la mobilité des charges mobiles. On propose alors d’écrire

la relation
dz  Roi(t)
a -t
dans laquelle le courant i(t) est algébrique et son sens conventionnel précisé sur la figure 5.

d 19 — Quelle lecture faites-vous de la relation précédente ?

‘4 20 — On suppose que i(t < 0) = 0, puis que
i(t > 0) # 0 et enfin qu'a la date ¢ = 0, la frontiecre +4[ i [mA] g
est située en z = z. Etablir 'expression de z(t) en
fonction, entre autres, de la charge ¢(t) qui a circulé
depuis la date t = 0. Quelle est la charge minimale +2 /7
Qmin Nécessaire, dans le cas le plus défavorable, pour

que le memristor soit dans I'état le plus conducteur
possible ? s
d 21 — Etablir Pexpression de la memristance M (q) Z/ :
en fonction, entre autres, de R,,cmo. Expliquer pour- —2 TiO 7
quoi le memristor a été réalisé pour la premiere fois Pt
avec un systeme nanométrique.

‘4 22 — Pour simplifier les calculs, on considere que u [V]
lRoff > Rgn, % = Oft ﬁ(tlz (31) t: (2 O%impose dani T E— 0 ' _;_1
e memristor, a partir de la date ¢ = 0, un couran . .
d’intensité z(;f) :pig sinwt. Etablir les e><7pressions de FIGUREG- Courbe u(i) du film de TiO;
1), o(t) et ult)

‘A 23 — Dans leur article de 2008, les chercheurs® des HP Labs ont obtenu expérimentalement
la courbe (i) de la figure 6. Commenter cette courbe.

5. D. Strukov, G. Snider, D. Stewart & S. Williams The missing memristor is found Nature Vol 453— 1
May 2008— doi :10.1038 /nature06932
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III. — Une falaise de potentiel 7 E
-
On étudie I'évolution d’un quanton de masse m qui o 0 o
milieu 1 milieu 2

aborde, avec une énergie F > 0, une falaise de potentiel
de hauteur Vj constante située en x = 0, voir le schéma
de la figure 7. L’étude est undimensionnelle conduite sur
un axe Ox.

-V
FIGURE 7 — Falaise de potentiel et
énergie du quanton

24— A partir de I’équation de SCHRODINGER, établir I’équation différentielle vérifiée par
la fonction d’onde spatiale ¢(x) associée au quanton.

‘1 25 — Dans le cas ot le quanton arrive depuis x — —oo, établir les expressions de la fonction
d’onde ¢ (z) dans le milieu 1 et py(z) dans le milieu 2. Il n’est pas nécessaire de déterminer
les constantes d’intégration.

1 26 — Etablir I’expression du coefficient r rapport de I'amplitude de la fonction d’onde
spatiale correspondant a l'onde réfléchie et de 'amplitude de 'onde incidente. De la méme
facon, établir ’expression du coefficient ¢ rapport de 'amplitude de la fonction d’onde spatiale
correspondant a 1’onde transmise et de ’amplitude de I’onde incidente.

[d 27 — En déduire les coefficients R et T de réflexion et de transmission de la densité de
courant de probabilité. Faire I'application numérique lorsque 8 F = V4.

Dans le cas du memristor des HP Labs, les charges constituant le courant i(¢) traversent
le film de dioxyde de titane facilement dans un sens et beaucoup plus difficilement dans I'autre
sens. On s’interroge pour savoir si ces charges peuvent étre décrites comme le quanton des
questions précédentes abordant une falaise de potentiel par un coté ou bien par l'autre pour
expliquer la différence de conductivité du memristor en fonction du sens du courant.

d 28 — Qu’en pensez-vous 7 Que proposeriez-vous ?

Formulaire

Analyse vectorielle en coordonnées polaires

Dans le systeme des coordonnées cylindro—polaires (r,0,z) de base associée (é,.,ég,€,), on rappelle
quelques formules d’analyse vectorielle.

Soit f une fonction scalaire telle que f = f(r,0,2,t), le gradient de cette fonction est :

or, 101, o1,

gradf =5 6+ 15g% T 5,

Soit A un vecteur fonction des coordonnées cylindriques, 'expression la plus générale du vecteur
est :

A= Ap(r,0,zt)é, + Ag(r,0,z,t)ég + A (r,0,z,t)é,

La divergence du vecteur A est :

. 100rA) 104,  0A,
dvA="—s =+ %0 t 5

Le rotationnel du vecteur A est :

i (10As A0\ (04 OAN . 1 (00rA) 04,
v aA=ree "o )T o T o )T R\ T o 00 )




Quelques regles sur les opérateurs :
rotgrad f =0 et divrot A=0
rotrot A =graddivA — AA et rot (fff) = frot A+grad f A A
div (fA) = fdiv A + (/Y- grad) f

Soit S une surface fermée entourant un volume 7. Le flux d’un vecteur sur la surface S orientée
vers 'extérieur est égal a l'intégrale de la divergence de ce vecteur sur tout le volume 7 :

Théoreme de Green - Ostrogradski @ A-dS = Hf div Adr
S T/S

Soit C une courbe fermée sur laquelle s’appuie une surface Y. La circulation d’un vecteur le
long de C est égale au flux du rotationnel de ce vecteur a travers X orientée selon la regle du
tire-bouchon.

Théoreme de Stokes ]{ A4l = fj rot A -dY
¢ s/C

Mécanique quantique

On note i = h/2m avec h la constante de PLANCK. On rappelle I’équation de SCHRODINGER
pour un quanton de masse m possédant I’énergie E, évoluant en milieu unidimensionnel d’axe
Ox dans un potentiel ® V(x) indépendant du temps. Le quanton est représenté par la fonction
d’onde ¢(x,t). On a :
2 92
Ob(at) _ K P(at) L V() 9(z,t)
ot 2m  O0x?

Dans le cas d’'un potentiel V(z) indépendant du temps, les états stationnaires du quanton sont
décrits par la fonction d’onde es(z,t) telle que :

ih

Vool t) = ple) exp i

ol p(z) est la fonction d’onde spatiale.

On rappelle enfin que la densité de courant de probabilité de présence est définie par :

ol k est le module du vecteur d’onde associé au quanton.

FIN DE L’EPREUVE

6. Attention : en Mécanique quantique, on nomme potentiel V'(x) en réalité une énergie potentielle.
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Physique I, année 2018 — filiere MP

Interaction laser plasma a haut éclairement

Au début des années 2000, des mécanismes de génération d’impulsions électromagnétiques tres
breves et de forte intensité, jusque la théoriques, ont été concrétisés sur le plateau de Saclay
notamment par le Laboratoire d’Optique Appliquée de 'ENSTA PARISTECH et le Laboratoire
de Physique a Haute Intensité du CEA.

Lorsqu'un faisceau laser de forte puissance est focalisé sur de la matiére (gaz ou solide), cette
derniere est ionisée quasi-instantanément et se transforme alors en un plasma globalement
neutre. L’interaction entre le champ électromagnétique du laser et le plasma ainsi formé met en
jeu une physique particulierement riche et complexe. Sous certaines conditions, un rayonnement
laser de haute fréquence (UV ou X) peut étre émis par ce plasma. Dans le domaine temporel,
ce rayonnement peut étre associé a des impulsions tres breves dont la durée se situe dans la
gamme des femto-secondes (107! s) voire atto-secondes (107 s). Les applications de ce type
de laser sont maintenant largement mises en place en recherche, dans l'industrie et dans le
domaine des applications biomédicales. Nous proposons d’étudier certains de ces mécanismes
d’émission issus de 'interaction laser-plasma.

Hormis le nombre 7 tel que 2 = —1, les nombres complexes sont soulignés : z € C. Les vecteurs
seront traditionnellement surmontés d’une fleche, par exemple E pour un champ électrique;
sauf 8'ils sont unitaires et seront alors surmontés d'un chapeau, par exemple @, tel que ||u,|| = 1.
Les résultats numériques attendus sont des ordres de grandeur comportant au plus deux chiffres
significatifs. Quatre documents d’information sont rassemblés a la fin du sujet.

I. — Génération d’harmoniques dans les gaz

I.A. — Champ laser et champ coulombien.

Cette partie s’appuie principalement sur le document I.

On adopte dans un premier temps une description semi-classique de ’atome d’hydrogene dans
le référentiel du proton supposé fixe :
— la position de I’électron est repérée par le vecteur r et sa vitesse par le vecteur v';

— Délectron est assimilé & un point matériel de masse m ~ 9.1073' kg et de charge ¢ = —e¢
oll e = 1,6.1071 C désigne la charge élémentaire
— D’électron est animé d’'un mouvement circulaire, de rayon r = ||7]| et de vitesse v = ||| ;

— on néglige le poids de 1’électron ;
— la norme du moment cinétique est quantifiée : mrv = nh ou h = % ~ 1073* J - s désigne

la constante de Planck réduite et n est un entier naturel non nul.

‘d 1 — Donner I'expression de la force électrique coulombienne subie par ’électron, due au
proton. Montrer qu’il s’agit d'une force centrale qui dérive d’une énergie potentielle 1, dont
on déterminera l’expression.

'd 2 — Déterminer I'expression de ’énergie mécanique W, de I’électron sur son orbite circu-
laire de rayon r, en fonction de r, e et g = 9.107*2 F-m~!. Montrer que le rayon de la trajectoire
s’écrit sous la forme r = agn? ou 'on exprimera ag en fonction de gy, h, m, et e. Préciser la
valeur de n lorsque 1’électron est dans son état fondamental. Calculer la valeur numérique en
électron-volt de I’énergie mécanique de ’état fondamental notée —W,.

Page 1/9 Tournez la page S.V.P.
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4 3 — On donne a¢ = %.10*10 m, calculer la valeur de la norme du champ électrique coulom-
bien E. ressenti par ’électron dans son état fondamental. Calculer la puissance P de I'impul-
sion laser. Déterminer, notamment en fonction de P, les expressions de 'amplitude du champ
électrique laser avant son passage a travers la lentille Fy = Fy(z = —f’) et au niveau du foyer
E¢ = Ey(z = 0). En utilisant les valeurs numériques (fournies dans le tableau du document 1
relatives a la cible < gaz »), comparer E, et Ey. Que peut-on en conclure ?

I.B. — Un mécanisme en trois étapes

Cette partie s’appuie principalement sur le document 11.

Pour simplifier le probléme, on limite I’étude au mouvement de I’électron le long d’un axe (O,u;)
perpendiculaire a (O,u,) et x représente la coordonnée de I’électron le long de 'axe (O,uy).
L’impulsion laser est modélisée par une onde électromagnétique plane. Le champ électrique du
laser, au niveau de I’atome d’hydrogene situé au foyer du faisceau s’écrit

—

E(z,t) = Ey cos (wot — koz) Uy

pour 0 <t < T, avec wy = 2wy = koc = ?\—’;c. Le noyau, constitué d’un proton, est situé en O,
il est supposé fixe.

d 4 — Justifier que pour I'étude du mouvement de 1’électron, on peut négliger le terme kgz
dans 'expression du champ électrique du laser.

'd 5 — Donner I'expression de I’énergie potentielle d’interaction W), entre le proton et I’électron
en fonction de ’abscisse x. Vérifier qu’elle correspond bien a I’allure donnée sur la figure 11.a

‘d 6 — Donner I'expression de la force de Lorentz subie par I’électron et causée par le champ
électromagnétique du laser. Rappeler la relation de structure pour une onde électromagnétique
plane harmonique. On la supposera applicable localement. A quelle condition, supposée vérifiée
par la suite, cette force est-elle conservative? Déterminer, en fonction de e, Ey, wy, t et z,
I'énergie potentielle W), 1.s(,t) associée a cette force ainsi que 'expression de I'énergie potentielle
totale

W tot (2,8) = Wy(x) + W as(2,1).

Préciser le sens du champ électrique dans la situation de la figure 11.b .

d 7 — Justifier qu’il y a deux instants privilégiés par cycle optique ou l'ionisation, c’est-
a-dire la traversée de la barriere de potentiel, est la plus facile. Déterminer Z(, la position
correspondant au maximum de W), ¢ selon z. Déterminer I'expression de Ef; correspondant a
une ionisation en x = %y a I'un des instants privilégiés. Cette ionisation est-elle possible dans
les conditions expérimentales précisées dans le tableau du document 1, avec une cible <« gaz > 7

On s’intéresse maintenant a la deuxieme étape du mécanisme représentée sur la figure 1I.c.
L’ionisation a lieu a un instant ¢; > 0. On considere qu’elle confere une vitesse négligeable
(v(t =t;) ~ 0) a Iélectron et qu’elle s’effectue au niveau du noyau (x(t = t;) ~ o ~ 0). Pour
t > t;, Pélectron n’est soumis qu’au champ électrique du laser E (t) = Ef cos (wot) Uy, -

' 8 — Ecrire I'’équation du mouvement, puis déterminer, en fonction de e, Ey, m, wy, t et t;,
I'expression de la vitesse %(t), de la position x(t) pour ¢ > t;. A posteriori, quelle condition doit

étre vérifiée pour que xy soit bien négligeable lors de I'étude du mouvement de 1’électron dans
le champ laser.

Page 2/9 Tournez la page S.V.P.
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On s’intéresse enfin a la troisieme étape du mécanisme représentée sur la figure 11.d .

'd 9 — Déterminer 'expression de 1’énergie cinétique W, de I’électron lors de sa recombinaison
avec le noyau a un instant ¢ > ¢;. Exprimer sa valeur moyenne sur une période (W) en fonction
de e, ¢, m et wp. On admet que I'énergie cinétique maximale de 1’électron est donnée par la
relation We max = 3,2 (W,) et on donne (W.) ~ 60eV. Lors de cette recombinaison, I’électron
< retombant > dans son état fondamental, un photon est émis. On interprete cette émission
comme étant celle d'une impulsion breve dont ’étendue du spectre correspond a la fréquence
maximale possible d’'un photon issu de la recombinaison. Estimer un ordre de grandeur de la
durée 6T de cette impulsion.

s1(0,t) L’émission de ces impulsions lumineuses tres breves a lieu deux fois par
T, période : une fois apres une ionisation du coté des x > 0 et une autre
> + fois apres une ionisation du coté des x < 0.
q 5 T Ay On modélise le train d’impulsions émis par I’atome par un signal s(z,t) =
sy (z,t)+s_(z,t). Auniveau de I’'atome, on considere que s, (0,t) = so(t)
et s_(0,t) = —sp(t — 22) ot la fonction so(t) est périodique de période
To. Une allure possible de s (0,t) et s_(0,t) est donnée par la figure 1.

FIGI‘JRE 1 — Graphe (O gouhaite déterminer les pulsations présentes dans le spectre associé
du signal 5(0,t) au signal s(t).

s_(0,t)

' 10 — Justifier le fait qu’il suffit de raisonner sur un signal sinusoidal : so(t) = Sy cos (wt).
Donner les expressions des signaux s, (z,t) et s_(z,t) regus a une distance x de 'atome. A
quelle condition reliant w a wy = 2T—g, le signal s(x,t) est-il d’amplitude maximale? Préciser les
caractéristiques spectrales du train d’impulsions breves émises lors de 'interaction d’un laser
avec un plasma peu dense.

II. — Génération d’harmoniques sur un miroir plasma

Cette partie s’appuie principalement sur le document I1I.

Dans le cas ou la cible est initialement un solide, I’émission d’impulsions breves se fait par
conversion d’énergie entre les oscillations d'un plasma et une impulsion lumineuse breve.

II.A. — Pulsation propre I‘m% n Electrons
Dans un premier temps on souhaite déterminer la pul- //%

sation propre des oscillations d’un plasma dans un pro- T 0 X() T x
bleme unidimensionnel. Initialement, pour ¢t < 0, le 9 w 3

plasma est neutre, immobile et localisé entre les abscisses ¥ = —L/2 et * = +L/2. Le vide
regne de part et d’autre du plasma. On note n la densité particulaire des électrons, de masse m
et de charge ¢ = —e. On étudie le mouvement d’ensemble des électrons consécutif a une per-
turbation se produisant a l'instant ¢ = 0. On considere que les ions restent fixes et qu’a chaque
instant ¢ > 0 la distribution des électrons reste homogene sur une longueur L. Etudier le mou-
vement du nuage revient alors a étudier celui d’un électron situé au centre de la distribution, a
I'abscisse X (t). L’effet de la perturbation peut donc se résumer a un déplacement impulsionnel

du nuage électronique par rapport aux ions : pour t < 0 on a X(t) =0 et X(0) = Xy > 0.

‘A 11 — Tracer 'allure de la densité volumique de charge p(x). Déterminer le champ électrique
qui regne a l'intérieur du plasma, ou la densité volumique de charge est nulle. Déterminer
I’équation du mouvement d’un électron du plasma et en déduire que la pulsation propre du

, . 2
plasma est donnée par la relation w, = 4/ *=.
meg
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II.B. — Propagation dans un plasma homogene

On souhaite étudier la propagation d’une onde électromagnétique plane, de vecteur d’onde k
et de pulsation w, dans un plasma homogene au sein duquel on néglige I'agitation thermique.
On cherche les champs électrique et magnétique sous la forme E = Re(E) et B = Sm(B), avec
E: Eﬁoei(wtfﬁ.f) ot B: B_’Oei(wtflg-v?)'

'd 12 — Rappeler les équations de Maxwell. Le plasma étant supposé peu dense, localement
neutre et le mouvement des électrons étant supposé non-relativiste, exprimer la conductivité
complexe du milieu puis déterminer ’équation de propagation d’une onde électromagnétique
dans le plasma. Montrer que la relation de dispersion s’écrit w® = w? + k*c*. La pulsation w
étant fixée, en déduire qu’a partir d’une certaine densité particulaire électronique critique n..,
que 'on explicitera, la propagation n’est pas possible dans le plasma. Qu’advient-il alors de
I'onde électromagnétique ?

On s’intéresse maintenant a la propagation, sous incidence normale, de I’onde électromagnétique
dans la zone hétérogene de la surface du plasma. Cette zone de transition entre le vide et
I'intérieur homogene est modélisée par une évolution exponentielle de la densité particulaire
électronique décrite sur la figure 111.b. On considere que la relation de dispersion établie a la
question précédente est encore valable, mais avec w, = wy(z).

‘1 13 — Déterminer I'abscisse x. correspondant a la réflexion de I'onde électromagnétique.

On reprend la situation de la question précédente a I’exception notable du fait que I'onde élec-
tromagnétique arrive désormais sur la surface avec un angle d’incidence 5. On s’intéresse a la
propagation de cette onde dans le plan (xOy). La relation de dispersion précédente est toujours
supposée valable.

1 14 — Justifier que la composante du vecteur d’onde le long de la surface, c’est-a-dire la
composante k,, se conserve au cours de la propagation. En déduire 'abscisse x, de réflexion
de I'onde électromagnétique en fonction de x., L et 5. Comparer ce résultat avec celui obtenu
sous incidence normale.

II.C. — Excitation d’ondes plasma a la surface.

On modélise dans cette partie la seconde étape du mécanisme décrit
dans le document 111. Dans un premier temps, on raisonne sur une

t
seule dimension d’espace : . On suppose qu'un paquet d’électron
traverse la surface vers les z > 0 avec une vitesse ¥ = v, constante. Courbes
On choisit l'origine des temps lorsque le paquet passe en x = —3L. \_/ é(z,t)=cste
—

Lors de son passage, il excite localement des ondes plasma (voir
figure 2) qui se mettent a osciller comme dans la partie IL.A avec
X(x,t) = Xocoso(x,t). 37 0 2.

‘A 15 — Donner 'expression de l'instant to(x) de passage du pa- FIGURE 2 — Cas 1D
quet d’électron a 'abscisse x. Déterminer, pour t > to(x), I'expres-

sion de la phase ¢(x,t) en un point d’abscisse . On prendra ¢(x,t = to(x)) = 0 et on exprimera
le résultat en fonction de ¢, ty(z) et w,(x) puis en fonction de ¢, v, L, T et Wmax, OU Wiax désigne
la pulsation plasma associée a la densité particulaire maximale 7,.y.

)y Paquet
d’électrons

On définit le vecteur d’onde des oscillations plasma Ep = —grad ¢(x,t) et on admet que les
oscillations plasma ne peuvent émettre une onde électromagnétique que lorsque k,, - u, = 0.

'd 16 — Montrer que les oscillations plasma peuvent effectivement émettre un rayonnement
mais qu’elles n’auraient pas pu le faire si elles avaient été excitées par un paquet d’électrons se
déplagant vers les x < 0.
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y y On reprend I’étude de la question 16 mais en la traitant
a deux dimensions. Pour simplifier, on suppose que le
Front d’onde M(-3Ly) s s . p_, N .p.p , d
laser 5 7 paquet d’électrons, de vitesse v = wvu,, injecté en M,
o2 sous l'effet du laser vers I'intérieur du plasma, passe par
)
vl g ) 9 : N 9. A~ N ;
% O@ I’abscisse x = —3L & l'instant méme ou le front d’onde
X e du laser arrive en M, (voir ci-contre).
< @/ O{*’ ’ . s
X % % 1 17 — Déterminer le décalage temporel entre les ar-
7 . .
e rivées du front d’onde laser aux points My et M. En
FZ iR | g déduire 'expression du temps to(x,y) du passage du pa-
i { 0 ‘ quet d’électrons en un point (x,y) de la zone hétérogene.
—3L 0 En reprenant la condition d’émission de la question pré-
Vide . _Zone _ 5| Plasma _ , , .
\ léetero%ene homogene  cédente, avec désormais ¢ = ¢(z,y,t), montrer que les
e surface

points d’émission sont localisés sur un droite que 1’on ca-
ractérisera. Expliquer pourquoi I'on parle d’<« Emission Cohérente de Sillage > (ECS). Conclure
cette partie en précisant les propriétés remarquables du spectre de I'ECS.

III. — Interaction d’une impulsion avec une feuille mince

Cette partie s’appuie principalement sur le document 1v.

L’impulsion laser est celle décrite dans le document 1 dans le cas d’une cible solide.
On étudie 'effet de 'expansion du plasma dans le vide sur le spectre du rayonnement émis afin
d’estimer un ordre de grandeur de la température du plasma dans un modele simplifié.

d 18 — Justifier que si la température 6, du plasma est assez élevée, alors on pourra, en
premiere approximation, modéliser le plasma comme un gaz parfait. Montrer alors que la
température 6. du plasma reste inchangée pendant 1’expansion du plasma dans le vide.

' 19 — Déterminer l'expression de ny, max en fonction en de 0, L et de la densité particulaire
électronique ng, max avant expansion. En déduire I'expression de la pulsation plasma maximale
wr,, max €N fonction de 0, L et de la pulsation plasma wp max associée a la densité particulaire
N0, max- Pour des éventuelles applications numériques, on prendra par la suite wp max =~ 18,7 wp.

On suppose dans un premier modele que la température 6, des électrons du plasma est indé-
pendante de I’épaisseur ¢ de la cible choisie.

J 20 — Estimer dans ce modele et a partir de la figure 1v.b, un ordre de grandeur de la
température électronique 6, du plasma.

On suppose dans un second modele que ’énergie cinétique totale des électrons du plasma ne
dépend pas de I'épaisseur du plasma. On note dy I’épaisseur de la feuille la plus épaisse lors de
I'expérience (6y = 100 nm) et Lg la longueur caractéristique du gradient de ce plasma d’épaisseur
(50.

‘4 21 — Comment varie alors la température électronique 6, du plasma avec I’épaisseur § 7
Déterminer I'expression de wy, max en fonction de 9, wo max, 0o €t Lo. Que penser de ces deux
modeles compte-tenu des spectres expérimentaux de la figure 1v.b?
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Document 1 : Modélisation du faisceau laser incident

Le faisceau laser est modélisé de la fagon suivante :

— L’amplitude du champ laser est constante durant la durée E(z,1)
<—Ty—>

de I'impulsion T = 50fs (1fs = 107'°s) et elle est nulle ~ £o(2)

avant et apres cette impulsion (Fig 1.a). La période des os-
cillations du champ laser est notée Tj et correspond dans
le vide a une longueur d’onde Ay = 800 nm. L’énergie to- \/ \/ \/
tale de I'impulsion laser est Wr.

— Le faisceau présente une symétrie cylindrique d’axe (Oz). —Eo(2)
Dans un plan transverse (z = constante), 1’éclairement
I(r,z) est uniforme dans un disque de rayon R(z) et il est
nul au-dela (fig 1.b). On rappelle la relation entre 1'éclairement I(r,z) (en W - m~2) et
Pamplitude du champ laser E(r,z) : I(r,z) = 3e9cE(r,z)? ol gy désigne la permittivité
du vide et ¢ = 3.10°m - s7! la célérité de la lumiere dans le vide. On notera Iy(z) et

Ey(z) Iéclairement et le champ électrique sur 'axe r = 0.
I(r,z)
Iy (2) 4

<
i w
B 2
z
: A

T
Fi1G. 1.a — Amplitude laser

0 R v Cible au foyer

— Le faisceau est focalisé, par une lentille de dis- ™S\
tance focale f’ et de diametre égal a celui du /% 2% >
faisceau laser D, sur une cible (< gaz > ou < so- a/ V2R, $ e g \a ]
lide »). L’angle « est le demi-angle au sommet — O -
du cone sous lequel est vue la lentille depuis la
cible, placée au foyer O (fig. I.c).

— L’allure du faisceau au voisinage du foyer O est
représentée sur la figure 1.d, il est caractérisé
par les relations zy = ”T]f’, tana o~ 73‘—130 et Nature de la cible gaz solide

5 Durée impulsion T' 50 fs 30 fs

R(z) = Royf1+ (3) s s —| a7
Les conditions physiques expérimentales sont |  Focale de la lentille f’ 1m 30 em

rassemblées ci-contre.

Document 11 : Cas ou la cible est un <« gaz >

La cible étant un gaz, on peut, pour comprendre le mécanisme d’émission d’impulsions atto-
secondes, se ramener a l'interaction d’un champ électrique laser avec un atome, par exemple
I’hydrogene. Avant l'arrivée de l'impulsion laser, 1’électron de I'atome d’hydrogene est < au
repos > dans son état fondamental caractérisé par une énergie potentielle négative —Wy, . On
représente, en mécanique quantique, I’électron par un paquet d’ondes stationnaires. (Fig 11.a)
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My(x) \ AW, () (ILb

T Ty x
W W, ionisation
J Electron J - S\,

a l'état
\ / fondamental \ /\

-1 accélération W, recombinaison

| A NN

N

Dans le cadre d'un modele semi-classique qui donne des résultats satisfaisants, on peut décomposer
le mécanisme d’émission d’impulsions en trois étapes :

— Premiere étape (Fig 11.b) : sous l'influence du champ laser, le puits de potentiel dans
lequel se trouve 1’électron de I’atome d’hydrogene est modifié et la hauteur de la barriere
de potentiel s’annule. L’électron s’extrait alors de ’attraction coulombienne due au noyau
atomique. En réalité I'ionisation peut avoir lieu par effet tunnel avant 'annulation de la
barriere de potentiel. Nous n’étudierons pas cette possibilité dans ce probleme.

— Deuxieme étape (Fig 11.¢) : électron, libéré de I'attraction du noyau, est accéléré par le
champ laser. Il peut revenir vers le noyau avec une énergie cinétique W,

— Troisieme étape (Fig 11.d) : lors de son retour sur le noyau, I’électron se recombine avec
le noyau et émet un photon d’énergie hv.

Les trois étapes de ce mécanisme se déroulent au cours d’un cycle optique du laser dont la
période est notée Tj.

Document 111 : Cas ou la cible est < solide >

Laser ééﬂéChi Lorsque la cible est un < solide >, le plasma formé deés le début de
impulsions bréves I’arrivée de 'impulsion laser est tres dense. Comme la cible est totale-
(ible ment ionisée, la densité particulaire en électron n, vaut : n, = Z xn;
6/ ou n; est la densité particulaire atomique du solide et Z le nombre

5\ T de charge de 'élément.
Le faisceau laser peut s’y réfléchir comme sur un miroir. On parle
Laser incident |/ alors de < miroir plasma ». Les impulsions breves sont émises, lors

de l'interaction du faisceau laser avec ce < miroir plasma >, dans
la direction du faisceau réfléchi. On considere que cette direction
satisfait les lois de Descartes de l'optique géométrique (fig 111.a).

Fic. 111.a — Miroir
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La surface du < miroir plasma > présente une tres
forte hétérogénéité de densité particulaire entre le
vide (& l'extérieur) et une région tres dense et ho-
mogene (a Uintérieur). On modélisera cette densité
particulaire en électrons par une fonction exponen- 3L

tielle (fig 111.b). L 0 T
0 pour x < —3L — Vide —><— Surface 5 o Plasma __
z/L | hétérogene homogene
ne(z) = Nmax€ pour —3L <x <0
Nmax pour x>0

Fia. 111.b — Transition de n,

La densité particulaire des ions est de la méme forme afin que le plasma soit localement neutre
avant arrivée de l'onde électromagnétique. On suppose que n,,q., qui correspond a la densité
particulaire électronique lorsque la cible est totalement ionisée est supérieur a n..

Le mécanisme d’émission que nous allons décrire est appelé Emission Cohérente de Sillage.
Pour étre efficace ce mécanisme nécessite que le faisceau laser incident arrive de fagon oblique
sur le <« miroir plasma ». On note § I'angle d’incidence sur la surface plane (z = 0) de la cible
devenue un < miroir plasma .

Figures extraites de la these de Cédric Thaury - 2008

Ce mécanisme peut étre décrit en trois étapes :

— Premiere étape : Les électrons, de la surface du miroir plasma, sont arrachés par le champ
électrique du laser (fig 111.c), puis renvoyés par paquet vers le plasma (fig 111.d)

— Deuxieme étape : Lors de la traversée de la surface hétérogene du miroir plasma, les
paquets d’électrons excitent des oscillations plasma (& la fréquence plasma locale w,(x)).
Du fait de I'incidence oblique, la superposition des paquets d’électrons formés a différents
points de la surface résulte en un front de densité oblique qui se propage dans le plasma
(fig 111.e et fig 11L.f)

— Troisieme étape : Ces oscillations plasma émettent une impulsion lumineuse attoseconde
dans la direction du faisceau réfléchi lorsque le front des oscillations plasma est perpen-
diculaire & la surface du miroir plasma (fig 111.d)

Ce mécanisme se répete a chaque cycle optique du laser (de période Tp).

oA A
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Document 1v : Cas ou la cible est une < feuille mince >

no(z) On s’intéresse au cas ou I’épaisseur du miroir plasma est na-
Avant expansion nométrique (de 10nm a 100nm). Dans ce cas, la totalité de
la cible est vaporisée et ionisée pour former un plasma. L’ex-
pansion de ce plasma dans le vide a pour conséquence une
diminution de la densité particulaire maximale de la cible.
L’allure du profil de densité particulaire électronique avec et
sans expansion est reportée sur la figure 1v.a. On note d 1’épais-
seur de la cible, et L la longueur caractéristique de I’hétérogé-
- néité de densité aux surfaces. Cette derniere longueur dépend
L0 5 (5 T de la température 0, du plasma et de la durée T de I'impulsion
laser incidente. On peut ’estimer par une relation de la forme

F1G. 1v.a — Profil L = ¢, T avec ¢, = Z’;ni ol kg = 1,4.10723 J- K~ désigne la
constante de Boltzmann, m; la masse ionique et Z le nombre
de charge de I'atome. La cible est ici en carbone avec Z = 6 et m; = 2.10726 kg. On peut estimer
que I'énergie cinétique moyenne d’un électron du plasma est égale a %k396.
Nous modéliserons le profil de densité particulaire des électrons ny(z) de la fagon suivante :

nO,maX

ny, ,max

AEpaisseur [nm]

100 A ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ nLvmaxem/L pour z <0
50 ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ np(z) =< ML max pour 0<x <9
nr, maxe @ pour § <
> ﬂ ﬂ ﬂ ﬂ ﬂ Dans ce modele I’épaisseur § de I'intérieur homogene
19 ﬂ ﬂ ﬂ ﬂ Pulsation du plasma ne varie pas pendant l'interaction.
(en wo = 25 Lorsque 'on fait varier 1’épaisseur 0 de la cible, on
10 ﬂ ﬂ ,TD observe que l'étendue du spectre varie. L’harmo-
12 13 14 15 16 17 18 19 nique maximale du spectre augmente avec 1’épais-
F1a. 1v.b — Spectres seur du miroir plasma (fig 1v.b).

FIN DE L’EPREUVE
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Physique en arctique

Ce sujet aborde différentes questions relatives aux propriétés physiques particulieres aux régions
polaires. Les notations, valeurs des constantes fondamentales et les autres données numériques
nécessaires a la résolution du probleme ainsi qu'un formulaire sont regroupés a la fin de I’énoncé.

Les exemples seront tous traités dans le cas des régions polaires nord (également appelées
arctiques ou boréales). Les notations géographiques usuelles sont également rappelées en fin
d’énoncé. Les applications numériques comporteront au plus 2 chiffres significatifs.

Les deux parties sont indépendantes.

I. — Poles géographiques et magnétiques

Les poles géographiques sont assez proches des poles magnétiques; dans tout ce qui suit,
on pourra confondre les deux axes reliant les poles opposés de chaque type. La recherche
des poles magnétiques s’est d’abord appuyée sur la mesure du champ magnétique terrestre
(ou champ géomagnétique), et en particulier de sa direction. L’intensité croissante du champ
géomagnétique a l'approche des poles contribue enfin a expliquer un phénomene optique spec-
taculaire : les aurores polaires. Les parties I.A et [.B sont indépendantes entre elles.

La partie [.A est consacrée a la description dipolaire du champ géomagnétique (le dipole disposé
au centre de la Terre et modélisant des courants électriques dans le noyau de la planete).

La partie I.B présente le modele autodynamo du champ géomagnétique, susceptible de rendre
compte des inversions du champ géomagnétique qui ont eu lieu dans le passé et ont laissé une
trace dans les propriétés magnétiques de certains sédiments sous-marins.

I.A. — Boussole, champ géomagnétique et dipdle central

Une boussole est formée d'un
aimant permanent, solide en
forme d’aiguille équivalente a

un petit dipoéle magnétique N<<E
m de norme constante m, la
direction du vecteur m étant
supposée indiquer le nord.
Cette aiguille aimantée peut
librement tourner autour d'un
axe vertical (A) dirigé par le
vecteur €, local et formant un pivot a faible frottement (cf. fig. 1).

—
—
m

FI1GURE 1 — Boussole de navigation

'd 1 — Pourquoi la boussole a 1’équilibre indique-t-elle le nord ? Cet équilibre est-il stable ?

On note I le moment d’inertie de Iaiguille aimantée relativement a son axe de rotation (A);
légerement écartée de sa position d’équilibre (cf. fig. 1), 'aiguille aimantée oscille avec une
pseudo-période Tygc.

1 2 — Montrer que la connaissance de m, T,¢ et I permet de déterminer une des composantes
du champ géomagnétique. Laquelle ?

On étudie un modele de champ géomagnétique créé par un dipole magnétique M = Myé, disposé
au centre O de la Terre (assimilée a une sphere de rayon Rr), 'axe (Oz) étant 1’axe polaire
géographique dirigé du pole sud de cet axe vers son pole nord (cf. fig. 7). On rappelle d’une part
qu'un point de la surface est caractérisé par ses coordonnées géographiques ¢ (longitude) et
A = 5 —0 (latitude) et d’autre part qu’a I'’équateur le champ magnétique terrestre est horizontal,
dirigé vers le pole nord géographique et y a pour intensité Bg.

1 3 — Exprimer, en un point de la surface de la Terre et en coordonnées sphériques, le champ
géomagnétique en fonction de po (perméabilité du vide), My et Ry.
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'd 4 — Préciser le signe de M puis estimer sa valeur numérique. Quelles sont la direction et
I'intensité du champ géomagnétique aux poles magnétiques nord et sud ?

En un point P de la surface terrestre, on appelle nord magnétique local la direction €y du
champ géomagnétique B , projeté dans le plan horizontal, et déclinaison magnétique 1’angle D
formé par B avec le nord magnétique local ; la déclinaison magnétique est positive si B est
dirigé vers le haut (vers le ciel) et négative s’il est dirigé vers le bas (vers le sol).

'd 5 — Dans I'hémisphere nord, quel est le signe de D7 Calculer tan(D) en fonction de la
latitude A puis tracer I'allure de la courbe donnant D en fonction de A pour toutes les valeurs de
A du pole sud au pole nord. Pourquoi lisait-on parfois que les boussoles < s’affolent a proximité
des poles » 7 Peut-on déterminer, au moyen d’une boussole, si on se trouve dans I’hémisphere
nord ou dans I’hémisphere sud ?

I.B. — Modele autodynamo et fluctuations du champ

Un modele possible pour la circulation des courants électriques dans le noyau métallique liquide
de la Terre, couplée & la rotation de la Terre, est le modele autodynamo (cf. fig. 2). Le systeme
comporte N spires (circulaires de rayon a, de centre O et d’axe (Oz), qui créent le champ
géomagnétique). Il comporte aussi un disque central de rayon b < a, qui peut tourner autour
de l'axe (Oz) avec la vitesse angulaire w(t) et le moment d’inertie I (il modélise les interactions
mécaniques avec la rotation de la Terre). Ce disque, conducteur, est parcouru par le méme
courant i(t) que les spires; il est aussi entrainé par la rotation de la Terre avec un couple
moteur I' = [yé.. Enfin, la résistance électrique totale du circuit est notée R.

FIGURE 2 — Le modele autodynamo pour le champ géomagnétique

On note B (P) le champ magnétique créé par ce dispositif en un point P du disque tournant,

1 Tmax .
avec 7 = OP; on supposera N > 1. Si i(t) # 0, on note M, . = —E/ re, - B(P)dr;
¢ 0
en particulier on pourra utiliser dans ce qui suit les intégrales M, et M, pour rp,., = a ou b

respectivement.

d 6 — Quelle est la direction de B (P)? Quels sont les signes de M, et M, ? Comparer M, et
M,. Expliciter 'inductance propre L du circuit électrique de la figure 2 en fonction notamment
d’une de ces intégrales.

'd 7 — On suppose d’abord que le courant i(t) traverse le disque uniquement en ligne droite
du point A de sa périphérie a O. Exprimer la force de Laplace dF;, s’exercant sur un élément de
longueur du segment AO. Exprimer alors le moment I'y, = ['L- &, des forces de Laplace exercées
sur ce disque en fonction de i(t) et M,. Méme si le courant se répartit de maniere arbitraire sur
ce disque de A a O, on peut montrer, et on admettra, que l’expression établie ici du moment
des forces de Laplace reste inchangée.
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'd 8 — En faisant 'hypothese de la conservation de la puissance lors de la conversion électro-
mécanique, relier la force électro-motrice e(t) induite par les mouvements de rotation du disque
a My, i(t) et w(t).

d 9 — Etablir les équations régissant les 9
évolutions du courant dans le noyau et de

sa vitesse de rotation sous la forme dun
systeme differentiel couplé

dz . |
S =it ewlt) - ) .

60

dw

— = =82t I
g = (t) 7
On exprimera les constantes positives «, f3, I

v, et 0 en fonction de R, L, My, I et T'. 0

0
Soit 4o un courant constant arbitraire, on FIGURE 3 — Courbes de valeurs constante définies
considere la fonction par la fonction f(z,y) = %552 + %92 —In(z)-y=c
Les valeurs de ¢ sont indiquées sur les courbes.
1 1 LT 1 IR
H(w,i) = —Iw’+-Li* —=—1In|—| - —w
( ) 2 * 2 Mb 10 Mb
dH o : . , :
'd 10 — Calculer G et simplifier son expression. Comment peut on interpréter la fonction

‘H ? Déterminer les points du plan (i,w) pour lesquels le gradient de H s’annule. Comment
s’interprétent ces points ?

'd 11 — Décrire la stabilité des équilibres du champ géomagnétique associés a la portion du
plan de phase représenté sur la figure 3.

II. — La glace de la banquise

L’existence de couverts de glace de grande épaisseur au-dessus des océans polaires est bien
stir une caractéristique remarquable des régions polaires. On étudie ici deux propriétés de ces
couverts de glace :

— quelques propriétés mécaniques d’un traineau glissant sur sa surface (partie I1.A);

— un modele simple de croissance de I'épaisseur de la glace en hiver (partie II.B).

II.A. — Un traineau sur la glace

Un traineau a chiens est un dispositif de masse totale M (le pilote, ou musher, est compris
dans cette masse) qui peut glisser sur la surface de la glace avec des coefficients de glissement
statique (avant le démarrage) ps et dynamique (en mouvement) fi .

‘d 12 — Les chiens sont reliés au traineau par des éléments de corde tendus, de masse
négligeable et inextensibles. Montrer qu'un tel élément de corde transmet les tensions et que
celles-ci sont colinéaires a la corde.

1 13 — Le trajet se fait soit a 'horizontale, soit sur une faible pente ascendante caractérisée
par I'angle « avec 1’horizontale. Montrer que, dans ce dernier cas, tout se passe comme dans
un mouvement horizontal sous réserve de remplacer p4 par p);, que 'on exprimera.
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L’intensité de la force de traction totale F' exercée par I’ensemble des chiens dépend de leur
vitesse v et on adoptera le modele F' = Fy — fv ou Fy et § sont des constantes positives. On
prendra les valeurs M = 5,0 x 10%kg, a = 0, ptg = 5,0 x 1072 et p, = 8,0 x 1072

d 14 — Déterminer la valeur minimale de Fj permet-
tant le démarrage du traineau.

'd 15 — La vitesse du traineau en régime stationnaire »
est vy = 3m-s~!, atteinte & 5% preés au bout d'un temps /
t; = 5s. Exprimer d'une part 8 en fonction de M et t; et <

d’autre part Fj en fonction de 3, vg, pq, M et g. Calculer
leurs valeurs respectives.

Toujours a vitesse constante v, le traineau aborde une
courbe a plat qu’on assimilera a un cercle de centre O
et de rayon R (cf. fig. 4). Les chiens (modélisés ici en
un seul point C') doivent donc tirer vers l'intérieur du
cercle.

FIGURE 4 — Trajectoire circulaire du
tralneau

'd 16 — Déterminer en fonction des données la tension
T de la corde et I'angle 6 entre la force de traction et la
trajectoire.

I1.B. — Croissance hivernale de I’épaisseur de glace

Pour étudier la croissance de la couche de glace en hiver, on modélise I'océan sous la banquise
en formation de la maniére suivante (cf. fig. 5) : en profondeur, la température de 1'eau est
maintenue constante a 77 = 4°C par les courants océaniques. Sur une hauteur constante e
sous la banquise, 'eau se refroidit progressivement jusqu’a atteindre 7, = 0°C a l'altitude
z = 0 de formation de la glace (on néglige tout effet de salinité de I’eau). La couche de glace
a une épaisseur croissante zg(t) qu’il s’agit de déterminer; au-dessus de celle-ci, I'air est a la
température constante T = —40°C. On notera A, et A\, les conductivités thermiques et ¢, et ¢,
les capacités thermiques massiques de 'eau liquide et de la glace, p, et [; la masse volumique
et I’enthalpie massique de fusion de la glace ; toutes ces grandeurs sont des constantes.
L’épaisseur de glace z,(t) augmente régulierement du fait de la cristallisation de '’eau refroidie
a Ty = 0°C a la base de la couche de glace. Toutes les études pourront étre faites pour un
systeme défini par un cylindre vertical de surface S unité (cf. fig. 5) au sein duquel les transferts
thermiques unidimensionnels sont régis par la loi de Fourier.

'd 17 — Par une étude des échanges thermiques de 1’épaisseur §z prise a l'intérieur de la
glace, établir une équation aux dérivées partielles vérifiée par la température T,(2,t) au sein de
la glace.

'd 18 — Déterminer une expression donnant 1’ordre de grandeur de la durée At de la diffusion
thermique au sein de la glace sur une hauteur Az. Quelle durée doit-on attendre afin de pouvoir
considérer que, pour des évolutions assez lentes, la température T, ne dépend pratiquement plus
du temps ? Préciser ce que 1’'on entend par < assez lentes >.

On se place dans ce cas dans toute la suite : dans [’eau comme dans la glace, les répartitions
de température seront supposées quasi—statiques.

' 19 — Définir et exprimer les résistances thermiques R, et R., pour une aire donnée S, des
couches de glace et d’eau refroidie sous la glace.
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)
E Air froid a Th = —40°C

Glace

UQN
—~
~
N~—
l l
—
151
!

-« Formation de glace a Ty =0 C

Eau refroidie par la glace

_______________

Eau «chaude » a T1 =4"C

FIGURE 5 — L’océan sous la banquise en formation

Les transferts thermiques a travers la surface supérieure de la banquise sont décrits par la loi
de Newton des transferts pariétaux (radiatifs et convecto—conductifs) : la puissance échangée
par unité d’aire de cette surface vérifie |P,| = h|Ts — Tz| ou T est la température au sommet
de la couche de glace; le coefficient A > 0 de la loi de Newton est supposé connu et constant.

'd 20 — Exprimer la résistance thermique R;, pour une aire S, de I'interface entre 'air et la
glace.

'd 21 — Montrer que le régime quasi—-permanent de croissance de la couche de glace peut étre
décrit par le schéma électrique équivalent de la figure 6 et préciser I'expression du < courant > ®
du <« générateur de courant > en fonction notamment de s, p, et de la vitesse de croissance

Vg = dditg de la couche de glace.
"D
R. Ry R;
o N P B S m—
Ti=4C ZIO Di Th = —40°C
- Ty =,0"C
—

F1GURE 6 — Circuit électrique équivalent a la croissance de la couche de glace. Le dipole D
représenté sur cette figure permet d’assurer une différence de potentiel nulle sans appel de
courant dans cette branche du circuit.

1 22 — Etablir I'équation différentielle vérifiée par z,(t). On suppose que pour toutes les
valeurs de ¢ considérées on a + > f\—z + %, en déduire la loi d’évolution de 1’épaisseur de la

couche de glace sous la forme 7, [(y2,(t) + zg(tﬂ = (2t ol I'exprimera les grandeurs 7, et £, en
fonction des parametres du modele. L’instant ¢ = 0 correspond au début de la formation de la
banquise.

' 23 — Tracer et commenter 'allure de la courbe donnant z, en fonction de ¢. On montrera
notamment 'existence de deux régimes successifs.
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Données et formulaire utiles pour I’ensemble du sujet

Données numériques et constantes fondamentales

Champ magnétique terrestre a I’équateur Bp = 3,0 x 107°T

Charge élémentaire e=16x10"12C
Durée du jour solaire moyen To =24h = 8,6 x 10*s
Intensité du champ de pesanteur go = 9,8m x 572
Perméabilité magnétique du vide po =47 x107"H-m™?
Rayon terrestre Ry = 6,4 x 103km
Logarithme népérien du nombre 20 In(20) ~ 3,0

Coordonnées sphériques et géographiques

On notera (Oxyz) les axes cartésiens associés a la base orthonormée et directe (€, €, €,). Les
coordonnées sphériques d'un point P sont notées (r, 0, ¢) avec la base locale associée (€, €y, €,,),
cf. fig. 7 a gauche. On note aussi ¢ (longitude) et A la latitude d’un point P de la surface
terrestre ; le point A est situé sur I’équateur dans le méridien origine (¢ = 0) ; celui-ci passe par
I’observatoire de Greenwich G, cf. fig. 7 a droite.

Pole Nord
géographique

x geographlque

F1GURE 7 — Coordonnées sphériques et géographiques

Données et formules relatives aux dipoles magnétiques

Le champ magnétique créé par un dipole de moment dipolaire M placé a l'origine O des
coordonnées est donné au point P par :

MOBE(M-E)—R?M

B(P)=— oﬁﬁ:&%et}%:é
(p) = 22 ¥ el
Les interactions d’un dlpole magnétique rigide de moment dipolaire m _soumis a un champ
magnétique extérieur B sont décrites par I’énergie potentielle E, = —mi - B et par le couple des

actions électromagnétiques T'=mAB.

FIN DE L’EPREUVE
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Au temps des Mayas

Les phénomenes naturels terrestres ou célestes ont nourri, au fil des ages, les cultures des civilisations
anciennes et contribué a forger leur vision du monde. Les exemples astronomiques sont nombreux. Il
n’est pas rare de trouver, par exemple, des batiments orientés selon les directions astronomiques des
levers et couchers du Soleil ou de Vénus, astres qui furent souvent associés a des divinités importantes.
Dans ce probleme, on se propose d’étudier quelques phénomenes physiques auxquels les Mayas, civi-
lisation précolombienne d’Amérique centrale, ont été confrontés ou pour lesquels ils ont manifesté de
I'intérét :

i) La couleur de la Lune totalement éclipsée,

i1) L’écho de la grande pyramide de Chichén Itza.

Notations et valeurs numériques :

e Notations : les notations adoptées sont les notations internationales (norme ISO 80000-2).

e Vecteurs : conformément aux notations internationales, les vecteurs sont représentés en caracteres
gras. Par exemple, le champ vectoriel de pesanteur terrestre, supposé uniforme, est noté g. Les vecteurs
de base, unitaires, sont désignés par un e.

e Valeurs numériques : lorsqu’une valeur numérique non nulle est demandée, 1’écart relatif de la réponse
par rapport & la valeur exacte ne doit pas excéder 20%.

e Données astronomiques : les données numériques astronomiques sont regroupées a la fin de ’énoncé.
Les deux parties du probleme sont indépendantes.

I. — Couleur de la Lune totalement éclipsée

Lorsqu’une éclipse de Lune se produit, cet astre, majeur pour les Mayas, change d’aspect durant
plusieurs heures. Dans une société ot le mécanisme précis d’une éclipse est méconnu, l'interprétation
et la signification du phénomene se réfere souvent, sinon toujours, & une origine mythologique ou
religieuse. C’est en particulier le cas de la couleur évocatrice prise par la Lune lorsqu’elle se trouve
totalement immergée dans 'ombre de la Terre, couleur dont I’analyse fait I’objet de cette derniere
partie.

Pénombre

Soleil

ﬁj

Pénombre @ -1 : Premier contact extérieur
Eclipse totale 2 : Premier contact intérieur

. . 3 : Dernier contact intérieur
Eclipse partielle

4 : Dernier contact extérieur

FIGURE 1 — Chronologie d’une éclipse de Lune : a) Phénomene général ; b) Vision depuis la Terre de
I’évolution dans une section droite du cone d’ombre terrestre au niveau de ’orbite lunaire. Les disques
blancs contenant un chiffre représentent le disque lunaire dans 1’étape repérée par ce chiffre
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Une éclipse se produit lorsque la Lune entre dans le cone d’ombre de la Terre (Fig. 1a). On note N le
point situé sur 'axe ST de symétrie de révolution du cone d’ombre terrestre (S centre du Soleil et T
centre de la Terre) a la distance r, = T'L de T' (L centre de la Lune) & 'opposé du Soleil (Fig. 1a) .
Dans un plan frontal &2, orthogonal a ST, et placé en N, I’éclipse suit la chronologie indiquée sur la
figure 1b. On note respectivement Rg, R et Ry les rayons solaire, terrestre et lunaire.

Des considérations de géométrie élémentaire montrent que dans le plan &2, la Lune tient plus de deux
fois dans le cone d’ombre de la Terre. Pourtant, durant la totalité (entre le premier contact intérieur
et le dernier contact intérieur), c’est-a-dire lorsque la Lune est entiérement plongée dans 'ombre de
la Terre, elle est nettement visible dans le ciel !

. , . Ecli de L du 28 tembre 2015
I.A. — Sources de lumiere éclairant la Lune eobse e ne oo Sebieore

La photographie reproduite sur la figure 2 a été prise, depuis
Toulouse, lors de I’éclipse totale de Lune du 28 septembre 2015.
La direction du zénith (sens de la verticale ascendante) est
indiquée sur la figure.

‘1 1 — Situer la photographie de la figure 2 dans la chrono-
logie de la figure 1b.

Direction
du zénith

On suppose désormais que la Lune est totalement immergée
dans 'ombre de la Terre (éclipse totale) et que son centre L
occupe le point N de son orbite.

FIGURE 2 — Eclipse de Lune
Imaginons, pour commencer 'analyse, que la Terre soit dépourvue d’atmosphere.

‘1 2 — Proposer un ordre de grandeur de I’angle 6, caractéristique de la diffraction de la lumiere
solaire par la Terre, en admettant que cet angle est identique au phénomeéne de diffraction produit
par une ouverture de méme taille caractéristique que le diametre de la Terre, éclairé par une onde
plane de direction ST'. En déduire la taille caractéristique agq de la figure de diffraction dans le plan
d’observation &Z,. La diffraction peut-elle éclairer le disque lunaire durant la phase de totalité ? Citer,
dans le contexte de I’hypothese envisagée, d’autres sources possibles d’éclairage du disque lunaire.

On tiendra désormais compte de la présence de 'atmosphere terrestre, toutes les autres sources de
lumiere envisageables étant insuffisantes pour expliquer ’éclairement de la Lune durant la phase de
totalité.

I.B. — Modele d’atmospheéere isotherme

On suppose que 'atmospheére terrestre est en équilibre méca-
nique a une température T' ~ 20° C uniforme et stationnaire. A °
On cherche le profil altimétrique de masse volumique : c’est-
a~dire I'expression de la masse volumique p, en fonction de
I’altitude Z mesurée depuis un point G de la surface terrestre

(Fig. 3). Le vecteur unitaire ey sera dirigé dans le sens de la TeZ
verticale ascendante, et on note g ~ 9,80m - s~2, l'intensité G
du champ de pesanteur terrestre. L’air est assimilé a un gaz
parfait de masse molaire M, ~ 29g - mol™!. On note R ~

8,31J -mol~! - K~! la constante des gaz parfaits. FIGURE 3 — Un point dans lat-
mosphere terrestre.

Sol Terrestre

(1 3 — Déterminer le profil altimétrique de masse volumique
pa(Z) en fonction de p,(0) et d’une hauteur caractéristique H,. que I'on exprimera et dont on calculera
la valeur numérique.

d 4 — Evaluer numériquement la masse volumique de 'air au niveau de la mer (pression d’environ
1 bar) puis en déduire celle de I'air au sommet du mont Everest (8 848 m d’altitude) : on indique que
exp(—1) = 1/3. Les valeurs moyennes annuelles de pression et de température au sommet de I’Everest
sont respectivement 321 hPa et —23 °C. Le modele isotherme est-il réaliste ?
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I.C. — Onde électromagnétique incidente

Une onde électromagnétique plane, progressive et monochromatique, se propage dans le vide illimité
le long et dans le sens d'un axe (O,e,), 'espace étant rapporté a un repere orthonormé (O,e, ey, €.)
dans lequel on note x, y et z les coordonnées spatiales d’un point de ’espace et ¢, le temps.

Le champ électrique de 'onde est polarisé rectilignement selon e,. On note pp ~ 100°H - m™! la
perméabilité magnétique du vide, ¢ la constante d’Einstein (célérité dans le vide des ondes électro-
magnétiques), E,, > 0 'amplitude du champ électrique, B,, > 0 celle du champ magnétique, w la
pulsation de l'onde, E(z,t) la composante du champ électrique et B(x,t), celle du champ magnétique.
La phase du champ électrique, a ’origine spatio-temporelle, est nulle.

‘1 5 — Donner les expressions réelles des champs de vecteur électrique E et magnétique B puis
exprimer By, en fonction notamment de E,,. Représenter sur un méme graphique, a une date ¢ donnée,
I’évolution spatiale du champ électrique ainsi que celle du champ magnétique.

'd 6 — Exprimer le vecteur de Poynting R(x,t) en fonction notamment de E,,. Calculer 'ordre de
grandeur de E,, pour une onde électromagnétique véhiculant une intensité Iy = 1kW - m—2.
I.D. — Transfert du rayonnement solaire a travers ’atmosphere terrestre

L’onde électromagnétique précédente se propage désormais dans I’atmosphere terrestre et rencontre
sur son trajet, des molécules du gaz atmosphérique, mais aussi, dans la stratosphere (entre 15 et 20 km
d’altitude), de fines poussiéres en suspension (aérosols).

Le gaz atmosphérique a pour effet de diffuser sélectivement ’onde incidente (dépendance fréquentielle),
réduisant ainsi la puissance transportée par ’'onde. On modélise la diffusion atmosphérique en suppo-
sant que chaque molécule rencontrée diffuse, en moyenne temporelle, la puissance &, donnée par :

o\ 4
P = ke () I
wo

ou kg, et wy sont des constantes qui caractérisent la composition chimique du gaz atmosphérique et
I'intensité de l'onde électromagnétique. On note 7, () le nombre de molécules par unité de volume du
gaz atmosphérique, x désignant toujours I'abscisse mesurée le long de la direction de propagation.
Les poussiéres ont pour effet d’absorber non sélectivement (indépendance fréquentielle) I'onde inci-
dente, réduisant aussi la puissance transportée. On modélise I'effet des poussieres sur le rayonnement en
supposant que chaque poussiere rencontrée absorbe, en moyenne temporelle, la puissance &7, donnée
par :
Py = kpl

ou k, est une constante qui caractérise la composition chimique des poussieres. On note n,(z) le
nombre de poussiéres par unité de volume.

'Jd 7 — Exprimer 7,(z) en fonction notamment de la masse volumique du gaz atmosphérique p, ()
au point d’abscisse .

‘1 8 — Effectuer un bilan unidimensionnel de puissance électromagnétique moyenne pour une tranche
d’air limitée par les plans d’abscisse z et x + dz; en déduire la relation liant l'intensité I(x + dz) de
l'onde en x + dz en fonction notamment de l'intensité I(x) en x : il faudra prendre en compte les deux
phénomenes, de diffusion et d’absorption.

‘4 9 — Montrer qu’il est possible d’écrire I(z) sous la forme suivante :
I(@) = 1(0) exp [~d, ()]

ol d,(z) est un facteur, appelé < densité optique >, que l'on exprimera en fonction des quantités
intégrales :

/ Ce()de et / (€
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FIGURE 4 — Déviation d’un rayon lumineux par ’atmosphére terrestre.

I.LE. — Réfraction atmosphérique

Lorsqu’un rayon lumineux solaire traverse 'atmosphere terrestre, il subit une réfraction (Fig. 4).
On note M un point quelconque sur la trajectoire du rayon, et Z, son altitude. On note My le point
de la trajectoire le plus proche du sol, et Zy son altitude. On pose :

r=TM=Rp+7Z et ro=TMy= Rpr+ Z

Pour une longueur d’onde donnée, I'indice de l'air n(Z) dépend de l'altitude, selon la loi de variation
suivante :

pa(2)
pa(0)

L’angle 04, de déviation totale du rayon apres traversée de ’atmosphere (Fig. 4), est donné par :

. , ~1/2
0a(Zo, A) =~ 2/1 {[T;EZ())J - 1} "

‘1 10 — Pourquoi ’atmosphere terrestre réfracte-t-elle les rayons lumineux qui la traversent ?

r

A

2
n(Z)=1+c¢€y oley=a+ ( ) ,a=28x10"%et \, = 0,42nm, on note ng = n(Zp).

1 11 — En tenant compte des ordres de grandeur du probléme, précisément Z < Ry et Zy < Ry,

[.2
r

exprimer 4/ — — 1 en fonction de uw = Z — Zy. Exprimer dn en fonction de dp, puis dp, en fonction
70

de He, pa(Zp), u et du.

On donne la valeur de I'intégrale suivante, qui se rameéne aisément a 'intégrale de Gauss :

[

1 12 — Déduire des expressions obtenues & la question précédente que I’angle de déviation totale,

d’un rayon monochromatique passant en My, s’écrit :
04(Zo, A) ~ ©(Zp)ex

ot O(Zp) est une fonction de Zy que 'on exprimera en fonction de Ry et H. et Zy. Pour quelle valeur
particuliere de Zj, notée Z,,, la déviation d’un rayon lumineux est-elle maximale ?

(1 13 — Exprimer ’écart de déviation §6, correspondant a deux rayons incidents passant au méme
point My (et donc caractérisés par le méme Zj) mais possédant des longueurs d’ondes qui different de
ON.
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La minute d’arc (1’), soit le soixantieme de degré, vaut environ : 1/ ~ 3 x 10~ 4 rad.

En adoptant la valeur numérique réaliste H, ~ 7,3km du profil atmosphérique de masse volumique,
et pour la longueur d’onde \,;, = 504 nm du maximum d’émission spectrale solaire : 0g(Z,, \p,) ~ 70'.
Avec les valeurs 0\ = 350nm, Zy = Z,, et A = A, sur 'étendue du domaine visible, I’application
numérique donne [§6y| ~ 0,25'. La dépendance chromatique de la déviation étant négligeable devant
I’angle de déviation, on supposera que les rayons sont identiquement déviés, indépendamment de leur
longueur d’onde, avec un angle pouvant varier entre 0" et 64 as = 70’

1 14 — L’angle sous lequel le rayon terrestre est vu depuis N est d’environ O ~ 57" tandis que
celui sous lequel le rayon solaire est vu depuis la Terre vaut environ g ~ 16’. L atmosphere terrestre
est-elle capable de dévier la lumiere solaire pour éclairer le point N 7 On justifiera quantitativement
la réponse en s’appuyant sur un schéma.

I.F. — Prévision du spectre de la lumiére regue par la Lune

Le spectre de la lumiere solaire hors de I'atmosphére terrestre est donné sur la partie gauche de
la figure 5 (spectre de référence E-490-00). Le calcul numérique basé sur le modele qui vient d’étre
développé permet de tracer, sur la partie droite de la figure 5, atténuation exp(—d,) en N en fonction
de la longueur d’onde A de 'onde incidente.

Iy W-m™?. nm™ '] exp (—do)

257 0,201
0,157

2,01
0,101

1,51
0,051

1,0 f + ; 0,00 T . .

400 500 600 700 A [nm] 400 500 600 700 A [nm]

FIGURE 5 — A gauche : Spectre solaire hors de 'atmosphere terrestre. A droite : facteur d’atténuation
spectrale exp(—d,)

.d 15 — A Paide des deux schémas de la figure 5, déterminer quelques points du spectre de la lumiere
recue par la Lune en N permettant de représenter la courbe correspondante sur la feuille réponse.
Conclure sur la couleur de la Lune totalement occultée.

FIN DE LA PARTIE 1

II. — Echo de la grande pyramide de Chichén Itza

Sur le site archéologique de Chichén Itzd, situé dans le Yucatan a 200km a I'ouest de Cancun, se
trouve le temple Maya Cuculcdn, en forme de pyramide & base carrée (Fig. 6). Sur chaque face de
la pyramide, se trouve un grand escalier central comportant 91 marches qui culmine a H = 24m
au-dessus du sol (Fig. 7).

Ce monument, érigé autour du X siecle de notre ere, est classé au patrimoine mondial de 'UNESCO.
Une de ses particularités a fait 'objet d’études archéoacoustiques : un clap produit en frappant dans
ses mains face & l’escalier retourne un écho qui imite, de maniere stupéfiante, le chant de I'oiseau sacré
endémique quetzal (pharomachrus mocinno).

La question se pose alors de savoir si ce monument a été érigé en respectant les contraintes acoustiques
de reproduction du gazouillement de ’oiseau, ou bien s’il s’agit d’une simple coincidence.

Page 5/9 Tournez la page S.V.P.



Physique I, année 2020 — filiere MP

FIGURE 7 — Vue d’une face de la grande pyramide Maya de Chichén Itzd (Cuculcan). Au centre de la
photographie, se trouve le grand escalier.

Si la question reste ouverte, ’analyse physique apporte a I’archéologie quelques éléments notamment
en permettant de comprendre 'origine de ce phénomene. Cette partie s’appuie sur les fondamentaux
des phénomenes ondulatoires. Aucune connaissance spécifique d’acoustique n’est requise.
II.A. — Sonogramme 0 Spectre d’amplitude [dB]

[ ]
Pic 1

On enregistre, a ’aide d’un microphone, le
son d’une note de musique tenue produite
en sifflant avec la bouche.

On note s4(t) le signal obtenu. Le spectre 50 \ Pic 2
d’amplitude du signal en sortie du micro- / b\

phone est donné sur la figure 8, 1’échelle \ILJ

verticale étant graduée en décibels. L’am- ) ‘\\

plitude du pic 1 vaut a; = 100 mV. P

—100

>3
T
K.
E-
<
<
<
£

(1 16 — Déterminer la fréquence f; du fon-
damental (pic 1) de cette note ainsi que 'am- 0 5 10 f [kHz]
plitude as du pic 2. On donne 10%° ~ 3,16.

FIGURE 8 — Spectre d’amplitude d’un son sifflé tenu.
Les pics 1 et 2 sont assimilés a des composantes harmoniques et on néglige tout autre contenu spectral.
On note T, la durée totale de l'’enregistrement et f. la fréquence d’échantillonnage. La méthode
d’analyse spectrale employée géneére un spectre dont la résolution spectrale, notée § f, est I'inverse de
la durée d’acquisition du signal.
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1 17 — Calculer numériquement la plus petite valeur de f. respectant la condition de Nyquist-
Shannon, et la durée d’acquisition 7, donnant une résolution spectrale de 100 Hz.

Un sonogramme est une représentation graphique permettant de visualiser I’évolution des composantes
harmoniques d’un son au cours du temps. Dans sa version simplifiée, c’est un diagramme & deux
dimensions ayant en abscisse le temps et en ordonnée les fréquences. A un instant ¢ donné, une
composante harmonique de fréquence f est représentée par un point de coordonnées (¢, f).

Le sonogramme simplifié de s,(t) est représenté sur la figure 9a. Dans un sonogramme complet, on
ajoute I'information sur 'amplitude des composantes harmoniques en grisant les points du diagramme
a l'aide d’une échelle allant du blanc pour les faibles amplitudes (< —50dB), au noir pour les fortes
(> 0dB). Le sonogramme complet de s,(t) est donné sur la figure 9b.

Pour construire un sonogramme, on calcule les spectres successifs du signal entre les dates nT, et
(n+ 1)T,, n étant un entier positif ou nul et T}, la durée des intervalles temporels d’acquisition.

f [kHz] ® flkHz  ®

A

] Pic 2 1 Pic 2
Bopreemmmne s 3
21 21 ,

| N X SRR S ar—————w]
11 11

| t [ms] | t [ms]
0 T T T T T O T T T T T

0 100 200 300 400 500 0 100 200 300 400 500

FIGURE 9 — Sonogramme d’un son sifflé tenu  a) simplifié b) complet.

‘1 18 — On note 7 la durée totale de I’enregistrement sonore. La résolution spectrale § f du sono-
gramme dépend-elle de T, ou de 77 Combien de pixels (rectangles élémentaires composant le sono-
gramme) comporte un sonogramme de fréquence maximale fy; et de durée 77 Effectuer I’application
numérique lorsque fi; = 3,5kHz et 7 = 500 ms.

On produit un nouveau son sifflé, s,(¢), mais cette fois, de hauteur décroissante (donc vers les sons
graves). Ce son posséde encore deux composantes harmoniques, mais la fréquence f] du fondamental
décroit au cours du temps de maniere affine : f{(t) = f1 x (1 — t/74), 74 > 0 étant une constante
temporelle.

1 19 — Quelle condition doit vérifier 75 afin que 'on puisse suivre ’évolution temporelle de la
fréquence du fondamental sur le sonogramme? Construire le sonogramme simplifié de s,(t) dans
I'intervalle temporel [0; 0,5 74]. On prendra soin de mentionner sur le graphique toutes les informations
connues.

[ [kHz] Le chant d’un oiseau est plus riche en harmoniques que le

3 sifiement précédent.

Le sonogramme d’un quetzal jeune est représenté sur la fi-

-
2 . gure 10 extraite de Lubman, D., J. Acoust. Soc. Am. 112 (5),

i 5 _ 2008.
1 _
- ¢ [ms)] 'd 20 — Déterminer la durée approximative 7, du chant du
0 0 o oo quetzal puis mesurer, a la date t = 140ms, la fréquence f; 1
du fondamental du chant ainsi que celles f, ; (i entier) des

autres harmoniques visibles sur le sonogramme.

FIGURE 10 — Sonogramme du quetzal
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II.B. — Diffraction du son par une marche de ’escalier

Lorsque 'on frappe dans ses mains en face de ’escalier, Sy
depuis une position S que 'on supposera voisine du A
sol (Fig. 11), le clap produit se propage dans l'air en Spi148
direction des marches. Ces dernieres sont modélisées S {ﬁ

par des obstacles de petite dimension, qu’on localise ¥ 5
arbitrairement en S, (les arétes des marches), n allant o H
de 0 & N = 91. On note a = 20m la distance entre § . -
et le bas Sy des marches de la pyramide. La hauteur S {)
b = 26,3 cm des marches est égale a leur profondeur de g S,
sorte que les arétes S, soient contenues dans un plan —=

formant un angle de 45° par rapport au plan horizontal. ~ FIGURE 11 — Les marches de la pyramide
L’hypothese testée est que 1’écho entendu par 'auteur du clap, ressemblant & s’y méprendre au chant
du quetzal, résulte de la diffraction du son sur les marches de ’escalier.

Le clap émis en S, & un instant pris comme origine temporelle, est un signal bref, noté s(t) au point
d’émission S. La distance entre S et 'aréte de la n—ieme marche est appelée d,, = S.S5,,. Pour modéliser
la propagation du son, on note ¥(M,t) la fonction qui décrit ’onde sonore en un point M de l'espace
a I'instant ¢ : par exemple ici U(S,t) = s(¢). On note c; ~ 340m - s~ ! la célérité du son dans I’air. On
assimilera la propagation de I’onde le long de ’axe S.5,, & une propagation unidimensionnelle linéaire
non dispersive; ainsi, on ignore toute variation d’amplitude au cours de la propagation. Lorsque
l'onde atteint une aréte S, elle est < renvoyée > dans toutes les directions (par diffraction), et en
particulier, dans la direction S,,S. On suppose qu’apres diffraction, la fonction décrivant ’onde retour,
notée W' (M,t), dont la propagation est encore supposée unidimensionnelle (modélisation identique
a celle de 'onde incidente), s'écrit en S, : W/(S,,t) = KU(S,,t) ol k est un facteur (nombre sans
dimension) indépendant de n.

'd 21 — Exprimer ¥(S,,t) puis ¥/(S,t) en fonction notamment de la fonction s.
Le spectre du clap s(t) dans le domaine audible est continu : toutes les fréquences y sont présentes.
On supposera par ailleurs qu’elles ont toutes la méme amplitude. On considére une composante har-

monique s,(t) du clap, de pulsation w, dont on suppose la phase ¢(t) nulle a 'origine temporelle soit
Sw(t) = sm cos[p(t)]. On prendra ¢(t) = wt et on considere que s,, ne varie pas dans le temps.

'd 22 — Exprimer la phase ¢} (t) a I'instant ¢ de la composante harmonique de pulsation w de 'onde
retour en S diffractée en S, en fonction notamment de d,,.

I1.C. — Superposition constructive en S

Le clap étant bref, on suppose seules deux marches consécutives diffractent le son incident. On note
la différence de phase en S entre les deux ondes retour diffractées A¢j, = @7, (t) — ¢/, (t).

‘4 23 — Exprimer Ag), en fonction notamment des distances d,, et d;, 1.
On fait I’hypothese que les seules fréquences audibles sont celles pour lesquelles les ondes diffractées
se superposent constructivement.

'd 24 — Déduire de cette hypothese I'ensemble des fréquences {v,,, m € N} entendues lors du retour
du son diffracté par les marches S, et S,41, en fonction notamment des distances d, et dy11.

1 25 — Exprimer d,, en fonction de a, b et n. Calculer I’expression exacte de d% 11— d?. On admet

que la condition de l'expérience a > b permet d’écrire d, + dnp+1 ~ 2d, : en déduire ’expression
c

approchée suivante vy ~ 2781) g(n)d, ou g(n) est une fonction que l'on explicitera.
a

Page 8/9 Tournez la page S.V.P.



Physique I, année 2020 — filiére MP

La figure 12 donne la représentation graphique de g(n)d,
en fonction de d, pour les 91 valeurs de n. Elle permet
d’éviter des calculs fastidieux a la main...

1 26 — En exploitant la figure 12 déterminer la dis-
tance dy entre le sommet de I'escalier et S. On fixe
Porigine temporelle & 'instant du clap. Calculer numé-
riquement la date t; d’arrivée du début de 1’écho en S,
puis celle tn de fin de 1’écho. Combien de temps ’écho
dure-t-il ?

4 27 — Calculer numériquement les fréquences vy (t1)
et vy (tn).

. 28 — Sur la feuille réponse, tracer ’allure du sono-
gramme simplifié de I’écho comportant le fondamental
du son ainsi que les trois harmoniques qui le suivent.

[\)
o

181

161

14

—_—

d, [m]

20 30 40 50
FIGURE 12 — g(n)d, en fonction de d,,

On marquera d’une croix bien visible les points du sonogramme d’abscisses t1 et ty.

(1 29 — Comparer le sonogramme construit a la question précédente, au sonogramme du quetzal
ig. . L’écart fréquentiel est-il négligeable 7 L’écart se réduirait-il si I’enregistrement du quetza
Fig. 10). L’écart fré tiel est-il négligeable 7 L’écart éduirait-il si I’ ist td tzal

était celui d’un oiseau adulte ?

FIN DE LA PARTIE I1

Données astronomiques

Constante d’Einstein : ¢ ~# 3 x 108m - s~!

Distance Terre-Lune (centre & centre) : r, = T'L ~ 3,84 x 108m

Rayon du Soleil : Rg =~ 6,96 x 108 m
Rayon de la Terre : Ry ~ 6,37 x 10°m
Rayon de la Lune : Ry, ~ 1,74 x 10°m

FIN DE L’EPREUVE
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JEAN PERRIN et ’hypothese atomique

Les études théoriques sur le mouvement brownien, proposées par ALBERT EINSTEIN en 1905 et
complétées par celles de PAUL LANGEVIN en 1908, ont été spectaculairement confirmées par une
série d'une dizaine d’expériences réalisées entre 19o7 et 19og par JEAN PERRIN dont nous fétons le
150¢ anniversaire de naissance. Ces études sont les piliers de I'acceptation de 'existence des atomes
par la communauté scientifique. Elles ont clos la < controverse atomiste > ouverte par les Grecs 6
siecles avant notre ére!

Apres avoir pris connaissance des résultats de PERRIN, en 19o8, I'un des derniers farouches anti-
atomistes, WILHELM OSTWALD, déclare < Je suis désormais convaincu que nous sommes entrés en
possession de preuves expérimentales du caractére discret ou granulaire de la nature, que [’hypothése
atomique avait cherchées en vain depuis des millénaires >.

Les expériences de PERRIN et le modele de LANGEVIN reposent entierement sur les modeles micro-
scopiques de LUDWIG BOLTZMANN, fondateur dans la seconde moitié du X1x°® siecle de la physique
statistique. Les travaux expérimentaux de PERRIN lui permirent notamment de mesurer la constante
de BOLTZMANN kp. En 1906, donc peu de temps avant la publication de ces travaux, BOLTZMANN se
suicida, las des critiques et des attaques des disciples d’"OSTWALD...

En 1926, PERRIN obtint le prix NOBEL pour ses expériences !

ALBERT EINSTEIN

Dans ce sujet, nous proposons de revenir sur
quelques points de ce moment fameux de ’his-
toire de la physique en étudiant quelques as-
pects de la théorie de LANGEVIN et de cer-
taines des expériences réalisées par PERRIN.
Sur la photo ci-contre, prise lors du Congres
SOLVAY de 1911, on retrouve les trois acteurs
de cette histoire, entourés de prestigieux colle-
gues. Pour réaliser ses expériences, JEAN PER-
RIN utilise des grains de gomme-gutte. Ecou-
tons le décrire son procédé d’obtention de ses grains : < La gomme-gutte, qu’on utilise pour l’aquarelle,
provient de la dessiccation du latex. Un morceau de cette substance, frotté avec la main sous un mince
filet d’eau distillée se dissout peu a peu en donnant une belle émulsion opaque d’un jaune vif, ot le mi-
croscope révele un fourmillement de grains jaunes de diverses tailles parfaitement sphériques. On peut
calibrer ces grains jaunes et les séparer du liquide ot ils baignent par une centrifugation énergique. >

PauL
LANGEVIN

Dans tout ce probleme, ces grains seront donc supposés identiques, de forme sphérique, de rayon
Ry = 0,21m, de volume Vj, = 3,4 x 1072 m? et de masse volumique wy = 1,2 % 103 kg - m~>. On note
my = 4,1 x 10717 kg la masse d’un grain. Dans ses expériences, JEAN PERRIN fabrique une émulsion
en introduisant ces grains dans de ’eau légérement sucrée. Ce liquide possede une masse volumique
assimilable & celle de I’eau pure . = 1,0 x 103kg - m 2. Le peu de sucre dissous dans I’eau lui confere
tout de méme un caractere visqueux. De ce fait, ’eau exerce sur les grains en mouvement lent deux
forces :

— la résultante des forces de pression, peu modifiée par rapport a une situation d’équilibre, est

donnée par la loi d’ARCHIMEDE : cette force = — eV G est exactement opposée au poids du
liquide déplacé par chaque grain;
— la résultante des forces de frottement visqueux se traduit par une force f = —av ou a > 0 et

U désigne la vitesse des grains. La formule de STOKES précise que, pour un grain sphérique,

a = 6mn R, dans laquelle n = 1,2x1073 Pa - s représente le coefficient de viscosité dynamique

de leau légerement sucrée. Avec ces valeurs numériques, on trouve ici o = 4,5x10 kg - s~
En dehors de ces données, aucune connaissance relative a la viscosité n’est nécessaire a cette étude.
Ce probleme est décomposé en 4 parties relativement indépendantes : la partie I est consacrée au
modele du gaz parfait; la partie IT est dédiée aux expériences de sédimentation pratiquées sur les
émulsions ; la partie III présente le modele théorique du mouvement brownien de LANGEVIN complété
par les expériences de diffusion de PERRIN ; la partie I'V étudie les moyens optiques mis en ceuvre par
JEAN PERRIN pour réaliser ses mesures.

Page 1/6 Tournez la page S.V.P.



Physique I, année 2021 — filiere MP

Dans ce qui suit on utilisera la fonction A(z) = exp (—z/H). Les vecteurs sont surmontés d’une fleche f,
sauf §’ils sont unitaires et sont alors repérés par un chapeau (||é;|| = 1). Les applications numériques
seront données avec un chiffre significatif. La valeur moyenne temporelle d’une fonction ¢(t) sera notée
(). Toute réponse, méme qualitative, se doit d’étre justifiée. Les affirmations, méme justes, mais
non justifiées ne seront pas prises en compte.

| Equilibre vertical d’un gaz a la température ambiante

On consideére un gaz parfait constitué de molécules identiques, de masse molaire M = 30g - mol™!,
en équilibre thermique a la température ambiante Ty. Le gaz, soumis a la pesanteur, est au repos
dans un récipient de volume V, de hauteur h de lordre de quelques metres, et de section S = 1 m?.
L’encombrement caractéristique d’une molécule constituant ce gaz est une sphere de rayon R, de
I’ordre de la centaine de picometres.

On rappelle les valeurs de I'accélération de la pesanteur ¢ = 9,8 m-s~2, de la constante de BOLTZMANN,
kg =1,4x10"2J-K™!, de la constante d’AVOGADRO, N4 = 6,0 x 103 mol~! et éventuellement de
leur produit R = kN4 = 83J- K1 - mol™!.

0 — 1. En précisant les valeurs choisies de température Tj et de pression (supposée provisoirement
uniforme) Py, estimer le volume molaire du gaz. En déduire une estimation du rapport entre le
volume occupé par I'’ensemble des sphéres associé aux molécules et le volume du récipient.

1 — 2. Rappeler la définition d’un gaz parfait. Les ordres de grandeur établis a la question précédente
justifient-ils d’adopter ce modele dans la suite ?

d — 3. Donner I'expression de I’énergie cinétique FE.,, et de I’énergie potentielle F,,;,, dune particule
de masse m,, de ce gaz. Pourquoi observe-t-on qu’a température ambiante ces molécules ne se
regroupent pas au fond du récipient 7

La loi de la statique des fluides montre que, sous l'action de la pesanteur, la pression P(z) n’est pas
uniforme verticalement et dépend de 'altitude z.

d — 4. En déduire que la masse volumique p du gaz dépend aussi de z et I'exprimer en fonction de
P(z). Ecrire la condition d’équilibre mécanique pour une tranche de gaz comprise entre les
altitudes z et z + dz pour laquelle on supposera 1’équilibre thermodynamique local réalisé. En
déduire une équation différentielle vérifiée par P(z).

P
0 — 5. En notant Py = P(z = 0), montrer que ()

s’exprime simplement grace a la fonction A(z).

Exprimer la distance caractéristique H enofonction de kp, g, To et my,. Calculer la valeur
numérique de H. La variation de pression est-elle détectable, avec un manometre usuel, dans
le récipient considéré ? En serait-il de méme si le récipient était rempli d’eau liquide ?

E(z)
kpTy
Interpréter physiquement cette expression dont la généralisation est due & BOLTZMANN.

[ — 6. Préciser la fonction E(z) telle que A(z) = exp [— . Que représente la fonction F(z)?

d — 7. Montrer que la concentration ¢, (z) du gaz, rapport du nombre de moles sur le volume, suit
une loi du méme type, et qu'on peut écrire cq4(2) = cg,A(2), ol1 ¢4, représente la concentration
au niveau du sol (z = 0) dont on précisera ’expression.

II Etude d’un équilibre de sédimentation

Dans une premiere expérience, JEAN PERRIN lache, sans vitesse initiale, a la surface d’un récipient,
un grand nombre (N = 13000) de grains dans de I’eau légerement sucrée. Le récipient a une section
S et une hauteur Ay suffisante pour étre considérée comme infinie.

(1 — 8. Faire le bilan des forces exercées sur un des grains lors de sa chute dans I’eau sucrée.
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a-9.

On note ¥(t) = —wv(t)e, la vitesse de chute du grain, é, étant l’axe vertical ascendant, et
v(t) > 0. Etablir Iéquation différentielle vérifiée par v(t) puis donner sa solution.

Montrer qu’'une fois le régime permanent établi, les grains possedent une vitesse limite v, =
m*g/a.

Exprimer le parametre m* en fonction de V;, et des masses volumiques pyp et pe. Justifier qu’on
nomme cette quantité < masse apparente .

Exprimer la durée caractéristique 7 du régime transitoire en fonction de my et a. Evaluer un
ordre de grandeur de v, et de T.

Meéme au bout d’une longue durée, les grains ne se tassent pas au fond du récipient. On observe un
phénomene de sédimentation : les grains se répartissent sur I’ensemble de la hauteur et la densité de

grains, notée c(z) et exprimée en m~

3 nest pas uniforme.

Afin d’interpréter ce phénomene, on introduit deux vecteurs, appelés < densité de flux de particules >
et qui s’expriment dans les mémes unités mais par des lois distinctes :

e Un premier vecteur densité de flux, j., est associé au mouvement de chute des grains. Il est &

I'origine d'un phénomeéne de convection et défini par la relation ju(z) = —c(2) vges ;

e Un deuxieme vecteur densité de flux est associé au gradient de densité, ici sur 'axe z. L’inho-

- 10.

a-11.

a-—-12.

mogénéité crée un courant de particules dont ’expression est donnée par la loi de FICK qui

- de . . . s .
s’écrit ici jp(2) = ——=—De,. Le coefficient D se nomme coefficient de diffusion. Il dépend de la

nature du milieu et des particules étudiées. Aucune connaissance relative a la loi de FICK n’est
nécessaire a 1’étude du probleme.

Donner les unités (ou dimensions) communes aux vecteurs je €t Jn, ainsi que I'unité de D. A
I’état d’équilibre macroscopique, caractérisé par une température uniforme T et une répartition
de concentration ¢(z) indépendante du temps, quelle est la relation entre jc et jn ? En déduire
une équation différentielle du premier ordre vérifiée par c(z).

En posant c¢(z = 0) = ¢, exprimer ¢(z) en fonction de A(z), on déterminera la distance
caractéristique H}, apparaissant dans A(z) en fonction de Ry, D, n, m*, et g.

Compte tenu des forces conservatives s’exercant sur un grain, quelle est I’expression de 1’énergie
potentielle F(z) correspondant au poids de la masse apparente m”* du grain a l'altitude 2 ?
En déduire lexpression de D en fonction de kp, Ty, n et Ry permettant d’écrire A(z) =
E5(2)

kpTo ] '

Sachant que le nombre N de grains est conservé sur la hauteur hy du récipient, suffisamment
grande pour étre supposée infinie, exprimer la concentration cg en fonction de IV, de la section S,
et de la distance caractéristique Hjp.

exp [—

Une fois la température de I’émulsion stabilisée a une valeur

uniforme Ty = 20°C, JEAN PERRIN a compté le nombre % Points de mesure
moyen n(2) de grains dans des petites tranches régulierement ¢ : Inn(z)] L= Ajustement linéaire
réparties en hauteur et d’épaisseur e constante. Il publie les 45T
résultats que nous avons synthétisés sur la figure 1 (Annales 1 @ My = —%30 z+ 4,7
de Chimie et de Physique, Mouvement brownien et réalité 551
moléculaire, 8° série, sept. 1909). 501 @
1 — 13. En exprimant ¢(z) en fonction de n(z), déduire de ces 2,5+ Ty
données une estimation de la hauteur caractéristique 10 o =0 10007 [um)]

a-14.

Hy, associée ici au phénomene. La hauteur du récipient
utilisé par JEAN PERRIN, h; = 100 pm, était-elle suf-  Fiqure 1 — Sédimentation de grains
fisante au regard des hypotheses faites ici?

Estimer la valeur de kp qu’a pu déduire JEAN PERRIN de cette expérience. Identifier des causes
d’erreurs expérimentales.
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IIT Le modele de LANGEVIN

En 1828, le botaniste ROBERT BROWN publie un article dans lequel il décrit le mouvement erratique
de grains de pollen dans I’eau observés au microscope. Ce type de mouvement était apparemment
connu depuis 'invention du microscope (fin Xvi¢ — début XvI11° siecle). Le mérite de BROWN est d’en
faire une étude systématique avec des grains de pollen, de suie, de poussiere, de roches pulvérisées
et méme d’un fragment du SPHINX. Ce dernier cas était destiné a éliminer I’hypothése vitaliste qui
prévalait et attribuait ce mouvement a des propriétés organiques propres aux particules. En 1888, le
physicien frangais LouUisS-GEORGES GOUY résume les observations sur ce mouvement, appelé depuis
brownien :

e le mouvement est extrémement irrégulier et ne semble pas avoir de tangente ;
e deux particules browniennes, méme proches, ont des mouvements indépendants ;

e le mouvement est d’autant plus actif que la particule est petite, que le fluide est moins visqueux
ou la température est élevée ;

la nature et la densité des particules n’ont pas d’influence sur le mouvement qui de plus ne
s’arréte jamais !

Pour interpréter les expériences de BROWN, on étudie le mouvement unidimensionnel — le long d’un
axe (O, e;) — des mémes grains sphériques que ceux étudiés dans la partie IT (masse my, rayon Rp).
Ces grains sont plongés dans le méme liquide sucré que celui utilisé dans I'expérience de JEAN PERRIN,
en équilibre thermique a la température Ty, mobiles sous l'effet de ’agitation thermique. Ce modele
unidimensionnel peut éventuellement se généraliser a trois dimensions.

On note ¥ = x(t)e, la position et ¥ = v(t)e, la vitesse d'un grain. A ¢t = 0, le grain étudié est en O.
Le mouvement ne s’arrétant jamais, en 1908, PAUL LANGEVIN propose l'idée qu’il existe des chocs
a l’échelle microscopique qui entretiennent cette agitation. Il introduit une force qui synthétise la
résultante des chocs aléatoires des molécules de fluide sur les grains. Cette force « indifféremment
positive ou négative, dont le but est de maintenir ’agitation microscopique > est notée ﬁc =F_.e;. En
des termes moins prosaiques, cela revient a faire 'hypothése que la moyenne temporelle du produit
7 - F, est nulle, soit (zF.) = 0. Dans son modele, LANGEVIN néglige tous les effets de la pesanteur
mais tient compte de la résultante des forces de frottement visqueux.

0 — 15. Ecrire ’équation, notée (Ep), vérifiée par U en tenant compte de la force F.. Montrer qu’en
I’absence de la force F, le mouvement s’atténue tres vite.

4 — 16. Ecrire le produit 1:% en fonction de d(;ntv)

d — 17. Donner la définition de la vitesse quadratique moyenne, notée u. En appliquant le théoréeme
d’équipartition de I’énergie au cas particulier étudié, exprimer u en fonction de my, Ty et kp.

et v2.

Le point délicat de la théorie de Langevin revient & considérer que la fonction ¢ = (xv), qu’il calcule
comme une moyenne temporelle, peut néanmoins étre considérée comme une fonction du temps ¢ =

d(x d
©(t), nous ferons cette hypothese, dite ergodique, qui permet d’écrire ici ( (dtv)> = d—f ou méme
d(xZ) d<l’2> 4 ) N 3 4 3 AOTI
( & ) = T L’étude de ’hypothese ergodique alimente depuis de nombreux travaux théoriques

tant physiques que mathématiques.

[ — 18. En partant de 1’équation (Ep), obtenir une équation différentielle du premier ordre linéaire
a coefficients constants vérifiée par la fonction ¢(t). En supposant que ¢(0) = 0, en déduire
lexpression de ¢(t) en fonction de ¢, kg, Ty, mp et a.

O — 19. En utilisant hypotheése ergodique, déterminer la relation entre o(t) et ¥(t) = (z?). Apres
avoir obtenu l’expression générale de 1 (t), montrer que les ordres de grandeur de ce probleme
permettent d’écrire 1)(t) ~ D,t ou l'on précisera I’expression de la constante D, en fonction de
To, kp et a.
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La constante D, est appelée coefficient de diffusion d’un grain % Points de mesure

selon (Oz) dans le milieu. En prenant en compte le modelede |~ Ajustement linéaire
LANGEVIN, JEAN PERRIN réalise toute une série d’expériences 200 ) E
de diffusion de grains au cours du temps. Avec une extréme 1 <x 2> [ 7]

minutie, il repere la position de I'un d’entre eux toutes les i
30 secondes pendant deux minutes, puis recommence avec un g |
autre grain. En itérant cette procédure un grand nombre de ;
fois, il se place sans le savoir sous I’hypothese ergodique et 50 @
obtient les résultats expérimentaux donnant (z?) en fonction 1 s
du temps que ’on a synthétisés sur la figure 2 ci-contre (source 0 T~ ,

identique a celle des données de la figure 1). FO 202 40D'ffGO' 83 10(_) 120
IGURE 2 — Diffusion de grains

1 — 20. En déduire la valeur de kg qu’a obtenue JEAN PERRIN avec ses expériences de diffusion toujours
effectuées & Tp = 20° C. Comparer cette valeur avec celle obtenue grace aux résultats des
expériences de sédimentation de la partie II. Commenter.

107 @

IV  Observations optiques

Lors de ses expériences JEAN PERRIN doit compter ou suivre le mouvement de tres petits grains : il
doit donc utiliser un microscope.

Un microscope est constitué de deux lentilles minces convergentes utilisées dans les conditions de
GAUSS : un objectif, L1, de focale f] et un oculaire, Lo, de focale f5. La distance Fj Fy, entre le foyer
image de l'objectif et le foyer objet de 'oculaire, est l'intervalle optique A. Les ordres de grandeur
usuels sont tels que : f| = 1mm, f} = 2cm et A = 15c¢m par exemple. L’oculaire Ly fournit une

image a l'infini. On observe un objet AB situé a proximité de F} et perpendiculaire a I'axe optique.

objectif L
_—

L’image intermédiaire A1DB; est telle que AB A1By. L’image finale A3Bs est telle que

laire L . ,
A1 By =22 A9 Bsy. Lensemble est représenté sur la figure 3.

JEAN PERRIN

s L
A L AL, ‘
B A Oculaire
—— F E,
AFR O O, F,

Objectif
culaire
Objectif -

FIGURE 3 — Schéma d’un microscope (& gauche) — JEAN PERRIN observant les grains (a droite)

1 — 21. Rappeler ce que sont les conditions de GAUSS et les deux propriétés qu’elles impliquent pour
une lentille mince.

d — 22. Sur un schéma clair, sans forcément respecter d’échelle, tracer les rayons issus d’'un objet AB
tel que |[AO1| = f{ et ressortant de Ly afin de former une image & I'infini. On pourra reproduire
et compléter le schéma de la partie gauche de la figure 3.
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1 — 23. Justifier, grace a une évaluation d’ordres de grandeur, que l'objet AB se trouve quasiment
sur le foyer Fy de l'objectif, tout en restant en amont (AF; > 0). Quel est I'intérét pour un
observateur dont la vision n’a pas de défaut, d’observer une image a I'infini 7 Ou se forme alors
I'image intermédiaire A;B; ? Ot se formerait-elle si AF; < 07

a/
=15

a 1m~!. L’angle o’ est 'angle sous lequel 'objet AB est vu en sortie de I'instrument, comme indiqué

sur la figure 4.

On définit la puissance intrinseque d’un microscope par : P, Son unité est la dioptrie J, égale

d — 24. Compte tenu des données numériques précédentes, exprimer P; en
fonction de A, f] et f5.
Evaluer la puissance d’'un microscope permettant d’observer les
grains de gomme-gutte étudiés par JEAN PERRIN. Un microscope
usuel peut-il permettre d’observer les grains avec un ceil supposé
emmeétrope 7 v

FIGURE 4 — Angle o/

Formulaire d’optique géométrique pour une lentille mince

Dans les conditions de GAUSS, si A est un point objet sur I’axe optique et A’ le point image conjugué
par une lentille mince située en O, dont le foyer objet est en F et le foyer image en F’, on a :

Formules d’optique géométrique de NEWTON (origines aux foyers)

Formule de conjugaison :
FAx F'A =FO x F'O
Formule du grandissement : L
_A'B" FO  F'A
""AB " FA FO

ou A'B’ est I'image de I'objet AB perpendiculaire & ’axe optique.
Formules d’optique géométrique de DESCARTES (origines au centre optique)

Formule de conjugaison :
1 1 1

OA" OA OF'

Formule du grandissement :
A'B"  OA

AB 0OA

’y:

FIN DE L’EPREUVE
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Fonctions spéciales

Ce sujet comporte trois parties indépendantes.

Bon nombre de problémes rencontrés en physique peuvent étre résolus a 1’aide de « fonctions
spéciales » . Ces fonctions définies mathématiquement sont implémentées dans de nombreuses
bibliothéques informatiques (comme scipy) et peuvent étre utilisées aussi simplement qu’une
fonction sinus ou racine carrée qui sont elles aussi d’une certaine maniére des fonctions spéciales
et tout aussi analytiques ...

On rencontre bien souvent des résolutions numériques de problémes physiques alors que 1'utili-
sation de ces fonctions spéciales permet une résolution compléte et analytique. Ce probléme se
propose d’illustrer I'intérét de ces « fonctions spéciales » .

I La fonction de W de LAMBERT

I.A Tir d’un projectile sans frottements

Un projectile assimilé & un point matériel de masse m est lancé a partir Au, gTI
du sol en O avec une vitesse initiale ¢y € (O,u,,7,) et faisant un angle
0y avec I'horizontale dans le référentiel terrestre supposé galiléen. o
1 — 1. Rappeler la définition d’un référentiel galiléen. Dans quelle me-
sure le référentiel terrestre peut-il étre supposé galiléen ? | 0, Sl
—d o
@ — 2. Etablir les équations horaires du mouvement. 0 — Uy

Uy
Montrer que le mouvement est plan.

FIGURE 1 — Tir d’'un

O — 3. Etablir I'équation de la trajectoire. Quelle est la forme de la projectile

trajectoire 7 Est-elle symétrique ?

A — 4. Déterminer les coordonnées du sommet S de la trajectoire. Définir la portée ¢ du tir et
établir son expression. Quel est 'angle ¢, assurant un tir de portée maximale ?

I.B Tir d’un projectile avec frottements

On considére maintenant que le projectile est soumis & une force de frottements proportionnelle
a la vitesse : f = —av avec a > 0.

1 — 5. Quelle est la dimension du coefficient o ? Définir & partir de o un temps caractéristique
7. Le mouvement reste-t-il plan?

O — 6. Etablir, en fonction g, 7, v = ||7o||, #o et ¢, les nouvelles équations horaires du mouvement.

1 — 7. Dans la situation ou t < 7, simplifier les équations horaires de la trajectoire et donner
I’allure du mouvement.

(d — 8. Dans la situation ou ¢ > 7, simplifier les équations horaires du mouvement en faisant
apparaitre une vitesse limite v,.
Ot retombe le projectile ?

d — 9. Déduire des résultats précédents, ’allure globale de la trajectoire dans une situation o
le temps de vol est grand devant 7, en séparant la trajectoire en trois phases.

1 — 10. Tracer l'allure de la trajectoire pour un temps de vol de l'ordre de 7.
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I.C La portée maximale d’un tir avec frottement

[ — 11. Dresser le tableau de variation de la fonction T : x — T'(x) = xeX et déterminer la valeur
£ de son minimum global.
La fonction W de LAMBERT est définie comme étant la fonction réciproque de T sur
[B, + oo[. Reproduire le graphe de T représenté sur la partie gauche de la figure 2 et
expliquer comment en déduire l'allure de W représenté sur la partie droite.

oo
(S}

X X

FIGURE 2 — Représentations graphiques de 7'(x) (a gauche) et W(x) (& droite)

A — 12. On peut montrer que : (x + exp [W(x)]) W(x) = 1. Quelle est la valeur de W(0) ?

On souhaite appliquer le schéma d’EULER explicite avec un pas h = 0.0001 pour résoudre
cette équation différentielle. Donner le code python permettant d’obtenir une représenta-
tion graphique de W () sur l'intervalle [0; 2,5][.

La fonction W(y) est implémentée dans scipy. On peut l'appeler avec : from scipy.special
import lambertw.
On montre que si ad # 0, la solution de I’équation at + b+ ce? = 0 pour I'inconnue ¢ est donnée

par l'expression
1
= —9 — —W(C—d exp (—@)) .
a d a a

1 — 13. En déduire a quel instant ¢t* > 0 le projectile touche le sol. On posera u = — (1 + %290)

d — 14. On rappelle que par définition W exp(W) = Id ou Id est la fonction identité : x — x.
En déduire que la portée est donnée par ¢ = Ty cos by (1 — W(ue")/u).

En posant v = vy/vs, on montre que l’angle initial donnant la portée maximale est :

( 2_1

arcsin ¢ P sio y#£1

7 J—
2-1-W
Qmax = v ( e )
: 1 :

arcsin ~ 35,6° si y=1

\ e—1

Q- 15. A T'aide de la figure 2, déterminer la valeur numérique de I’angle assurant la portée
maximale pour vg = 10m-s 1, g =98m-s2et 7 =04s.
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II L’intégrale elliptique de premiére espéce

Y

Dans toute cette partie on néglige les frottements de I'air.
On étudie un pendule simple constitué d’une masse ponctuelle m w.y L
et d’une tige rigide de longueur ¢ et de masse négligeable, astreint
a évoluer dans un plan vertical (O,u,,u,).

On repére sa position par I'angle 6(¢). A ¢t = 0 on lache le pendule
sans vitesse initiale avec 0(t = 0) = 6, €]0,7/2].

oL
;!3
N
P

N u

Y p

<

O — 16. Etablir I'équation différentielle du mouvement vérifiée par la
fonction 6(t). FIGURE 3 — Pendule

simple
( — 17. On fait 'approximation des petits angles tels que sinf ~ 6.
Etablir dans ces conditions la période T}, des oscillations.
Quelle est la propriété remarquable de la période dans le cadre de cette approximation ?

dé
(1 — 18. Déterminer I'expression générale de n sans faire I’approximation des petits angles.

En déduire que la période T' des oscillations du pendule est donnée par :

2T [ de
T Jo \/2(cos@ — cosby)

La propriété remarquable de la question précédente est-elle conservée ?
En effectuant le changement de variable sing = sin ¢ sin %0, on montre que :

2T, 0 2 d
T ==K (sin2 —0) avec K(x) = / —qb
T 2 0 /1—ysin?¢
On souhaite calculer U'intégrale K(x) par la méthode des rectangles médians pour un angle
00 = 7T/3

[ — 19. Apres avoir tracé le graphe de la fonction x + 1+ /X pour x € [0;9], illustrer le principe
de la méthode des rectangles médians pour calculer le réel I = fog(\/y +1)dx en utilisant

9 rectangles.
Si on double le nombre de rectangles utilisés qu’en est-il de la différence entre la valeur
exacte de [ et la valeur approchée numériquement par la méthode des rectangles médians ?
(1 — 20. Recopier et compléter le code suivant permettant de calculer K(x) par la méthode des

rectangles médians.

import math as m
def f(x,phi):

return............
S =0.
N = 100
a = 0.
b = m.pi/2
DA = ccoooccooocooo

theta_0 = m.pi/3.
x = m.sin(theta_0) **2
for i in range(N):

Bl B 6o000000000c

print(pas * S)
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La fonction x — K(x) est nommée intégrale elliptique compléte de premiére espéce. Elle est
implémentée dans scipy. On peut I’appeler directement avec : from scipy.special import
ellipk.

1 — 21. En utilisant la figure 4, pour un pendule tel que Ty = 1s, 1,2
évaluer T' lorsque 0y = 50°. Quel est le décalage temporel 1
induit par la prise en compte de 'approximation des T/Ty /
petits angles si 'on envisage de mesurer une heure ? /

1,1
Au XVII® siécle les puissances maritimes désiraient posséder //
des instruments précis pour la mesure du temps afin de facili- g
ter la navigation (notamment pour déterminer la longitude). 7 0o [°]
Les rois de FRANCE et d’ANGLETERRE avaient offert des prix 1,05 20 40 60 80

importants & qui serait capable de réaliser un chronométre

précis, fiable et utilisable en mer. FIGURE 4 — 6o — T'(60)/To
Christiaan HUYGENS (1629-1695) motivé par ce probléme étudia le pendule conique et le pen-
dule oscillant entre deux lames courbes. Il parvint & démontrer que des lames en forme de
cycloide assurent l’isochronisme rigoureux des oscillations.

1 — 22. Dans quelle situation courante rencontre-t-on la cycloide ?

IIT La fonction d’erreur de GAUSS : erf(y)

III.A Introduction au probléme de STEFAN

Un certain nombre de problémes géologiques importants peuvent étre modélisés par le chauffage
ou le refroidissement instantané d’'un demi-espace semi-infini. Au milieu du XI1x°¢ siécle Lord
KELVIN a ainsi utilisé cette idée pour estimer 1’age de la Terre. Il supposa qu’a la surface le flux
d’énergie thermique résultait du refroidissement d’un flux initialement chaud de la Terre et a
conclu que 'age de la Terre était environ 65 millions d’années. On retrouve ces phénomeénes en
étudiant le refroidissement de la lithosphére océanique ou I’évolution d’une coulée de magma.

1 — 23. Comment explique-t-on de nos jours le résultat erroné obtenu par Lord KELVIN ?

On étudie un milieu matériel semi-infini défini par y > 0 dont la surface subit un changement
instantané de température. Initialement & ¢ = 07, le demi-espace est a la température uniforme
T, ; pour t > 0, la surface y = 0 est maintenue a une température constante Tq. Si 17 > T, le
milieu matériel se refroidit et sa température diminue. La situation est représentée a la figure
5 pour le cas T7 > Tj.

Ty To Ty To Ty

t=0" t=07% t>0

Y Yy Yy
T=Tyat=0 poury >0 T=Tpay=0pourt >0 T — T, quand y — +o0o pourt >0

FIGURE 5 — Evolution de la température
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Le flux thermique élémentaire, défini comme la quantité d’énergie traversant une surface élé-
mentaire dS pendant d¢, est noté d¢g.
1 — 24. Rappeler la définition du vecteur j’Q, densité de flux thermique. Quelle est sa dimension ?
Rappeler la loi de Fourier, ainsi que ses conditions d’application.
En déduire la dimension de la conductivité thermique .

On étudie une tranche mésoscopique de sol de masse m de masse volumique p et de capacité
thermique massique ¢ comprise entre y et y + dy de surface S.

[ — 25. Quelle est I'énergie thermique d() regue par cette tranche entre ¢t et t + dt?
Pourquoi étudie-t-on une tranche « mésoscopique » ?

Etablir I'expression de sa variation d’énergie interne dU en fonction de —=< 0 , S, dy et dt
Yy’
T
puis en fonction de p, ¢, S, o , dy et dt.
1 , . . . . oT 0T
En déduire I'équation de la chaleur & une dimension i DW dans laquelle on

précisera ’expression et la dimension du coefficient D de diffusion thermique.
En déduire I'expression d’une longueur caractéristique L en fonction de D et du temps ¢.

On introduit la température adimensionnée

T<y7t> B Tl

0(y.t) = T, T,

d — 26. Quelle est I'équation vérifiée par 0(y,t) 7
Déterminer les valeurs de 6(y > 0,t = 0), 6(y = 0,t > 0) et O(y — +o0,t > 0).

Y

2v' Dt

On introduit une variable de similarité sans dimension n = et on suppose que 6 n’est

une fonction que de cette seule variable 7.

(A — 27. Montrer que
d?0 do
() 4 5,200
dn? dn

d6(n)
dn

=0.

1 — 28. En utilisant la fonction ¢(n) = , montrer que #(n) =1 — —/

400
On donne / e dz = £ En déduire une expression de T'(y,t) faisant apparaitre
0

une intégrale.

2 .
La fonction y — T / e’ dz est appelée fonction d’erreur de GAUSS, elle est implémentée
m™Jo

dans scipy.
Elle est souvent notée erf(y). On peut I'appeler directement en utilisant la commande : from
scipy.special import erf.

ITII.B Formation d’une croiite de lave solide.

Dans cette derniére partie on s’intéresse a une coulée de lave en fusion et & la formation d’une
croiite solide a sa surface. On étudie alors I'augmentation de 1’épaisseur de cette crofite en
fonction du temps.
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A la surface extérieure, en y = 0, la lave est en contact avec l'air a la température constante Tj.
La lave en fusion & la température 7 est donc soudainement portée a la température Ty at = 0.
Dans ces conditions, la couche superficielle de la lave se solidifie, et on note y;(t) 1'épaisseur de
la couche de lave solide.

Nous devons donc résoudre ’équation de la chaleur dans l'espace 0 < y < y,(t) avec comme
conditions aux limites ' =T, en y = 0, et T' = Ty en y = y,(t), et comme condition initiale

ys=0at=0.
/‘/ Lave solidifiée

Aira T =Ty
interfacede [~ . _0 | >T
transition
de phase
l ”””””””””””””” 7 N
Lave en fusiona T' =T
dys (t) ! v vy
dt

FIGURE 6 — Formation d’une crotte de lave solide

La position ys(t) de l'interface de transition de phase est une fonction a priori inconnue du
temps. Comme dans la situation précédente il n’y a pas d’échelle de longueur définie dans

ce probléme. Pour cette raison, on travaillera également avec la variable de similarité sans

dimension n = Yy

2v Dt

On utilisera également la température adimensionnée

La profondeur de l'interface de solidification y(t) doit enfin s’adapter a la longueur caractéris-
tique de la diffusion thermique. Nous supposerons que celle-ci varie proportionnellement a la

Ys (t)
2v/Dt

racine carrée du temps, de telle sorte que : 1y = = cte = \. Cette constante est inconnue
et reste & déterminer.

d — 29. En reprenant ’équation de la question 27, montrer que

o0 = -

Afin d’obtenir I’expression puis la valeur de la constante A, nous allons étudier la solidification
d’une tranche de lave d’épaisseur dy, entre les instants ¢ et t 4+ dt

3 — 30. Quelle est I'énergie Q) libérée par la solidification a la température 7y d’une tranche dy;
de lave de surface S en fonction de la masse volumique p de la lave en fusion et I'enthalpie
de fusion massique : Ahgoliiq-

(d — 31. Toute I'énergie libérée par la solidification doit étre évacuée par diffusion dans la lave
solide car la lave en fusion reste a la température 7. Montrer que :

dy,(t oT
pAhsol—Hiq(Tf) Y ( ) =K (_)
Y=Ys
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1,54

exp(—X)
Aerf(\)
0,5

FIGURE 7 — Graphe de \ —

On donne les valeurs numériques suivantes :

|
|
\
|
\
|
\
\
\
\
\
\
\
\
1 2 3
exp(—\%)
Aerf(\)

- 33.

o Ahgoig(Ty) = 400kJ - kg™

ec=1kJ - kg ! - K!

o T) — Ty = 1000K

. En déduire que

exp (=A%) VT
= Ahso%i Ty).
derf(N) Ty =Ty~ ia(T7)

Quel algorithme peut on utiliser pour
obtenir la constante A numérique-
ment ?

Expliquer en quelques mots son fonc-
tionnement.

e p=2600kg - m3
e D=7x10"7SI
o /m~ 1,77

O — 34. A l'aide de la figure 7, estimer la valeur numérique de .

En déduire I’épaisseur de la crotite de lave six mois aprés ’éruption.

Comparer votre résultat a ceux de la figure 8 tirés d'une expérience .

Yy (M)

16

t (yr)
2

o Kilauea Iki

X  Akae

O Makaopuhi

= Theory

FIGURE 8 - Epaisseurs des croiites de lave solides a la surface des lacs de lave dans les trois
cratéres a fosse Kilauea lki (1959), Alae (1963) et Makaopuhi (1965) sur le volcan Kilauea,
Hawaii (Wright et al., 1976), et résultat théorique.

FIN DE L’EPREUVE

1. Wright, T. L., Peck, D. L., and Shaw, H. R. (1976). Kilauea lava lakes

: Natural laboratories for study

of cooling, crystallization, and differentiation of basaltic magma. In The Geophysics of the Pacific Ocean Basin
and its Margin, eds. G. H. Sutton, M. H. Manghnani, R. Moberly, and E. U. McAfee, vol. 19 of Geophysical
Monograph Series, Washington, D.C. : American Geophysical Union, pp. 375-90
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Des objets astronomiques, de Mars a Sirius

Ce sujet comporte deux problémes totalement indépendants étudiant différents aspects de 1’as-
tronomie (la science des planétes et des étoiles) et en particulier de I'astrophysique (I’étude
des modéles physiques des astres). Le probléme I décrit des notions connues depuis le XVII°
siecle (la mécanique céleste des trajectoires des planétes et les lois de KEPLER et NEWTON).
Le probléme II propose une étude de quelques propriétés énergétiques des étoiles en comparant
leur énergie gravitationnelle avec des termes comparables liés aux autres interactions au sein
de I’étoile.

Pour toutes les applications numériques, on se contentera de deux chiffres significatifs. Les
notations des constantes fondamentales utiles, des données numériques et des rappels de syntaze
Python sont regroupés en fin d’énoncé. On pourra noter ., i,, i, la base cartésienne associée
au repére (Ozxyz) et ,,ug la base locale associée aux coordonnées polaires r, 6 du point M
situé dans le plan (Ozy), cf. figure 1.

Y
lig
oM
Uy A er
p(‘///
2 (@ — 0 > -
O Uy

FIGURE 1 — Base locale associée aux coordonnées polaires

. d
On posera j2 = —1. On notera par un point les dérivées temporelles, f = d_]; Les vecteurs w

sont surmontés d’une fleche, sauf les vecteurs unitaires notés .

I Les lois de Kepler et 'unité astronomique

Ce probléme est consacré aux lois de KEPLER (1609 et 1618) et & une mesure historique de
I'unité astronomique par CASSINI (1672). On notera que ces travaux sont toux deux nettement
antérieurs a la publication de la loi de la gravitation universelle par NEWTON (1687).

On s’intéressera en particulier aux orbites de la Terre et de Mars, la planéte la plus proche de la
Terre avec une trajectoire extérieure. Le plan de sa trajectoire est presque confondu (& moins de
2° pres) avec le plan de l’écliptique (la trajectoire terrestre). Ces deuz trajectoires sont proches
de cercles autour du Soleil.

I. A Mouvements d’une planéte sous ’action d’un astre attracteur

On étudie ici, relativement & un référentiel galiléen (Ry), le mouvement d’un astre & assimilé
a un point P de masse mp sous l’action du seul champ de gravitation exercé par un autre astre
attracteur .7 de masse my et de centre fixe A. On notera 7 = AP, r = ||F]| et 7= ra,.

1 — 1. Quelle condition (inégalité forte) permet de considérer A comme fixe ?

Quelle est I'expression de la force gravitationnelle F' exercée par o/ sur & si les deux
astres sont assimilés a des points?
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d — 2. Que devient ’expression de F si P reste ponctuel tandis que l'astre o7, de rayon Ry < r,
posséde une répartition de masse a symétrie sphérique ? On justifiera sa réponse.

1 — 3. Cette expression reste-t-elle encore applicable si & et o/ sont tous deux a symétrie sphé-
rique? On pourra, dans tout ce qui suit, considérer of et &7 comme des points matériels

A et P.

[ — 4. Montrer que le mouvement de P est plan; on notera (Azy) le plan de ce mouvement.
Définir la constante C' issue de la loi des aires pour ce mouvement et relier cette constante
aux coordonnées polaires (r,#) du mouvement de P dans (Azy).

On note v la vitesse de P et u,, g les vecteurs de la base polaire associée au mouvement de P.
v est fonction du temps et donc aussi de I’angle polaire 6.

—

d
d — 5. Exprimer d_z et en déduire que ¥(f) = C

p un paramétre du mouvement qu’on exprimera en fonction de C', m4 et de la constante
universelle de gravitation G.

'&/9 + 5 < = b4 Fd 1
ol € est une constante d’intégration et

Montrer que le vecteur € est sans dimension et situé¢ dans le plan (Azy) du mouvement.
Sans perte de généralité, on peut supposer que € = et, avec e = ||€]| = 0.
0 — 6. Exprimer 7 et 70 en fonction de C, p, e et 6.

En déduire r en fonction de p, e et 6 et montrer que e < 1 pour un mouvement borné.

Quelle est, dans ce cas et sans démonstration, la nature de la trajectoire 7 On admettra
que le mouvement est périodique de période T'.

I.B Période du mouvement
O — 7. En utilisant par exemple la question précédente, montrer que T = Zp*/? /\/Gmy ou la
2
de
constante Z s’obtient par le calcul de I'intégrale Z = / —_
o (1+ecosh)?
(d — 8. Dans le cas particulier ot e = 0, préciser la nature de la trajectoire et I’expression de 7T';

en déduire une des lois de Kepler, préciser laquelle et proposer son énoncé « historique »
sous forme d’une phrase en francais.

Le calcul de I'intégrale Z en fonc-
tion de e peut étre mené de ma- 9.5 4
niére numeérique (au moyen d’un
script Python) ; les résultats sont 9.0

illustrés figure 2.
8.5 -

d — 9. Proposer l’écriture  des
lignes de code Python
permettant le tracé de la
figure 2 : courbe en trait 7.5 -
plein puis mise en exergue
d’une dizaine de valeurs 7.0 1
régulierement réparties
pour 0 < e < 3.

8.0

intégrale /

6.5 1

Note : on pourrait mener le cal- ' '

L , , 0.0 0.1 0.2 0.3 0.4 0.5
cul exact de l"intégrale qui fournit paramétre e
TI(e) = (1—e?)3T,_y. Ce calcul
n’est pas demandé! FIGURE 2 — Calcul numérique de I'intégrale 7
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I.C Mesure de 'unité astronomique

Nous admettrons pour la Terre et Mars des orbites
circulaires centrées au centre S du référentiel de Co-
PERNIC, de rayons respectifs ag (c’est 'unité astrono-
mique) et ay, de périodes Tj et T;.

Le principe de la mesure de ay proposée par CASSINI,
a la fin du XVII® siécle, consistait & observer simulta-
nément, depuis deux observatoires bien séparés (Paris
et Cayenne, distants en ligne droite de ¢ = 7070 km)
la planéte Mars lorsqu’elle est a sa distance minimale
de la Terre, puis d’évaluer I'angle «a entre les deux

directions de visée (Paris — Mars et Cayenne — FIGURE 3 — La Terre et la Lune vues
Mars). depuis Mars par la sonde Mars Global

Surveyor, photo NASA
(d — 10. Sans soucis d’échelle, représenter sur un schéma unique l’ensemble des paramétres géo-
métriques ag, aq, £, a ci-dessus au moment de la mesure, lors d’une conjonction inférieure
(le Soleil, la Terre et Mars sont alignés dans cet ordre).

(d — 11. En déduire la relation permettant de déterminer a¢ en fonction de Ty, 17, ¢ et a.

1 — 12. La valeur annoncée par CASSINI était o = 14” (secondes d’angle). Est-elle compatible
avec la relation ci-dessus ?

II Structure et énergie des étoiles

Les parties I1.A, I1.B et I1.C sont trés largement indépendantes. Les étoiles a I’équilibre seront
ici décrites comme des boules homogénes de masse M et de rayon R en équilibre sous 1’action
de leur propre gravitation et de diverses forces antagonistes qui s’opposent a l’effondrement
de I’étoile : il s’agira de la pression thermodynamique associée a I'agitation thermique dans la
partie ILI.B et d’une propriété strictement quantique, la pression de confinement, dans la partie

I1.C.

// \\ , \\

/ \ / \

,f & \ %
i \ / \
! \ ! \
! | ! |
| | | !
\\ O /I \\ d’}" l’ O

\ / \ /

/
\ o "\ K masse M
Etat initial (pas de masse) Etat intermédiaire ~ Etat final (étoile constituée)

FIGURE 4 — Constitution progressive de ’étoile

II.A L’énergie gravitationnelle

Du fait de la symétrie sphérique de I'étoile, on va définir son énergie gravitationnelle W, comme
I’énergie mécanique qu’'un opérateur fournit a 1’étoile pour la constituer, & partir de gaz sans
interaction car pris a grande distance, en couches concentriques de rayon croissant (figure 4).
Ce calcul sera effectué pour une évolution quasi-statique, I'opérateur agissant a tout instant
pour compenser exactement les forces gravitationnelles.
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(A — 13. Donner et justifier physiquement le signe de W,. Expliquer pourquoi on nomme parfois
Ey = =W, I'énergie de liaison de 'étoile.

(1 — 14. Exprimer la masse volumique p, supposée uniforme et constante, de ’étoile en fonction
de M et R.

En déduire, en fonction de M, R et r, les expressions de m (masse déja constituée dans
une sphére de rayon r) et de dm (masse & apporter pour faire passer ce rayon de r a
T+ dr).

1 — 15. Justifier que la contribution dW, a I’énergie gravitationnelle de cet accroissement (passage

d
de r ar+dr) sécrit dW, = g

r
Calculer 'énergie gravitationnelle totale W, de I'étoile en fonction de G, M et R.

II.B Pression cinétique

Certaines étoiles sont en équilibre sous ’action de la pression cinétique liée a 'agitation ther-
mique qui résiste seule a I'effondrement gravitationnel. On va tout d’abord décrire cet équilibre
dans une géométrie cartésienne, 'axe (Oz) étant dirigé selon le champ de gravitation local
G(z) = G(2)i. (figure 5) avec G(z) < 0. On note aussi p(z) la masse volumique du fluide au
repos et P(z) la pression dans le fluide.

z
S
290 mmmmmmmm oo
al
AT ]
Fluide

FIGURE 5 — Géométrie du champ de gravitation local

1 — 16. On s’intéresse a I’équilibre de la colonne de fluide d’aire S et comprise entre les altitudes z;
et zo. Expliciter, éventuellement sous forme intégrale, les forces exercées sur cette colonne.
En déduire I’équation différentielle reliant P(z), p(z) et G(z2).

La pression équilibrant la force gravitationnelle, les ordres de grandeur des énergies thermique
et gravitationnelle doivent étre comparables; nous allons ici le vérifier en évaluant 'énergie
cinétique de I’étoile dans le cadre d’un modéle trés simplifié dans lequel la masse volumique
p est constante mais qui prend maintenant en compte la géométrie sphérique du systéme. On
suppose ainsi que I'équation d’équilibre local obtenue en géométrie cartésienne a la question 16
se généralise grace a la symétrie sphérique en faisant z — r avec p(r) = cste.

A — 17. Un volume V de fluide est soumis & la pression P, supposée uniforme. Dans quel modéle
I’énergie cinétique d’agitation thermique associée peut-elle s’écrire F, = %PV ? Dans la
suite de cette partie II.B on supposera que c’est bien le cas en chaque point intérieur a
I’étoile.

1 — 18. Expliciter le champ gravitationnel é(F ) ressenti au sein de I’étoile en équilibre a la dis-
tance r du centre, en fonction de G, M, R et r.

, . s . . 3gM2 2 2
En déduire I'expression de la pression P(r) = T (R —1r*).
T
1 — 19. Calculer I'énergie cinétique totale de I'étoile E,. en fonction de G, M et R; commenter.
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II.C Pression de confinement quantique

Nous ne ferons plus ici I'hypothése d’un équilibre de la gravitation par la pression cinétique;
au contraire, nous négligerons tout effet thermique pour les étoiles décrites dans cette partie

I1.C.

L’étoile sphérique étudiée ici, de rayon R, de masse M et de volume V est essentiellement
constituée de N atomes hydrogeéne, donc de N protons de masse m, et d’autant d’électrons de
masse m, << m,, chacune de ces particules étant confinée dans un volume ¥ = V/N. On va
montrer que le principe d’incertitude impose & chacun des atomes une énergie cinétique dite
de confinement quantique. Celle-ci sera évaluée dans un modéle trés simplifié, chaque particule
restant libre de toute interaction mais confinée dans un volume cubique de coté a tel que a® = 0.

(A — 20. Exprimer a en fonction de M, R et m, seulement.

On rappelle pour un état stationnaire d’une particule de masse m, libre et & une dimension
: . (o A7)\ .
(Ox), I'équation de SCHRODINGER avec i = h/2m : ————— = jh—— pour la fonction d’onde

2m Ox? ot
U(z,t) = (x)e

1 — 21. La particule étudiée étant confinée a l'intervalle z € [0, al, exprimer la fonction d’onde
spatiale 1 (z) et 'énergie e; de I’état fondamental en fonction de h, m et a.

Justifier que cette relation illustre le principe d’indétermination de HEISENBERG.

1 — 22. Que deviennent ces expressions de la fonction d’onde et de I’énergie de I’état fondamental
dans un modele confiné a trois dimensions, x € [0, a], y € [0, a] et z € [0, a]?

1 — 23. En déduire que I'énergie cinétique totale due au confinement de ’étoile se met sous la
forme E, = ~vM 5/3 /R? dans laquelle on exprimera ~ en fonction de h, my, et me.

II.D Le cas des naines blanches

On s’intéresse ici aux naines blanches, étoiles dans lesquelles la pression due au confinement
quantique (avec I’énergie cinétique exprimée en fonction de M et R dans la partie I1.C) est net-
tement supérieure aux effets de 'agitation thermique (que I'on négligera donc ici) et compense
seule les effets de la gravitation (avec I'énergie de gravitation exprimée également en fonction
de M et R dans la partie II.A).

La particularité de ces étoiles (essentiellement composées de carbone) et la prise en compte
des dégénerescences des états d’énergie des électrons introduisent des facteurs numériques dans
I’expression de v obtenu dans un cas simple & la question 23. Ces spécificités ne modifient
toutefois pas 'expression de 1’énergie cinétique totale due au confinement de 1’étoile. En 1926,
FOWLER ! propose la valeur v = 1,6 - 10° SI pour les naines blanches. On utilisera cette valeur
dans le reste du probléme.

(A — 24. Pour une ¢toile de ce type, déterminer le rayon Re, qui assure un minimum de I'énergie
totale.

1 — 25. Calculer numériquement R,q dans le cas d'une masse égale a celle du Soleil et conclure.

En 1931, CHANDRASEKHAR ? explique qu'il faut prendre en compte le caractére relativiste des
électrons confinés dans les naines blanches. Il en deduira un modéle plus correct pour ces étoiles.

(1 — 26. En estimant la vitesse des électrons dans le modéle de FOWLER justifier 'argument de
CHANDRASEKHAR.

FIN DE L’EPREUVE

1. R. H. FOWLER, On dense matter, Monthly Notices of the Royal Astronomical Society, 87, 114, 1926
2. S. CHANDRASEKHAR, The mazimal mass of ideal white dwarfs, Astrophysical Journal, 74, 81, 1931
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Formulaire en coordonnées sphériques

e

grad [F(r)] = -

Données numériques

Grandeur

dF .

div [F(r)i) = 5o

Symbole, valeur et unité

Constante de Planck

Constante de la gravitation universelle

Distance Terre—Soleil (unité astronomique)

Masse de I’électron
Masse du proton
Masse du Soleil
Rayon du Soleil
Rayon de la Terre

Période du mouvement de la Terre (année)
Période du mouvement de Mars

Seconde d’arc

h=6,6310"%*J.Hz !

G =6,67-10 " m3kg=t-s72
ap = 1UA =1,50-10"" m
me = 9,11-:103 kg

m, = 1,67-10"*" kg

My = 1,99-10% kg

Ro = 6,96-10°m

Ry =6,37-10°m

To = 365j = 3,16-107 s
T, = 687]

1”7 = 4,85 prad

5\ 6871 5
On donne (Z) ~ 1.6 et [—} ~ —.

365

Syntaxes Python

Syntaxe d’appel

4

‘ Résultats ou commentaires

* Générer un tableau de n valeurs réguliérement sur [a, 0] :
‘ r est un tableau de type numpy.array

r = numpy.linspace(a, b, n)

x Evalue Pintégrale y =

b

f(x)dx et estime ’erreur numérique

r = scipy.integrate.quada(f, a, b) ‘r = (y, err)

* Créer ou activer une fenétre de tracé :
r = matplotlib.pyplot.figure()

‘ exécuter avant de générer des tracés

* Tracer la courbe représentative de y = f(z)
matplotlib.pyplot.plot(x, y)

‘ x et y, énumérables de méme dimension

* Afficher la ou les fenétres de tracé :
matplotlib.pyplot.show()

‘ exécuter apres avoir généré des tracés
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Physique I, année 2025 — filiere MP

Impulsion mécanique et mesures optiques

Le sujet comporte quatre parties I, II, III et IV qui, bien que liées les unes aux autres,
peuvent étre abordées de maniére totalement indépendante sous réserve d’admettre éventuel-
lement les résultats affirmés par ’énoncé. Dans les questions posées, exprimer signifie donner
une expression littérale et calculer signifie donner une valeur numérique; toutes les applica-
tions numériques seront réalisées avec seulement deux chiffres significatifs. Les vecteurs seront
surmontés d’une fleche, p ou v. Les grandeurs complexes seront soulignées, ¥ ou z, sauf i, tel
que i = —1.

Dans le langage général, le sens usuel du mot impulsion désigne 1’élan initial qu’on peut donner a
une particule élémentaire ou a un projectile macroscopique qui poursuit ensuite son mouvement.
Le méme mot a un sens plus spécifique en physique ; 'impulsion, d’abord définie en mécanique
classique comme la quantité de mouvement dans de trés nombreux cas, se retrouve en mécanique
quantique comme en mécanique relativiste avec un sens étendu.

Nous admettrons dans tout ce qui suit que I'impulsion 7 d’une particule ponctuelle libre (non
engagée dans une liaison), de masse m et d’énergie E est, dans le cadre général de la théorie
d’EINSTEIN (1905), donnée par la relation dite du triangle relativiste :

E? = p*c + m?c! (1)
ou p = ||p]| et ¢ =3,0x10%m -s! est la célérit¢ de la lumiére dans le vide ; par ailleurs, cette
méme impulsion p’ est, dans la description ondulatoire des particules, associée & la longueur

d’onde A de 'onde associée a la particule par la relation de DE BROGLIE (1924) :

/\:]—? (2)

ol h =6,6x1073*J - Hz ™! est la constante de PLANCK (1900).

I Impulsion de particules élémentaires

d — 1. Quel est, a votre avis, la nature du « triangle relativiste » évoqué par la relation (1)7
Représenter celui-ci.

Quelle est 'unité usuelle, dans le systéme international, de 'impulsion p ? du produit pc?

L’énergie des systémes macroscopiques s’exprime usuellement en joule (J) ou en kilowatt-heure
(1kW - h = 3,6 MJ). Dans toute la suite de la partie I, I'énergie des particules élémentaires sera
donnée en MeV (méga-¢électron volt) ot 1 MeV = 10°eV et 1eV = 1,6 x1071 J. Les masses des
particules seront données en MeV /c? et leurs impulsions en MeV /c. Par exemple la masse de
Iélectron vaut m, = 0,51 MeV/c? et celle du proton vaut m, = 940 MeV /c? (ou, si on préfere,
mec® = 0,51 MeV et m,c? = 940 MeV).

1 — 2. On appelle énergie de repos d’une particule la valeur Ey de I'énergie de celle-ci lorsque
son impulsion est nulle. Exprimer Ejy pour un proton et calculer sa valeur numérique.

Pour une particule en mouvement, le supplément d’énergie E. = E — Ej, porte le nom d’énergie
cinétique.

1 — 3. On s’intéresse d’abord aux particules vérifiant la relation (1) dans le cas de la limite
classique, lorsque E. < Ey. En vous limitant au premier ordre non nul, donner dans ce
cas une expression de F, en fonction de I'impulsion p et de la masse m de la particule.
Quelle est alors la relation entre 'impulsion p et la vitesse ¢ d’une particule ?

Quelle vitesse maximale peut-on donner & un proton pour rester dans la limite classique
telle que E./Ey < 1% ? Méme question pour un électron.
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Si on ne se limite pas aux faibles vitesses, on peut montrer, et on ’admettra, la relation générale
entre la masse m, la vitesse ¥ de norme v = |||, 'impulsion p de la particule et la célérité c de
la lumiére :

. muv
P=—F— 3
1—v?/c? ®)
(1 — 4. En déduire lexpression générale de I'énergie totale £ = f(Ey,v,c) d'une particule de

masse m.

(d — 5. Un photon est une particule associée a une onde électromagnétique dans le vide et dont
la vitesse est donc égale & c¢. Que peut-on en déduire, pour sa masse, de la relation
E = f(Ep,v,c) établie & la question précédente ?
Déduire de (2) 'expression de ’énergie E¥ d’'un photon en fonction de la longueur d’onde
A puis de la fréquence v de 'onde. Faire 'application numérique dans les cas des ondes
lumineuses des domaines bleu (A ~ 400 nm) puis rouge (A ~ 600 nm). On pourra exploiter
le fait que hc >~ 1,2eVxum et on exprimera E en eV.

II Le spectre d’émission des atomes d’hydrogéne

On s’intéresse ici a I’émission d’un photon, d’énergie E et d’impulsion p = E/e¢, par un atome
initialement au repos, de masse m. Au cours de cette émission, I'atome passe de 1’énergie initiale
E; a I'énergie finale By = E; — AE < Ej et il recule avec, dans le cadre d’une description
classique, I'impulsion mv et ’énergie cinétique %va (figure 1) de sorte que I'impulsion totale
du systéme complet reste nulle aprés I’émission, comme elle I’était avant émission. La direction
de 'impulsion p du photon est donc opposée a la vitesse v de ’atome qui recule.

. E
E; N f E
g 18 4 '/ - \‘ N
% % U \ - 7 . p
atome au repos atome qui recule photon

FIGURE 1 — Emission d’un photon par un atome au repos

1 — 6. On admet que I’énergie totale du systéme apres émission est identique a celle de 'atome
au repos avant I’émission. En déduire la relation E = mc? (\/ 14+ 2n— 1) et exprimer 7
en fonction de AE, m et c.

1 — 7. Dans le cas de I'atome d’hydrogéne, AFE est de I'ordre de quelques électrons—volts. En
déduire qu’on peut négliger 1’énergie de recul de I'atome et conclure quant a la relation
entre AE = E; — Ey et I'énergie ' du photon émis.

La résolution de I’équation de SCHRODINGER (1922) dans le cas de 'atome d’hydrogéne montre
que les valeurs de ’énergie F,, de I'atome sont quantifiées en fonction du nombre quantique
principal n € N* et de la grandeur H = 27,2eV selon la relation : E, = —H/(2n?). Cette
expression est confirmée par I’étude des ondes lumineuses, de longueur d’onde \, émises par un
ensemble d’atomes d’hydrogéne qui rayonnent par désexcitation depuis un état initial quantifié
par n; vers I’état final quantifié par ny < n;.

(A — 8. Lorsque I'état final est ny = 1, montrer qu’il existe une Apax telle que A < Apax et donner
une estimation de A\yax. Quel est le domaine spectral correspondant a ces raies d’émission ?
Lorsque I'état final est ny > 2, montrer qu’il existe une Anin que I'on estimera, telle que
A > Amin - Quel est le domaine spectral correspondant a ces raies d’émission ?

Les raies d’émission de I'hydrogéne dans le domaine visible (les raies de BALMER) ont été
étudiées a partir de 1853 par ANGSTR@M ; a quelles valeurs de n ¢ correspondent-elles ?

Page 2/7



Physique I, année 2025 — filiere MP

C’est la connaissance précise de ce spectre qui a permis ’étude de la quantification de 1’éner-
gie des atomes donc l'introduction de la mécanique quantique au début de XX¢ siecle. Cette
connaissance a été par la suite améliorée au moyen de la spectrométrie interférentielle.

III Mesures interférométriques de longueurs d’onde

En 1907, MICHELSON est le premier américain a recevoir le prix Nobel de physique pour
ses instruments optiques de précision et les mesures spectroscopiques et métrologiques réalisées
au moyen de ceux-ci. En particulier, il publiera en 1892 des mesures relatives aux spectres
d’émission de plusieurs sources, obtenues par spectroscopie interférentielle, et notamment pour
les raies H, (rouge) et Hg (bleue) d’émission par les atomes d’hydrogéne.

ITII.A L’interférométre de Michelson

Le schéma du montage utilisé par MICHELSON est proposé figure 2. Le dispositif monochroma-
teur, formé d’un prisme de verre dispersif et d’une fente étroite, éclaire ’appareil en sélection-
nant une raie quasi-monochromatique de longueur d’onde \q, appartenant au domaine visible.
L’observation est réalisée au moyen d'un oculaire afocal, réglé a l'infini : il donne d’un objet
situé a grande distance une image également a grande distance, mais agrandie.

AZ
1
i
5
&)
5 oD
v i <
TH3
M <
55
M
L r 1
. . >
miroir jmobile €z

b

monochromateur

oculaire

FIGURE 2 — Dispositif de mesure en spectroscopie interférentielle

d — 9. L’interférométre comporte deux lames de verre L; et Lo, paralléles, de méme épaisseur e
et de méme indice optique n, inclinées d’un angle /4 relativement a ’axe (O, €,,) normal
au miroir fixe. La lame L, est munie d’une couche semi-réfléchissante sur une seule de ses
faces; laquelle 7 Justifier, en vous appuyant sur un schéma.
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J - 10.
3 - 11.
a - 12.
- 13.

Aprés réglage des vis Vi et V5 les miroirs fixe et mobile sont rendus rigoureusement
perpendiculaires ; I'axe optique (O, €,) de I'oculaire est alors confondu avec la normale au
miroir mobile et 'opérateur observe, au moyen de cet oculaire réglé a I'infini, des franges
d’interférence. Quelle est la forme de ces franges?

Peut-on encore les observer si 'oculaire est déréglé ?
Tout en observant les franges, I’observateur peut actionner la vis micrométrique et dépla-

cer le miroir mobile dans le plan (O, €;, €, ), le long de I'axe (O, €,). Relier le nombre AN
de franges sombres qui défilent au centre du champ et le décalage Az du miroir mobile.

Exprimer, au moyen d’un schéma approprié, la différence de marche observée a l'infini
dans une direction donnée, en fonction de I’écart séparant les deux miroirs.

Le déplacement maximal de la vis micrométrique & partir du contact optique est noté
AZpax. Déterminer, aprés ce déplacement, 'angle Af qui sépare le centre de la figure de
la premiére frange de méme nature.

Dans le cas d’une des raies de I’hydrogéne atomique, on observe le défilement de N = 3 156
franges pour un décalage Az = 1035 + 2 um. S’agit-il de la raie H, ou Hg?

Avec quelle précision relative mesure-t-on sa longueur d’onde A\ ?

Que vaut alors Af? Commenter.

III.B Cohérence spectrale d’une source

Une source de lumiére éclaire avec la méme intensité Iy les deux voies d’un interféromeétre ;
I’observation est réalisée en un point ou la différence de marche est 9.

J - 14.

Dans le cas ou la source est rigoureusement monochromatique, de longueur d’onde Ay,
exprimer 'intensité /(J) en fonction de Iy, Ag et 0. Définir et calculer le facteur de contraste
C' des franges.

Certaines sources lumineuses sont en fait bichromatiques : elles émettent deux radiations de
longueurs d’onde trés proches \; et Ay et on pose alors \g = % (A1 + A2) et AN =|As — A{| en
admettant toujours A\ < Ag.

J - 15.

J - 16.

Pour certaines sources bichromatiques les deux radiations émises sont de méme intensité ;
c’est le cas des lampes a vapeur de sodium, étudiées notamment par MICHELSON dans
les conditions décrites en ITI.A. Expliciter I'intensité I observée en fonction de Iy, de la

différence de marche d, de A\g et de A\.

Exprimer le facteur de contraste C' des franges et montrer comment il permet la mesure

de Ao/AN.

D’autres sources, comme celles émettant la raie H, de 'hydrogéne, peuvent étre écrites
comme bichromatiques mais les intensités I et Iy < I; émises aux longueurs d’onde A\ et
Ao sont différentes. Pour quelle(s) valeur(s) de ¢ le facteur de contraste des franges est-il
minimal 7 Quelle est cette valeur minimale ?

Dans le cas de la raie double H,, I’écart A\ est de I'ordre de 1,4x107 ! m. Est-il possible
de le mettre en évidence avec le montage proposé ci-dessus ?

III.C Les tubes 4 hydrogéne

Pour I’étude du spectre d’émission de I’atome d’hydrogéne, une premiére technique?, initiée
dans les années 1930, a consisté a utiliser un tube AB contenant de I’hydrogéne moléculaire
(dihydrogéne, formule H,) sous faible pression (150 mbar) soumis a des décharges électriques de

1. D. Chalonge et Ny Tsi Zé, J. Phys. Radium, 1930
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haute tension entre deux électrodes F; et Es; 'observation se fait au travers d’une fenétre de
quartz F' (cf. figure 3). Le spectre d’émission obtenu présente la superposition d’un fond quasi-
continu et de raies bien identifiées, comme le montre la figure 4 tirée de I'article présentant la
technique originelle.

FIGURE 3 — Illustration du dispositif : reproduction de la figure 1 de 'article originel

A — 17. Quel est le role du circuit a circulation d’eau qui entoure le tube central ?
Sur le spectre proposé en figure 4, quelle est 'unité de la graduation donnée en abscisse ?

Quelle est, a votre avis, l'origine du fond continu (essentiellement dans le proche ultra-
violet) marqué en trait pointillé gris?

= nHs 'F a"Y ]“"?
H nﬂ'\ ‘
AN
,/ | \ || ‘~
i
o |
v '-,"!l ] |
e \
Y
o ’

FIGURE 4 — Spectre d’émission du tube & hydrogéne en échelle logarithmique

On préfere actuellement utiliser des lampes a décharge d’une constitution différente : il s’agit
de tubes & décharge remplis de vapeur d’eau permettant I’obtention d’un spectre atomique sans
bande continue. En présence des décharges a haute tension, ce type de lampe est le siége des
réactions H,0 = HO + H.

1 — 18. Quelle propriété du spectre d’émission de la molécule hydroxyle HO est ici mise a profit 7

Ces lampes contiennent une certaine proportion d’eau lourde, molécules HDO dans laquelle un
des deux atomes d’hydrogene 1H est remplacé par un atome de deutérium 2D, dont le noyau est
formé d’un proton et d’un neutron. Si on tient compte de la masse my du noyau atomique,

on peut montrer que la longueur d’onde d’émission d'une des raies spectrales de I'hydrogéne
atomique vérifie la relation :
Me + My

my

A= Axo

oll m, est la masse de I’électron et A, la longueur d’onde idéale si my — oc.
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d — 19. Les raies d’émission du deutérium sont-elles, par rapport a celle de I’hydrogéne ordinaire,
décalées vers le bleu ou vers le rouge ?
De quelle résolution spectrale (en nanométre) faut-il disposer pour séparer les raies de
I’hydrogene et celles du deutérium ?
A partir d’une lecture de la courbe de la figure 4, faire I'application numérique dans le
cas de la raie Hg.

IV L’équation de Klein—Gordon

Lors du développement de la mécanique quantique (ou mécanique ondulatoire), 'onde de ma-
tiere W(7,t) a d’abord été considérée comme solution de I’équation de SCHRODINGER (4) :

h? ov

h

ot 2w

pour une particule de masse m repérée par sa positon 7 et soumise a l'interaction décrite par
la fonction potentiel scalaire V(7). En 1926, KLEIN et GORDON en ont proposé une version
modifiée qu’on écrira :

2
RPAEAY + (m% - V(f)) U(7t) = m?cW(7t) (5)

Dans la suite on s’intéressera exclusivement aux solutions de I'une ou 'autre équation, de la
forme : .
L i
W) = gy exp |~ (B0 = p(E))]
ou ¢ , est une certaine constante complexe, x est I'une des coordonnées cartésiennes de 7, £/ > 0
est 1’énergie de la particule et p(E) > 0 son impulsion.

[ — 20. L’état associé a cette fonction d’onde est-il stationnaire ?
Dans quel sens le mouvement de la particule décrite par cette onde a-t-il lieu ?
Exprimer les vitesses de phase v, et de groupe v, en fonction de E, de p(E) et de sa
dérivée.

[ — 21. Exprimer p(E) et v,(E) dans le cas d'une particule vérifiant I’équation de SCHRODINGER

dans un domaine ot V est constant. En déduire le caractére relativiste ou non du modéle
associé a ’équation de SCHRODINGER.

d — 22. Répondre aux mémes questions dans le cas d’une particule vérifiant I’équation de KLEIN—
GORDON (5).

On s’intéresse enfin a la résolution du probléme physique suivant : la particule étudiée est
libre (V = 0) pour z < 0 et x > a et pourvue d’une énergie E, tandis que, dans I'intervalle
z € [0,a], elle est soumise & une interaction caractérisée par V=V, > E (figure 5) et méme
Vo — E > mc®. Les solutions de 'équation (de SCHRODINGER ou de KLEIN-GORDON) seront
donc écrites, pour x < 0 et x > a, sous les formes respectives :

i

U(x <0it) = yo exp [ - (Bt — pﬁ)] + Ega exp {—% (Et+ px)}

i

Yo > 0t) = Do |1 (Bt - po)

ou I' et R sont deux constantes complexes.
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1

Oe_' 7 —|—Egoe_i T Q:Igoe_i

[S
Il
[

FIGURE 5 — Barriere de potentiel

On se place d’abord dans le cas de 1’équation de SCHRODINGER.
[ — 23. Quelle est la nature de 'onde dans le domaine = € [0,a] 7
Quelles relations permettent de calculer R et T'? On ne demande pas de les exprimer ici!
Quel phénomeéne physique peut-on mettre ainsi en évidence ?
Quelle est Pinterprétation physique de |T)??
On se place maintenant dans le cas de I’équation de KLEIN—(GORDON.
d — 24. Quelle est la nature de l'onde ;ians le dc;maine x € [0,a] 7 On notera qu’en introduisant
(e —me Z§€+mc ) >0
Les mémes relations que dans 1’étude de la barriére de potentiel dans le cadre de ’équation de
SCHRODINGER conduisent, pour 'onde de KLEIN-GORDON, a la relation (que l'on admettra) :

1 1
TP = avec == (249} ot ¢:_qa
|cos ¢ — iasin | 2\q »p h

e=FE—-Vyonaqg*=

O — 25. Déterminer la valeur maximale de |T)?. Commenter.

FIN DE L’EPREUVE
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LASERS ET DISTANCES

Les vecteurs sont surmontés d’un chapeau s’ils sont unitaires (€,) ou d’une fleche dans le cas
général (7). Sauf contre-indication locale, on utilisera 3 chiffres significatifs pour les applications
numériques. Les trois parties de ce probleme sont totalement indépendantes.

I. — Un peu d’astrométrie

I.A. — Triangulation

La triangulation est une méthode optique de la mesure de
la distance entre les points A et C' d’'un triangle ABC' quel-
conque basée sur la détermination de deux angles de ce tri-
angle et la connaissance de la longueur AB. C’est en utilisant
cette méthode de proche en proche en mesurant des centaines
de triangles entre Dunkerque et Barcelone de 1792 a 1799 que
les astronomes Delambre et Méchain furent chargés de me-
surer la longueur du méridien terrestre. Le metre fut alors
défini comme la 40 millionieme partie de cette distance.

'd 1 — On considere le triangle de la figure 1. Montrer que
la mesure des angles « et 3 et de la distante AB = a permet
la détermination de AC'. On donnera 'expression de AC' en

. , o FI1GURE 1 — Triangulation
fonction de a, a et [ comptés positivement.



Lasers et distances

I.B. — Le génial Aristarque

Au II¢ siecle av. J.C., I'astronome grec
Aristarque de Samos imagina une fagon de
comparer la distance de la terre a la lune
TL et la distance de la terre au soleil T'S.
Lors d'une éclipse de lune, il se convainc
que la lune possede un diametre environ Terre
trois fois plus petit que celui la terre. Plus 5
tard, il mesure I'angle 6/, correspondant

au moment ou la lune est placée de telle

sorte qu’elle apparait & demi-pleine vue FIGURE 2 — terre, lune et soleil.
depuis la terre (premier ou dernier quar-

tier). Les divers angles sont représentés sur

la figure 2.

Soleil

'd 2 — Que vaut I'angle ;5 correspondant a 6/, 7 On justifiera sa réponse.

Apres de nombreuses mesures, délicates pour 1'époque, Aristarque indique que I'angle 6, /, est
compris entre 87° et I'angle droit et il utilise la valeur 6/, = 87° pour ses calculs.

TS
‘d 3 — Déterminer la valeur numérique du rapport — qu’il en déduit. Que pensez-vous de

cette valeur? La valeur réelle est-elle 10 fois ou 100 fois plus importante? Donner une ou
plusieurs raisons de cet écart.

‘d 4 — Lors d’une éclipse de soleil, on peut observer que, depuis la terre, la lune et le soleil
possedent le méme diametre apparent. Evaluer la valeur minimale du rapport entre le rayon
du soleil et celui de la terre qu’a obtenu Aristarque. Interprétez sa conclusion stupéfiante pour
I’époque : « Pourquoi faire tourner la torche autour de la mouche ¢ » En réalité, le diametre
du soleil est-il approximativement 100 fois ou 1000 fois plus grand que celui de la terre?

I.C. — Détermination des distances soleil - planetes

La période sidérale d'une planete, considérée comme ponctuelle, est le temps mis par celle-
ci pour faire un tour complet autour du soleil dans un référentiel héliocentrique. La période
sidérale t; de la terre est de 365 jours. Toutefois la période sidérale ¢, d'une planete n’est pas
directement mesurable sur la terre car elle est aussi en mouvement. En revanche, il est aisé
de mesurer, depuis la terre, la période synodique 7, d'une planete définie comme la période
de réapparition d’une conjonction, c’est-a-dire un alignement entre le soleil, la terre et cette
planete. On supposera que le mouvement des planetes autour du soleil est circulaire uniforme
et que tous ces cercles sont dans le méme plan.

1 5 — Dans le cas d’'une planete supérieure, c¢’est-a-dire plus éloignée du soleil que la terre,
exprimer la période sidérale ¢, de la planete en fonction de sa période synodique 7, et de la
période de la terre t;. On pourra s’aider d’un dessin en remarquant qu’entre deux conjonctions,
la terre a fait autour du soleil, plus qu’un tour alors que la planete s’est déplacée d’un angle
inférieur a 360°.

‘1 6 — En observant la planete mars depuis la terre, Copernic trouve pour cette planete une
période synodique 7,, = 780 jours. Calculer la période sidérale t,, de la planete mars.

' 7 — En notant 7, le rayon de I'orbite de la planete autour du soleil, énoncer puis retrouver
rapidement par le calcul, la troisieme loi de Kepler reliant r,, ¢,, la masse du soleil M et la
constante de gravitation GG. On précisera les hypotheses envisagées pour ce calcul. En prenant
comme unité de temps la période sidérale ¢; de la terre et comme unité de distance la distance
terre-soleil (I'unité astronomique notée UA), donner la relation simple existant entre r, et t, et
calculer la distance de la planete mars au soleil.
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I.D. — Télémétrie laser-lune

Les mesures modernes de la distance terre-lune sont effectuées en utilisant un laser vert de
longueur d’onde A = 523 nm. Cinq rétroréflecteurs catadioptriques (assemblages de coins de
cubes de surface collectrice totale ¥y = 0,3 m?) ont été placés en différents points de la lune par
les missions humaines américaines Apollo 11, 14 et 15 ainsi que par les sondes robots soviétiques
Lunokhod. Pendant une série de mesures, on envoie en direction de I'un de ces réflecteurs et a
la fréquence de 10 Hz des impulsions laser possédant une énergie ¢ = 300 mJ. La divergence
du faisceau laser confere a celui-ci la forme d'un cone de demi-angle au sommet oq = 4”. La
réflexion sur les rétroréflecteurs est elle aussi divergente de demi-angle oy = 12”. La réception
est assurée par un détecteur situé au foyer du télescope servant a 1’émission du laser, la surface
collectrice équivalente du télescope est Xy = 1,8 m?.

'd 8 — Pourquoi utilise-t-on des rétroréflecteurs catadioptriques en coins de cubes? On justi-
fiera sa réponse par un schéma bidimensionnel.

Le rendement total p; pour une impulsion est le produit du rendement aller p, par le rendement
retour p,.. Chacun d’eux étant défini comme le rapport de la surface collectrice sur la surface
éclairée. On néglige I'effet de 'atmosphere terrestre et toute lumiere parasite.

'd 9 — Déterminer I'expression de p; en fonction de o, o1, Xg, X1 et de la distance d, entre
le point d’émission du laser et le rétroréflecteur visé. En prenant d, = 360 000 km, déterminer
I’énergie maximale théoriquement recue par le détecteur en retour de chaque impulsion. Illustrer
ce résultat en termes de photons et proposer une méthode pour mesurer effectivement la distance
dy.

FIN DE LA PARTIE 1

II. — Utilisation d’un proximetre laser
II.A. — Mesure de petites distances

Le schéma de principe d'un proxi- Surface diffusante
metre a laser est représenté sur la
figure 3. La lentille L est conver-
gente de distance focale f et d’axe
optique A. Les cellules photorécep-
trices de largeur d sont situées dans
le plan focal image de la lentille. Le
segment 010 de longeur h est ap-
pelée base du systeme. L’angle 6
entre la base et 'axe optique A est
fixe, pour simplifier les calculs on
prendra ici § = 45°. On note ¢
I’angle entre la base et la droite
O, P. Le point O, correspond & 1'in- FI1GURE 3 — Schéma de principe du proximetre laser

photoréceptrice

tersection entre 1’axe optique de la
lentille A et la surface de la barrette photoréceptrice. La diffusion en P est suposée isotrope.

'd 10 — Quelles sont les hypotheses pour que d’une part la lentille travaille dans les conditions
de Gauss et d’autre part que I'image P’ de P soit localisée sur la barrette photoréceptrice ?

d 11 — Déterminer I'expression de H en fonction de h, f et y = OoP’. Calculer sa valeur
numérique si h =1,00m, f = 2,50cm et y = 1,00 mm.
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'd 12 — La largeur d d’une cellule de la barrette photoréceptrice induit une résolution angu-
laire d qui entraine une imprécision d H sur la mesure de H. Dans le cas y ~ 0, estimer d¢ en
fonction de f et d puis 0H en fonction de d, f, H et h. En déduire qu’a d et f fixés, lorsque
h varie, ’erreur relative minimale est obtenue si h = H ; calculer sa valeur numérique dans ce
cas pour f = 2,50 cm et d = 10,0 pm.

A la sortie du laser, on note dy = 2r le diametre du faisceau de longueur d’onde .

'd 13 — Pourquoi le faisceau laser diverge-t-il d’un angle oy ? Donner un ordre de grandeur
de cet angle de divergence en fonction de \ et r.

‘d 14 — Déterminer un ordre de grandeur d’ du diametre de la tache qui en résulte sur la
cellule. On exprimera d’ en fonction de A, f et r. Justifier la valeur numérique de f si A = 630 nm
et r = 1 mm.

II.B. — Mesure de grandes distances

Surface diffusante Pour déterminer de plus grandes distances,
on utilise un dispositif du méme type que
dans la partie II.A : le laser éclaire la sur-
face en se réfléchissant sur un miroir plan
que l'on fait osciller autour d’un axe di-
rigé selon le vecteur k£ et passant par O.
L’ensemble est représenté sur la figure 4,
on prendra (1\7031) = 45°. Le détecteur
est une cellule photoréceptrice située dans
le plan focal de la lentille L de distance
focale f. Cette cellule est de tres petite
dimension devant f. On note finalement
FIGURE 4 — Mesure de distance a miroir pivotant H = O, P la distance a mesurer. On fera

I’hypothese que H > f et que la distance
OO; = h est connue. Les oscillations du miroir permettent a ’angle 1, dit de balayage, de varier
comme une fonction affine par morceaux de période 2p représentée sur la figure 4. Le détecteur
est désactivé pendant les intervalles de temps [(2m + 1) p, (2m + 2) p] pour tout entier m € N.
La diffusion est toujours isotrope et identique en chaque point P de la surface. Le temps de vol
des photons est négligeable devant la période 2p.

0 p 2p 3p 4p

'd 15 — Déterminer la relation entre ¢ et 'angle o de la normale au miroir avec la base.
d 16 — Montrer que la mesure de H se ramene a une mesure de temps.

d 17 — Représenter I'allure de la variation de l'intensité lumineuse recue par le photodétec-
teur en fonction du temps sur une période.

'd 18 — Cette intensité est en fait récupérée sous la forme d’un signal électrique. Expliquer
pourquoi 'opération qui consiste a dériver ce signal par rapport au temps permet d’améliorer
la précision de la mesure de H. Proposer un montage électronique utilisant un amplificateur
opérationnel, une résistance R et un condensateur de capacité C' qui permet effectivement
d’effectuer cette dérivée. On justifiera ce montage par le calcul.

FIN DE LA PARTIE II
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III. — Diffusion thermique. Interaction Laser-Matiere
Un rayonnement laser arrivant sur la surface i}

d’un matériau donne lieu a différents effets :

thermiques, électromécaniques, etc. Pour sim- o Faisceau

plifier on supposera que la totalité de ’énergie laser

du faisceau laser est absorbée par le matériau.
Ceci se traduit par une élévation de la tempé-
rature, et donc par un accroissement des vibra-
tions de la structure moléculaire ou cristalline
du matériau. Cette transformation se fait a la
surface de la zone d’interaction dans une épais-
seur caractéristique moyenne ¢ appelée profondeur de pénétration moyenne de la lumiere. Cette
zone d’'interaction devient une source de chaleur intense qui échauffe la matiere par conduction
thermique. Lorsque 0 est faible devant le diametre 2r du faisceau laser, on peut utiliser un
modele unidimensionnel de conduction de la chaleur. On néglige tout écoulement de chaleur en
dehors de la direction Ox de propagation. Pendant le début de I’échauffement, le matériau est
soumis a un flux thermique constant. Lorsque celui-ci se met a fondre, il apparait une interface
liquide-solide, dont la température est supposée constante et égale a la température de fusion T
du matériau. Cette interface se propage alors dans le matériau. On notera Ly la chaleur latente
de fusion du matériau. On considere que la partie fondue du matériau transmet intégralement
la lumiere du laser.

III.A. — Equation de diffusion

Le matériau de masse volumique p, de chaleur massique ¢, de conductivité thermique A occupe le
demi espace défini par = > 0. Il est initialement en équilibre a la température Ty. La conduction
de la chaleur se fait suivant I'axe Oz. On note jg(z,t) = jo(z,t) €, le vecteur densité de flux
thermique et T'(x,t) la température du milieu que constitue le matériau. On néglige toute perte
de chaleur dans la région x < 0.

Zone de fusion
FIGURE 5 — Interaction laser-matiere

1 19 — Etablir Iéquation aux dérivées partielles vérifiée & la fois par T(x,t) et par jo(x,t).

A

On introduira le parametre p = —. On vérifiera que cette équation admet une famille de
pc

solutions de la forme :

.2
be KX

avec u =
\ it

Les quantités 0y et b sont des constantes d’intégration et x un rapport de deux nombres entiers
positifs que 'on déterminera.

9(1’, t) = 90 +

3

III.B. — Flux thermique constant
On suppose que la surface du matériau (située en z = 0) recoit a partir de l'instant ¢ = 0 une
densité de flux constant jg, dirigée selon €.

‘d 20 — Montrer que la solution proposée a la question 19 ne convient pas dans ce cas.

On admet que la solution correspondant a cette situation s’écrit pour la température sous la
forme

2

2B - 2 v 2
T(x,t)=A + 1T\/mF(u) avec I (u) = eﬁ —wuerfe(u) et erfe(u) =1— ﬁ/o e Vdt

'd 21 — Déterminer I'expression de jg(x,t) en fonction de By et erfc(u).
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4 22 — Etudier toutes les conditions aux limites du probleme en x et en t. On commentera
toutes ces conditions aux limites et on admettra que si u — +oo alors

—u2

1
erfe(u) ~ ¢ ut — Eu_g +o(u™?)

™

En déduire les expressions de A; et B; en fonction de Ty et jQO.

III.C. — Température constante

On suppose a présent que la surface située en x = 0 est maintenue a la température constante
T7. On montre que la solution correspondante s’écrit T'(z,t) = As + Bgerfc(u) ou la fonction
erfc(u) est la méme que celle définie dans la partie précédente, As et By étant deux températures
constantes.

d 23 — Etudier toutes les conditions aux limites en z et ¢ de T(z,t). On déterminera no-
tamment les expressions de A, et By en fonction de T; et Tj.

'd 24 — Déterminer l'expression de jg(x,t); ce résultat vous parait-il plausible ?

III.D. — Modélisation d’une opération de percage

On perce une plaque d’aluminium; les valeurs numériques correspondant a cette opération
sont les suivantes : A = 210 W.m LK™}, pc = 2,40 - 105J.m3. K™, p = 2,70 - 10®> kg.m 3,
Ly = 3,88-10° J.kg', la température initiale de la surface considérée est T, = 30°C et la
température de fusion de I’aluminium est 7 = 660 °C. La surface est chauffée dans un premier
temps jusqu’a la température de fusion puis 'avancée du percage se fait alors par liquéfaction
progressive de la matiere. On admettra que le front liquide-solide se propage sans déformation
avec une vitesse constante ¢ et que I’aluminium se comporte comme un corps noir. La densité
de flux thermique jQU du faisceau laser de section o = 0,20 cm? et de puissance P, = 1,00 kW
est supposée constante.

'd 25 — En utilisant les résultats de la partie III.B, déterminer I'expression du temps ¢
au bout duquel la surface du matériau atteint la température de fusion T%. Calculer sa valeur
numeérique.

A partir de l'instant ¢y, on suppose que le front liquide-solide se propage dans le matériau a la
vitesse ¥ = ve,, ou v est une constante positive dans le référentiel du laboratoire. On parle de
front de fusion. On se place dorénavant dans le référentiel lié a ce front, dans lequel ’abscisse
du point O devient x = —uvt.

'd 26 — En écrivant la conservation de I’énergie pendant la durée dt et sur une tranche que
- aoT
I'on précisera, établir une relation donnant ¥ en fonction de jg,, p, A, Ly et s .
z =0
d 27 — La distribution de température dans le repere lié au front de fusion est supposée

stationnaire. Montrer que la distribution de la température a droite du front de fusion vérifie

I’équation différentielle :
drT d*T

dr  da?
ou l'on exprimera v en fonction de p et v.

'd 28 — Déterminer 'expression de T'(x) en fonction de Tp, TF, v et p.
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d 29 — En déduire Iexpression de v en fonction de P, o, p, Ly, ¢, Ty et Ty. Calculer la
valeur numérique de v pour le percage considéré.

FIN DE LA PARTIE III

FIN DE L’EPREUVE

Page 7/7



ECOLE DES PONTS PARISTECH
SUPAERO (ISAE), ENSTA PARISTECH,
TELECOM PARISTECH, MINES PARISTECH,
MINES DE SAINT-ETIENNE, MINES DE NANCY,
TELECOM BRETAGNE, ENSAE PARISTECH (FILIERE MP)
ECOLE POLYTECHNIQUE (FILIERE TSI)

CONCOURS D’ADMISSION 2015
SECONDE EPREUVE DE PHYSIQUE
Filiere MP
(Durée de I’épreuve: 3 heures)
L’usage de la calculatrice est autorisé

Sujet mis a disposition des concours : Cycle international, ENSTIM, TELECOM INT, TPE-EIVP
Les candidats sont priés de mentionner de facon apparente sur la premiére page de la copie :
PHYSIQUE II — MP.

L’énoncé de cette épreuve comporte 8 pages.

— Si, au cours de ’épreuve, un candidat repére ce qui lui semble étre une erreur d’énoncé, il est invité a le
signaler sur sa copie et a poursuivre sa composition en expliquant les raisons des initiatives qu’il aura
été amené a prendre.

— 1l ne faudra pas hésiter a formuler les commentaires (incluant des considérations numériques) qui vous
sembleront pertinents, méme lorsque 1’énoncé ne le demande pas explicitement. Le baréme tiendra
compte de ces initiatives ainsi que des qualités de rédaction de la copie.

NATURE DE LA GRAVITATION

Un aspect fondamental de la gravitation est le principe d’équivalence. Introduit par GALILEE au
début du xXVvII€ siecle alors qu’il étudiait la chute des corps, il fut le point de départ du développement
de la théorie de la gravitation. Un peu moins d’un siecle plus tard, NEWTON fut le premier a décrire
I'interaction gravitationnelle par une formule. Il en déduisit la version la plus élémentaire du < principe
d’équivalence faible > : la trajectoire d’un corps tombant en chute libre ne dépend ni de sa structure,
ni de sa composition.

Si on sait aujourd’hui que la gravitation régit la dynamique des composantes de 'Univers (planétes,
étoiles, galaxies, ...), 'observation récente de I’expansion de 'Univers a conduit a se poser des questions
fondamentales sur les théories de la gravitation classique. L’introduction dans la théorie cosmologique
de I’énergie noire, qui serait la contribution énergétique majoritaire de I’'Univers, permet d’expliquer
certaines observations mais sa nature et ses propriétés restent principalement théoriques. Certaines
extensions de la théorie de la gravitation suggerent méme ’existence d’une répulsion gravitationnelle
entre matiere et antimatiere, nommée antigravité.

La premiere partie propose une description de I'expérience d’EOTVOS ayant permis, des la fin du
X1X¢ siecle, de valider une version réduite du principe d’équivalence avec une grande précision pour
I’époque. La seconde partie remet en cause le principe d’équivalence et propose une retouche des lois
de NEWTON sur la gravitation universelle. La derniere partie s’intéresse au projet GBAR proposant de
peser I'antimatiere.

Les parties I, II et III sont indépendantes entre elles. On notera i le nombre complexe tel que i2 = —1.
Les données numériques et un formulaire sont rassemblés en fin d’épreuve. Les vecteurs sont repérés
par une fleche (¥) ou par un chapeau s’ils sont unitaires (||ug| = 1).

I. — L’expérience A’EOTVOS

d 1 — Qu’appelle-t-on <« principe d’inertie > en mécanique ? Enoncer le principe fondamental de
la mécanique dans un référentiel galiléen. La grandeur caractéristique du mobile étudié dans cette
expression porte, ici et dans la suite, le nom de masse inerte m;.



Nature de la gravitation

‘d 2 — Expliciter la force de gravitation entre deux points matériels. On introduira le paramétrage
nécessaire sur un schéma. La grandeur caractéristique du mobile intervenant dans cette expression
porte le nom de masse grave ou masse pesante.

Quantifier les déviations possibles au principe d’équivalence faible suppose que I’on puisse considérer les
masses inertielle m; et grave (ou pesante) m comme pouvant étre différentes. Les premieres mesures
précises des écarts relatifs entre masses inertielle et grave, ont été obtenues par comparaison des
périodes de deux pendules simples de masse et de composition différentes; cette méthode, d’abord
décrite par GALILEE, a été menée par NEWTON (1686) ou encore BESSEL (1826) et a conduit & des
valeurs d’écarts relatifs compris entre 1073 et 107°. L’invention du pendule de torsion par EOTVOS
autour de 1888, permit d’augmenter fortement la sensibilité.

I.A. — Mesure du coefficient de torsion du pendule

L’expérience d’EOTVOS utilise un pendule de torsion. Dans le dispositif simplifié, représenté sur la
figure 1, deux spheéres appelées S7 et So, homogenes de nature différente et de méme masse pesante
m ont leurs centres d’inertie placés aux extrémités d’une barre rigide, de masse M et de longueur
2L, suspendue en son centre a un fil de quartz tres fin, de constante de torsion C. On note m;, et
m;, les masses inertielles respectives de S et de S2. La barre est libre de tourner autour de 'axe
Oz en tordant plus ou moins le ruban de suspension. On suppose que la barre reste tout le temps de
I’expérience dans le plan orthogonal a ’axe Oz.

17, < Le dispositif est placé de sorte qu’a 1’équilibre, la

2 . . barre soit normale au plan méridien a la latitude
N Fil de torsion . (s (s ,

NN A. Sa position est alors repérée par réflexion d’un

faisceau lumineux sur un miroir plan, fixé au milieu
de la barre, a I’aide d’une lunette.

On note Z le référentiel du laboratoire centré sur O
et supposé galiléen dans cette sous-partie ou 1’ob-
jectif est la détermination de la constante de tor-
sion C' du pendule.

On note Jy le moment d’inertie de la barre par rap-
port a l'axe vertical (Oz) et J le moment d’iner-

- Détect
Source | s systéeme S = {barre + spheres} par rapport
lumineuseA a (Oz). On repere la position de la barre a l'ins-
FiG. 1 - Dispositif ESTVOS tant ¢ par I’angle de torsion 6(t). On fait tourner le

systeme d’un angle 6,, puis on le lache sans vitesse
initiale. Le fil exerce alors sur la barre un couple de rappel dont le moment en O a pour intensité
Moy =—-C(0(t) — 6y) , 'angle 6 repere la position de la barre en I’absence de torsion.

‘d 3 — Montrer que ce couple dérive d’une énergie potentielle que I'on déterminera. En déduire
'énergie potentielle E,, g de S en fonction de C' et § — 6, on choisira E, (6p) = 0. Déterminer ’énergie
cinétique E g du solide S. En déduire 'expression de I'énergie mécanique de S en fonction de C', J,
0, 0y et 0 = fli—f.

'd 4 — On fait I'hypothese que la puissance totale des forces de frottement peut se mettre sous la
forme Pp.op = —ah? ol « est une constante positive. Etablir ’équation différentielle vérifiée par 0(t).

'd 5 — On observe des oscillations treés faiblement amorties. Quelle est la condition satisfaite par les
constantes J, C et a? Préciser la forme de la solution sans déterminer I’expression exacte des deux
constantes d’intégration. Quelle est la valeur 0, de 6(t) lorsque t — oo. Exprimer la pseudo-période
T du mouvement en fonction de la période propre Ty et de la constante ¢ = 2\/‘}—0 < 1. A quelle

condition sur ¢, lerreur relative introduite par l'approximation T ~ T est-elle inférieure a 1% 7
Cette condition sera supposée vérifiée par la suite.
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On note Jj les moments d’inertie, considérés égaux, de chacune des deux spheéres par rapport a I’axe
vertical passant par leurs centres respectifs. On admettra que si le principe d’équivalence faible
s’applique alors J = Jg+2J1 +2mL?. On mesure la période T des oscillations pour différentes valeurs
de la longueur L avec des spheres de masse pesante m = 0,2kg. Les résultats sont consignés dans le
tableau ci-dessous :

Lm|[6,0-102]7,0-102]8,0-10 2
T 5] 436 509 581

'd 6 — En utilisant les résultats précédents, écrire la relation entre T2, L%, Jo, J1, m et C. A partir
des résultats de mesure donner une estimation de la valeur de la constante de torsion C. Compte-tenu
des ordres de grandeurs des différents termes intervenant dans I’expression de 1" montrer que 1’on peut
écrire
_Ccr?
MR 9T

I.B. — Résultats et précision de ’expérience

Dans cette sous-partie le référentiel Z du laboratoire centré sur O n’est plus supposé galiléen et I'on
prend en compte les éventuels effets de la rotation de la terre sur les masses inertes m;, et m;, a priori
différentes des deux spheres. On se place donc dans le référentiel %; attaché au centre de gravité G
de la terre supposé galiléen.

, - ~ La terre est supposée en rotation uniforme a la vitesse &; (de norme wy)
i t1 Up autour de I'axe terrestre et le point O se trouve a la latitude X. Une vue
599 A\i/A en coupe de la situation est représentée sur la figure 2.

'ﬁ Ux O Uz L’ensemble constitué du pendule et du systeme optique est solidaire
'g d’une plateforme. Lors d’une premiére mesure dans la configuration de
1] / la figure 1, on releve une valeur 6, pour I’équilibre du pendule. On fait
53  Méridien alors tourner la plateforme d’un angle 7 afin d’inverser les positions des
-\A terrestre deux spheres, et 'on répete la mesure. On releve une valeur 6., pour

G” R, I’équilibre du pendule dans cette nouvelle configuration.

'd 7 — Déterminer les composantes des forces d’inertie d’entrainement
FIG. 2 — Vue en coupe subies par m;, et m;, dans la base (U, u,, uy) en fonction de A, L, wy,
Rt, mi; ou My, .
'd 8 — En exploitant le théoréme du moment cinétique a 1’équilibre, déterminer I’écart angulaire
Al = 0, — 0, entre les deux expériences en fonction de \, C, L, wy, Ry, m;, et my,.

‘d 9 — La lunette utilisée pour la mesure permet de détecter une déviation du faisceau lumineux
de l'ordre de 1,0mm a 2,0m de distance. En utilisant I'expression de m trouvée a la question 6,

. On donne \ = 45° et

déterminer la précision de la méthode en estimant le rapport 6, = sy —mis |

L =6,0cm.

(d 10 — La déviation observée est nulle. Que déduire de ce résultat ?

FIN DE LA PARTIE 1

II. — Corriger la gravitation universelle classique ?

Leurs observations ne concordant pas avec les modéles classiques de la physique, les astronomes ont
deux solutions : soit ils rajoutent arbitrairement au cosmos un ingrédient, une matiére invisible qui
permet de justifier les anomalies détectées, soit ils modifient les lois.

Si dans leur tres grande majorité, les physiciens ont, depuis 1930, privilégié la premiere voie, il apparait
aujourd’hui que I'imperceptibilité persistante de cette matiere noire devient génante.

Apres avoir mis en évidence certaines des observations qui ont conduit plusieurs astronomes & s’inter-
roger sur ’existence d’une matiere noire invisible, nous aborderons quelques aspects de la théorie de
la gravitation modifiée par M. MILGROM.
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Nature de la gravitation

II.A. — Gravitation newtonienne, matiere noire

Depuis plus de 50 ans les astrophysiciens comparent la quantité de matiere visible dans les galaxies
spirales, comme notre Voie Lactée, a celle qui est nécessaire pour expliquer la vitesse de rotation des
étoiles dans ces mémes galaxies.

Une galaxie est assimilable a une distribution spatiale & de matiére de masse volumique p créant un
champ gravitationnel supposé statique r qui satisfait aux équations locales suivantes :

-

divl = —47Gp et rotl’ = ( (1)

La force de gravitation exercée par cette galaxie sur un point matériel M de masse m s’exprime alors
selon la relation F' = mI'.

d 11 — Citer deux équations analogues aux équations (1) en électrostatique. Peut-on, de la méme
fagon, proposer une analogie avec la magnétostatique? On définit le potentiel gravitationnel ¢(M)
au point M, analogue du potentiel V(M) en électrostatique. Démontrer avec soin que le potentiel
gravitationnel ¢(M) satisfait & une équation de Poisson relative a la gravitation.

On considére un systeme ¢ & répartition sphérique de masse centré sur un point O fixe : I’ensemble
(0,9) permet de définir un référentiel galiléen. En un point M de ce systeme, la densité volumique
de masse p = p(M) et le potentiel gravitationnel ¢ = ¢(M) ne sont des fonctions que de la seule

s
variable r = ||7]| = HOM H On suppose qu'un point M de masse m contenue dans ¢4 n’évolue que sous

I’action du champ de gravitation créé par ¢4. Pour des raisons physiques évidentes la fonction p(r) est
décroissante et la fonction ¢(r) croissante.

d 12 — Exprimer la force de gravitation F subie par M en fonction de m, Z—‘f et d'un vecteur
unitaire que l'on précisera. Montrer que le mouvement de M s’effectue dans un plan. On considere les

coordonnées polaires (r, ) dans ce plan. Que représente la quantité 7267

'd 13 — On appelle vitesse circulaire 7.(r) dans ¢, la vitesse qu’aurait le point M s’il était en orbite
d¢

circulaire de rayon r dans ¢. Exprimer v.(r) en fonction de r, 52 et uy.

Du point de vue dynamique, on peut a priori considérer que notre galaxie, la voie lactée de masse visible
My, est un systeme dont la masse est répartie de facon sphérique et constitué de trois composantes
principales : un bulbe massif, un disque et un halo stellaire. Dans ce modele, dit keplerien, le bulbe
est assimilable & un point de masse M, ~ M, et chaque étoile de masse m du disque évolue dans le

potentiel gravitationnel ¢(r) = — Giwb crée par le bulbe uniquement.

‘1 14 — Déterminer, dans ce modele, I'expression de la vitesse circulaire dans la voie lactée en
fonction de G, My, r et ug. Pourquoi ce modele est-il qualifié de keplerien ?

3001 ) Kk 1
UC(T [ m-S ] En réalité, la répartition des vitesses circulaires
Bulbe . présente la méme .allure d’ans toutes les galames spi-
! Soleil rales comme la Voie Lactée. Les observations dans le
250 cas de la Voie Lactée sont reportées sur la figure 3.
'd 15 — Que peut-on dire de I’évolution de v, = ||vg||
en dehors du bulbe? Le modele keplerien est-il va-
220
lable ?
200 .\ . N
En plus de la matiére wvisible, on considere une
répartition de masse invisible (noire) selon la densité
volumique de masse suivante :
" [kpe ;
B0 8 10 12 14 16° p(r) = =20
r3 +r?

F1G. 3 — Vitesse circulaire dans la voie lactée
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'd 16 — En utilisant 1’équation de Poisson relative a la gravitation (obtenue & la question 11) en
symétrie sphérique, montrer que la prise en compte de cette matiere noire permet de rendre compte
de la courbe de vitesse observée. On fixera la valeur Cj en unités de masse solaire (Mg) et de parsec
(pc) pour une bonne adéquation avec la valeur de vitesse observée et on interpretera la constante (.

On rappelle que
T (L‘2 r
ﬁdm =r —rgarctan | — | .
o Tyt 0

d 17 — Estimer la masse minimale de ce halo de matiere noire en considérant que ce dernier s’étend
sur I’ensemble de la galaxie dont le rayon est de 'ordre de Ry = 30 kpc. Commenter ce résultat sachant
que la masse visible de notre galaxie est de 'ordre de 10'°M,.

II1.B. — Gravitation modifiée

Face a la situation décrite dans la section II.A, M. MILGROM propose, en 1983, de modifier les
lois de Newton de la gravitation afin d’expliquer pourquoi, en périphérie des galaxies, les étoiles
tournent plus vite que la loi classique ne le laisse supposer. Dans cette théorie phénoménologique,
baptisée MOND (acronyme anglais de dynamique newtonienne modifiée), la gravitation se mettrait a
décroitre beaucoup moins rapidement que prévu par la théorie newtonienne dans le régime des faibles
accélérations en deca d’un certain seuil que 1'on se propose d’évaluer.
Dans cette théorie de la gravitation modifiée le potentiel de gravitation vérifie une équation de Poisson
modifiée qui s’écrit

div (u (u) grad¢m) = 4nGp (2)

. 2
ol p est un champ scalaire de la variable réduite sans dimension u = a% (gradqu) caractérisant la
0

théorie et dont le comportement est le suivant

o Vu ostuxd
plu) = { K sinon

(d 18 — Quelle est la dimension du parametre positif ag ? Quelle valeur doit-on donner & la constante
K si I'on souhaite que la théorie MOND soit équivalente a la gravitation newtoniene si u n’est pas
négligeable devant 1.

'd 19 — En combinant l'expression (2) avec 'équation de Poisson de la question 11 relative &
la gravitation non modifiée et au potentiel newtonien ¢, montrer qu’il existe un vecteur h tel que
p(w) gradqﬁm = gr?idgé%— roth. On fera par la suite I’hypothese que roth est toujours négligeable devant
le gradient du potentiel newtonien ¢.

Pour modéliser notre galaxie avec la théorie MOND il n’est plus nécessaire d’introduire de la matiere
noire, on prend donc simplement ¢(r) = —%. Pour cette modélisation on suppose également que
Om = dm(r) et Pon admettra que la vitesse circulaire est toujours donnée par la relation obtenue a la
question 13 généralisée a ¢py,.

‘d 20 — Montrer que dans le régime u < 1, la vitesse circulaire prévue par la théorie MOND pour
notre galaxie est donnée par la relation v, ~ (GMbao)l/ "™ ou 'on déterminera l’entier n.

d 21 — Estimer la valeur numérique de ag afin que la théorie MOND permette de rendre compte
de la vitesse circulaire observée dans notre galaxie. Commenter ce résultat en évaluant un ordre de
grandeur de I'accélération subie par le Soleil dans la voie lactée (voir Fig. 3).

Meéme si MOND possede de nombreux avantages sur la gravitation de NEWTON a 1’échelle galactique,
la théorie relativiste associée, TEVES proposée en 2004 par J. BEKENSTEIN, pose de graves problemes.

FIN DE LA PARTIE II
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I1I. — Expérience GBAR — Peser 'antimatiere 7

Plusieurs tentatives de tests directs du principe d’équivalence pour ’antimatiere ont été menées sans
succes. Des mesures de chute libre avec de 'antimatiere chargée ont été envisagées, mais 'appareillage
visant a réduire les effets parasites du champ électromagnétique par blindage n’a pu atteindre un
niveau suffisant. La mesure de chute libre d’antimatiere ne peut donc se faire qu’avec de I'antimatiere
neutre. Il est cependant tres difficile de produire efficacement des antineutrons lents ou encore de
mener des expériences de chute libre avec un positronium Py (état lié neutre composé d’un électron
e~ et de son antiparticule, le positon eT). L’idée est donc venue d'utiliser I'atome d’antihydrogene H,
association d’un positon e™ avec un antiproton p.

L’expérience GBAR (acronyme de Gravitationnel Behaviour of Antihydrogen at Rest) a pour objectif
la mesure de I’accélération (notée §) d’un atome d’antihydrogéne H en chute libre dans le champ gravi-
tationnel de la Terre. Pour étudier sa chute avec un appareillage de taille raisonnable, I’antihydrogene
H doit étre produit & trés basse vitesse. Cette expérience représente un vrai défi!

On produit tout d’abord des positons rapides & partir d’un faisceau pulsé d’électrons de plusieurs MeV
dirigé sur une cible de Tungstene. Les positons sont ensuites ralentis et stockés dans un piege dit de
PENNING-MALMBERG sous forme de plasma non neutre. Une fois la quantité stockée suffisante, les
positons sont injectés dans un convertisseur pour y subir les transformations décrites par les équations
ci-dessous :

p+Ps— H+e (3)

H+P - H +e (4)
Les ions H ' sont composés d'un antiproton p et de deux positons e™. Le fait qu’ils soient chargés
permet de les stocker dans un piege de PAUL en vue de leur refroidissement jusqu’a une température
de quelques dizaines de uK.
Une fois refroidis, ils sont injectés dans une enceinte a vide dans laquelle un laser peut assurer le photo-
détachement du positon excédentaire, produisant ainsi des atomes d’antihydrogene. Ultra-froids, ces
derniers tombent alors dans le champ de pesanteur terrestre sur une hauteur de 'ordre de quelques
dizaines de centimetres.
Autour de cette enceinte, des TPC (chambres a projection temporelle) et des scintillateurs assurent
une détection efficace des particules issues de I’annihilation de ’antihydrogene H & la fin de sa chute,
quelle qu’en soit la direction. Si ’antimatiére ne gravite pas exactement comme la matiere (sens, durée
de chute, etc.), Pexpérience devrait pouvoir le détecter !
Nous nous proposons dans cette partie d’étudier de facon simplifiée les techniques de stockage des
particules chargées, développées dans le projet GBAR et d’étudier la calibration de la mesure.

III.A. — Piéger une particule

L’objectif est de piéger une particule chargée en vue de la refroidir
et la garder ainsi stockée le plus longtemps possible. L’idée la plus
simple consiste a piéger cette particule dans un puits de potentiel.
Le dispositif de piégeage est représenté sur la figure 4, il compte
trois électrodes présentant une symétrie de révolution autour d’un
axe (Oz). La premiere, notée &, est en forme d’anneau de rayon
interne rg et d’équation z2 + y? — 222 = r%, elle est portée a un
potentiel Vo positif. Les deux autres, notées &1 et &, sont en forme
de coupelles et correspondent aux deux nappes de ’hyperboloide
d’équation z? + y? — 222 = —2z3, elles sont reliées a la masse. La ‘
distance minimale entre les deux coupelles est telle que 229 = v/2rg.  F1G. 4 — Vue en coupe du piege
On note V(z,y, z) le potentiel régnant dans le piege initialement vide de charge. Ce potentiel est donc
tel que V (0,0, z9) = 0 d’une part et d’autre part si 22 + y? = r2 alors V (z,y,0) = Vo.

On admet qu’'une particule de charge ¢ placée dans le piege est soumise & une force conservative de la
forme F = a (x Uy +yUy) + bz, olt a et b sont deux parametres réels.

&
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'd 22 — En écrivant I’équation aux dérivées partielles vérifiée par le potentiel V (z,y, 2) obtenir une
relation entre a et b. Montrer que le potentiel s’écrit sous la forme V(z,vy,2) = a + B(x? + y? — 22?),
puis, exprimer « en fonction de Vjy et 8 en fonction de rg et V4.

'd 23 — Tracer les équipotentielles dans les plans Oz et 2Oy, en déduire les lignes de champ
orientées dans ces mémes plans.

'd 24 — En écrivant le principe fondamental de la dynamique montrer que le point O (0,0,0) est un
équilibre. Montrer que cet équilibre est globalement instable quel que soit le signe de la charge placée
dans ce potentiel.

III.B. — La trappe de PENNING

Afin d’éliminer I'instabilité démontrée a la question 24, une premiere solution est d’ajouter un champ
magnétique uniforme Eo = Bou, avec By = 1,0 T autour du dispositif électrostatique. Le picge
devient ainsi < une trappe de PENNING >, le mérite de sa mise en ceuvre concrete est du a H. G.
DEHMELT qui recut le prix NOBEL de physique en 1989 pour cette réalisation, I’idée originale, de F.
M. PENNING, datant de 1936.

'd 25 — La particule piégée dans la trappe de PENNING est un antiproton p de masse m,, et de charge
g = —e. Etablir les équations différentielles vérifiées par les fonctions z (t) et ¢ (t) = x () + iy (¢).

On introduira les constantes w. = inﬁ et wyp = 4 /72‘/;?2. Montrer qu'’il existe un champ B, tel que
P pTo

I’ajout d’'un champ By > Bpi, conduit au confinement de 'antiproton. Calculer la valeur de Bpyin
pour un piege tel que Vo =5,0V et rg = 5,7mm.

(d 26 — Calculer la valeur numérique de wg et w. pour la trappe de PENNING considérée. En déduire
que le mouvement confiné de I'antiproton dans cette trappe est la composition d’'un mouvement
rapide et de deux mouvements plus lents. On donnera une estimation simple des pulsations de ces
trois mouvements en fonction de wg et we.

Dans l'expérience GBAR, la trappe de PENNING permet de confiner les antiprotons, dont I’énergie
cinétique d’entrée est estimée a 5 MeV. Pour les applications suivantes il est nécessaire de les refroidir
jusqu’a une énergie de l'ordre de 150eV. On se pose donc la question de savoir si le mouvement
oscillant des antiprotons dans la trappe permet ce refroidissement.

On admet que le mouvement oscillant de ’antiproton est la source d’un rayonnement qui va contribuer
a diminuer son énergie mécanique. La source principale de ce rayonnement est assurée par ’accélération

selon I'axe Oz. La puissance moyenne (P,qy)7, rayonnée par I’antiproton sur une période Ty = ﬁ
caractéristique de son mouvement sinusoidal paramétré par z(t) est donnée par la relation
1o€? .o
(Pray)r, = . (2 >T0
(d 27 — Déterminer I'ordre de grandeur de la température absolue des antiprotons a ’entrée de la

trappe. Montrer que le rayonnement qu’il émet conduit a une décroissance exponentielle de 1’énergie
mécanique de I'antiproton caractérisée par une constante de temps 7 que ’on exprimera en fonction de
My, 10, €, ¢ et wy. En déduire la nécessité de recourir a une méthode de refroidissement complémentaire.
Cette méthode non étudiée ici est une thermalisation par chocs élastiques sur un nuage d’électrons
confinés dans la trappe.

III.C. — Principe de la mesure

La mesure du temps de chute . est donnée par la différence de temps entre la détection de "annihilation
de I'antiatome H et celui du tir du laser de photo-détachement. On note vy la composante de la
vitesse initiale suivant la direction de la force gravitationnelle exercée par la Terre (matiere) sur
I'antihydrogene (antimatiere). La masse de H sera prise égale & celle de p, c’est-a-dire Myp.

d 28 — Le processus de refroidissement incorporé dans la trappe de PENNING permet de porter le
gaz d’ions i piégés a la température T' = 10 uK. En supposant ce gaz parfait et en négligeant les
impulsions apportées par le photon lors de I'impact et par le positon émis, prévoir la vitesse initiale
moyenne vg d’un antihydrogene produit par photo-détachement et estimer son écart-type o,. On
exprimera o, en fonction de kg, m, et T puis on calculera sa valeur numérique.
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‘d 29 — En admettant P’égalité des masses inerte et grave compte-tenu des résultats obtenus en
partie I, exprimer l'intensité de pesanteur g supposée uniforme ressentie par un antihydrogene quittant
le piege avec une vitesse verticale de module vg. On exprimera le résultat en fonction de la hauteur
de chute h, du temps de chute t. et de vy en espérant que I’antihydrogene va antigraviter !

(d 30 — Un antiatome <« tombe > sans vitesse initiale sur une paroi située & 10,0 cm ot I'on détecte
son annihilation 0, 143 s apres son photo-détachement. Déterminer la valeur de g correspondant a cette
mesure.

'd 31 — On détecte un grand nombre N d’antihydrogéne s’annihilant sur la paroi. On note oy,
Iincertitude sur la position initiale d’'un antiatome et o, l'incertitude sur sa vitesse initiale dans la
direction de chute déterminées précédemment. Les incertitudes sur le temps de chute libre et sur
la position de détection sont négligées. En considérant que les positions et les vitesses initiales sont
indépendantes et distribuées selon des lois gaussiennes, estimer 'incertitude §g sur la mesure de g en
fonction de t., N, oy, kg, T et my,.

'd 32 — On donne T' = 10 uK et o, = 100 pm. A partir de quelle valeur de N lerreur relative sur
la mesure de g est-elle inférieure a 1% 7

Tester la gravité pour 'antimatiere est un véritable enjeu pour la physique fondamentale. Outre
la remise en cause du principe d’équivalence et des symétries fondamentales dans 1’Univers, cette
expérience de pesée de 'antihydrogene, prévue pour 2016, devrait permettre de répondre a la question
de 'existence ou non de I'antigravité, pouvant expliquer ’absence d’antimatiere visible dans I’Univers.

FIN DE LA PARTIE III
FIN DE L’EPREUVE

Formulaire et données numériques relatives a 1’ensemble de I’épreuve

e Constante de gravitation universelle :
G=6,7.10""m? . kg™! .52
o Constante de letzmanil : 2 -1 e Opérateurs scalaires et vectoriels :
5=1,4-10"8] . K- . _
o rot(gradf) =0
e Vitesse de la lumiere : ¢ =3,0-10%m -s~* div(x50A) = 0
o div(rotA) =
e Nombre d’Avogadro : Nq = 6,0 - 1023 mol " div/( _'df) Af
o div(gradf) =
e Charge élémentaire : e = 1,6-10719C ) 8 )
e Laplacien scalaire

e Masse d’un proton : m, = 1,7-107%"kg ) .
o en coordonnées cartésiennes :

’ 4 . — . -31 2 2 2
° Masse, d un /electror/l Me = 9,.1 107" kg Af = % + gTé + gzg
e Perméabilité magnétique du vide : o en coordonnées sphériques :
po=4m-107"H -m™* Af— Lo (20f
NP = s (3)
e Unités de distance : 189 (i pof
1UA=1,5-10"m ; 1pc=3,1-10%m +i75mo 96 (sm0%)
- 62
e Masse du Soleil : Mg =2,0- 1030 kg +iz s11n2 0 67:12

e Masse de la Terre : M; = 6,0-10** kg
e Rayon de la Terre : R; = 6,4 -10%km
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Détection des exoplanetes

L’exploration de planetes lointaines a fourni a la littérature et au cinéma de science-fiction
des ceuvres parmi les plus célebres; citons La planéte des singes (Pierre Boulle, 1963), Avatar
(James Cameron, 2009)... L’existence de ces planeétes extra-solaires est longtemps restée incer-
taine jusqu’a une premiere découverte en 1995 ; la millieme < exoplanete > a été confirmée en
octobre 2013 ; un an plus tard ce nombre a doublé. Ce probleme aborde le délicat enjeu de leur
détection. Toutes les orbites envisagées dans ce probleme sont circulaires. Les données utiles
pour les applications numériques sont rassemblées en fin d’épreuve.

I. — Fascinantes exoplanetes

I.A. — Une loi fondamentale

Dans un document concernant les méthodes de détection des exoplanetes, on lit : < le mou-
vement relatif de la planete autour de son étoile est gouverné par la 3¢ loi de Kepler, ou si
l’on préfere par la relation qui exprime ['équilibre entre ['attraction gravitationnelle et la force
centrifuge >.

On considere une planete assimilée a un point matériel P de masse Mp, tournant avec la période
Tp a la distance rp de son étoile considérée comme le point fixe F de masse Mg > Mp. Toute
autre action sur P que l'attraction gravitationnelle de E est négligée.

d 1 — Schématiser cette description et préciser les deux référentiels permettant de com-
prendre l'utilisation de la notion d’< équilibre > dans la citation ci-dessus. En déduire la 3¢ loi
de Kepler reliant rp, Mg, Tp et la constante de la gravitation ¥ .

Cette relation est transposable chaque fois qu'un petit corps de masse m orbite autour d’un astre
de masse tres supérieure, toute autre action étant négligée et la durée mise en jeu permettant
I’approximation galiléenne.

I.B. — Principales caractéristiques de la planéte

On envisage un vaisseau d’exploration spatiale & de masse m, s’approchant d’une planete P
d’apparence parfaitement sphérique, de rayon Rp, dont la période sidérale de rotation sur elle-
méme est tp = 19h30min (les unités sont celles en vigueur sur Terre). Il commence par se
mettre en orbite équatoriale basse, d’altitude h ; la période de cette orbite dans le référentiel
planétocentrique est de 2,00 h. Tout en sondant I’atmosphere et en observant la surface, les
< astronautes > (sans préjuger de leur nationalité!) se livrent a quelques calculs.

'd 2 — Calculer la masse Mp si Rp = 5000 km, h = 100km ; peut-on envisager pour cette
planéte une structure comparable a celle de la Terre : crotite et manteaux rocheux entourant
un noyau métallique de densité de l'ordre de 10 et de rayon correspondant & environ 50% du
rayon terrestre ? Des arguments quantitatifs sont attendus.

'd 3 — Rappeler le théoreme de Gauss pour la gravitation dans le cas d’une distribution
de masse a symétrie sphérique. Sous cette hypothese, calculer la valeur numérique du champ
gravitationnel a la surface de cette planete.

'd 4 — Rappeler succinctement 1'origine de la différence entre champ gravitationnel et accé-
lération de la pesanteur a la surface d'un astre. Calculer les valeurs de l'accélération de la
pesanteur aux poles et a I’équateur de la planete ; cet écart serait-il mesurable avec un dispositif
d’étude utilisé au lycée : enregistrement vidéo d’une chute libre puis traitement informatique ?
Quels autres dispositifs pourrait-on proposer ?
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'd 5 — Un corps quittant radialement la surface de la planete (ou son voisinage immédiat) avec
une vitesse suffisante peut s’éloigner indéfiniment de 'astre : la vitesse minimale qui le permet,
en négligeant toute autre action sur le corps que l'attraction gravitationnelle de la planete,
est appelée vitesse de libération. En utilisant un raisonnement basé sur 1'énergie, déterminer
Iexpression de la vitesse de libération de la planete P, en fonction de ¥, Mp, et Rp. Faire
I’application numérique.

La figure 1 donne la densité de probabilité du module de la vitesse dans certains gaz parfaits
différentiés par leurs masses molaires et en équilibre thermodynamique a 290 K . L’abscisse
du maximum est la vitesse la plus probable v,,, elle représente environ 80% de la vitesse
quadratique moyenne définie par o, = /(v?).

Pv)x10* 'd 6 — Les gaz de 'atmosphere de la planete

P étant assimilés a des gaz parfaits en équi-
44 gmol” libre thermique a une température 7T, proche
; de 290 K, utiliser les courbes fournies pour
e 32 gmol? discuter I’éventualité que cette planéte retien-

ne une atmosphere contenant plus ou moins

25

20

15 les memes especes que celle de la Terre.

10 Les molécules de I’atmosphere étant soumises
a I’agitation thermique, leur énergie cinétique

5 se décompose selon trois degrés de liberté in-
dépendants : (v?) = (v2) + (v2) + (v2).

0 =L S ST e —>  [d 7 — Déterminer I'expression théorique de

la vitesse quadratique moyenne des molécules
dans un gaz de masse molaire M a la tempé-
rature 7T'. Faire le calcul pour le dioxygene
éventuellement présent, a T' = 290 K et vérifier la cohérence avec les informations fournies sur
la figure 1.

FIGURE 1 — Distribution des vitesses

I.C. — Détection d’une exoplanete depuis la Terre

Les voyages interstellaires étant aujourd’hui hors de notre portée, il faut se contenter de ce
qu’on peut apprendre depuis la Terre et les télescopes spatiaux.

A partir d’observations effectuées a I’Observatoire de Haute-Provence (OHP), les astronomes
Michel Mayor et Didier Queloz, de 'observatoire de Geneve, ont pour la premiere fois formel-
lement identifié en 1995 une planete extra-solaire; elle orbite autour de 1'étoile 51-Pégase, a
42 années-lumiere de la Terre. Depuis, les possibilités techniques ont permis de multiplier les
découvertes, et aussi d’acquérir de plus en plus d’informations sur ces astres. On s’intéresse
particulierement a leur température et a la composition de leur atmosphere.

Le télescope de 'OHP qui a permis la découverte offre un diametre d’objectif d = 193 cm . 11
est situé dans un site d’observation de grande qualité. En supposant qu’il ne soit limité que par
la diffraction, on pourrait en obtenir un pouvoir séparateur angulaire de 'ordre de %(rad),
A désignant la longueur d’onde observée. On rappelle que le pouvoir séparateur mesure le plus
petit angle séparant les rayons venant de deux points-sources que 'on parvient a voir comme

distincts I'un de 'autre.

‘1 8 — Dans l'idéal, une observation depuis le voisinage de 51-Pégase avec le télescope
de 'OHP permettrait-elle de séparer Jupiter du Soleil? En dehors de la limite du pouvoir
séparateur, quel(s) autre(s) obstacle(s) s’oppose(nt) a 'observation visuelle directe d’une exo-
planete ?
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Les exoplanetes sont en fait détectées indirectement, par exemple par les variations de luminosité
induites lorsqu’elles passent devant ou derriere ’étoile (méthode du transit), ou par les petits
mouvements que leur attraction imprime a I’étoile autour de laquelle elles orbitent. Nous allons
nous intéresser a cette méthode, dite de la vitesse radiale.

On utilise pour cela l'effet Doppler affectant les ondes électromagnétiques : si I’émetteur F
est animé d’'une vitesse radiale d’intensité v, par rapport a l'observateur O, et si la fréquence
émise est f, la fréquence recue en O est f + Af. Ce décalage Af est positif si ’émetteur et
I'observateur se rapprochent I'un de l'autre (v, < 0) et négatif dans le cas contraire (v, > 0).

Si |u,| < ¢, hypothese supposée valide ici, on montre alors que % = @

On considere que I'émetteur est une étoile E' accompagnée d’une planete P et que toutes les
deux tournent autour de leur barycentre G avec la méme période 7'. La Terre est en O dans le
plan de l'orbite. Le systeme observé s’éloigne globalement de la Terre a la vitesse radiale vg.

L’ensemble est représenté sur la figure 2, vu de dessus. Dans
la réalité OG > G'P > GFE, de sorte que les mouvements de

FE sont tres difficiles a observer directement. On reconnait g E
la vitesse radiale U5 de G par rapport a Oxyz, et on désigne @&0
par ¥ la vitesse de E par rapport a Gzyz (les directions éf ?G‘_—%G """
fixes xyz ne sont pas précisées). On supposera de plus que
ve = ||vg|| > v =|7].
! il
d 9 — Exprimer l'intensité v, de la vitesse radiale de F "OP
par rapport a O, en fonction de vg, v et 0, puis 'amplitude FIGURE 2 — Etoile-Planete

de la variation du décalage en fréquence par effet Doppler

5f = %(lAf|max - |Af’min)'

'd 10 — Expliquer comment le suivi temporel du décalage en fréquence de la lumiere émise
par une telle étoile permet de connaitre la période T'. Pourquoi cette méthode a-t-elle permis
la découverte initiale de planetes proches de leur étoile 7 Déterminer 1’expression du rayon GE
de lorbite de ’étoile autour de G, en fonction de f, df, cet T.

Nos connaissances sur la structure et le fonctionnement des étoiles permettent de déduire leur
masse de leur luminosité. La masse Mg est par conséquent raisonnablement connue.

‘1 11 — En tenant compte du fait que Mg > Mp, déterminer des expressions approchées de
Mp et PE en fonction de 4, T, Mg et GE.

d 12 — Pour avoir une idée de la précision requise dans les mesures, reprenons 1’exemple du
couple Soleil-Jupiter, cette planete étant la plus massive de notre systeme. Calculer la valeur
de 0f/f quun astronome extraterrestre devrait étre capable de mesurer pour mettre en ceuvre
la méthode étudiée.

Cette approche d’un probleme expérimental nous a montré I'extréme difficulté de certaines
mesures, pour lesquelles le signal utile, ici la variation de la fréquence, est d’une part tres faible
et d’autre part facilement masqué par les incertitudes induites par les fluctuations diverses du
signal émis, par les perturbations qu’il subit lors de sa propagation, par des signaux parasites
qui s’y ajoutent, par sa transformation en signal électrique, par la transmission ensuite de ce
signal électrique dans une chaine de traitement...

Dans les prochaines parties, nous allons nous intéresser a quelques aspects liés a ces questions

FIN DE LA PARTIE I
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II. — Détection d’un signal faible

II.A. — Extraction d’un signal faible du bruit par effet de moyenne

Un détecteur enregistre un spectre en le décomposant sur plusieurs canaux numérotés de 1 a
N. Chacun de ces canaux représente une bande de fréquence tres étroite.

Lors d’une séquence d’acquisition, le détecteur enregistre une série de valeurs x = s + by pour
k variant de 1 a N. L’éventuel signal s, est celui dont la détection est souhaitée. Le signal
br est un parasite appelé bruit; différents phénomenes physiques sont a l'origine du bruit, a
commencer par I’agitation thermique des porteurs de charges.

Le bruit considéré, b, prend une valeur aléatoire de moyenne b indépendante de k. La dispersion
autour cette moyenne est supposée gaussienne d’écart-type o ; c’est-a-dire que pour un grand
nombre n d’acquisitions indépendantes dont les résultats sont ajoutés canal par canal, la valeur
moyenne du signal sommé sera nb et I'ordre de grandeur de la dispersion de chaque coté de
cette valeur moyenne sera v/no.

‘ ‘ ‘ ‘ ‘ 1200
N=1ll-n=1 N=111-n =100
25t b=10-0=5 l b=10-0=5
1100¢
20 1
15 1000
10
9001
5
0 ‘ ‘ ‘ ‘ —- 800 ‘ : ‘ : :
0 20 40 60 80 100 0 20 40 60 80 100

FIGURE 3 — Acquisition d'un bruit (s = 0 pour tout k) sur N = 111 canaux avec b = 10 et
o = 5. La figure de gauche représente 1 acquisition, celle de droite la somme canal par canal
de 100 acquisitions indépendantes.

‘1 13 — Représenter 'allure du graphe que I'on pourrait obtenir apres 2500 acquisitions, I'axe
des ordonnées étant clairement gradué dans sa partie utile.

On considere maintenant qu’en plus du bruit gaussien d’amplitude b = 10 et d’écart-type o = 5
présent constamment sur chaque canal, un signal utile non nul, constant et d’amplitude 1 est
présent uniquement sur les canaux 34 et 67 a chaque acquisition.

1 14 — Le signal utile est-il détectable par une seule acquisition ? Représenter I'allure de la
somme canal par canal de 2500 acquisitions. Le signal est-il devenu détectable ?

‘d 15 — Dans le cadre d’'un bruit de dispersion o et d’amplitude b, estimer le nombre n
d’acquisitions permettant de faire apparaitre un signal constant d’amplitude s, dans le canal

p-

L’expression obtenue montre qu'une réduction du bruit permet de diminuer de facon impor-
tante les durées d’intégration nécessaires. Dans le cas du bruit thermique, dont 'amplitude est
proportionnel a la température absolue, il importe donc de refroidir fortement le systeme.
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II.B. — Refroidissement d’un capteur a bord d’un satellite

Dans le vide interplanétaire, un satellite d’observation astrophysique recoit le rayonnement
solaire et se refroidit également par rayonnement. Son électronique de commande doit travailler
autour de 300 K, tandis que des capteurs doivent étre refroidis a quelques Kelvins voire une
fraction de Kelvin. La configuration du satellite, la mise en place d’isolants ou de radiateurs,
son positionnement par rapport au rayonnement, permettent de controler grossierement la
température de ses différentes parties, ce qui limite 1'utilisation énergivore de systemes de
chauffage ou de refroidissement.

L’étude et les calculs que nous allons mener sont basés sur les informations disponibles pour le
satellite PLANCK, qui de 2009 a début 2012 a cartographié les infimes fluctuations du rayon-
nement de fond cosmologique, dans le domaine des micro-ondes.

Des systemes d’écrans et de radiateurs passifs permettent d’abaisser la température, du coté des
instruments, a une température 7' de 'ordre de 50 K ; il convient alors de refroidir les capteurs
a une température beaucoup plus basse pour augmenter leur sensibilité.

Envisageons tout d’abord des systemes frigorifique de type réfrigérateur ditherme fonctionnant
de maniere cyclique entre deux températures T, et Ty < T, grace a un travail requ W.

‘1 16 — Définir le fonctionnement d’un réfrigérateur ditherme a 'aide d’un cycle modélisé.
Analyser ce cycle a partir des principes de la thermodynamique. En déduire I'expression de
Iefficacité maximale théorique d’un tel réfrigérateur.

A bord du satellite PLANCK, un premier réfrigérateur, d'une puissance frigorifique de 1 W,
travaille entre 50 K et 20 K, puis un deuxieme, d'une puissance frigorifique de 15 mW, abaisse
la température de certains équipements a 4 K.

d 17 — Calculer la puissance électrique minimale consommée par chacun de ces appareils.

1 18 — Dans une note descriptive sur le satellite PLANCK on peut lire < Les puissances
cryogéniques peuvent sembler faibles au premier abord. L’objectif de ces réfrigérateurs est en
fait ambitieuz : le réfrigérateur qui équipe notre cuisine doit évacuer seulement 7% environ de
I’énergie thermique de son contenu. Ici I’étage a 20 K doit évacuer 60% de l’énergie thermique
initiale, et 80% de cette énergie pour l'étage a 4 K >. Vérifier par le calcul les valeurs annoncées.

Un autre moyen pour maintenir la température d’un instrument a quelques Kelvins est d’utili-
ser un cryostat a circulation d’hélium liquide, en circuit ouvert : I’hélium se vaporise progres-
sivement et s’échappe dans ’espace. Pour abaisser encore la température, on utilise meéme la
dilution de 3He dans *He; le principe est le méme (évaporation en circuit ouvert) et cela permet
de travailler autour de 0,1 K.

1 19 — Rappeler 'allure générale de la courbe d’équilibre entre liquide et gaz, en coordonnées
(T,P). Pourquoi I’hélium circulant dans un serpentin en contact avec un instrument se vaporise-
t-i1?7 Comment peut-on obtenir une température controlée d’un mélange liquide-gaz? Quel
appareillage supplémentaire serait-il nécessaire de prévoir si ’hélium liquide circulait en circuit
fermé ?

FIN DE LA PARTIE II
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III. — Transmission d’un signal bruité

Précisons tout d’abord quelques notations :

e Si P est une puissance, on notera P = 10log,, P sa valeur en décibels ;

e Si P désigne la puissance d’un signal et Py la puissance du bruit B, on notera 2% le

B
e Lorsqu’un signal traverse un équipement, on note respectivement Pg et Pg les puissances

P
rapport signal sur bruit exprimé en décibels, soit Z® = 10log,, (P—) ;

d’entrée et de sortie, et v le gain défini par v = P_S
E
III.A. — Atténuation de 4 par un cable de transmission

On considere la propagation d'un signal dans une ligne assimilée a un axe (O,u,) ; la puissance
de ce signal a I’abscisse x est notée P(z).

'd 20 — Construire un modele usuel dans lequel la puissance absorbée par la ligne de trans-
mission dans un élément de longueur dx est localement proportionnelle au produit P(x)dz. En
déduire qu’apres une longueur ¢ entre 'entrée E et la sortie S de la ligne, on a P> = Pd> —\ |
ou le facteur d’atténuation A s’exprime en fonction des caractéristiques d’absorption et de £.

On introduit dans ce modele un bruit d’origine thermique de puissance moyenne Pg, présent
sur toute la ligne.

1 21 — Etablir dans ce cas la relation entre A\, ZP et . A quelle condition le signal de
sortie sera-t-il utilisable ? Que devra-t-on faire pour transmettre des signaux a grande distance
avec des lignes de caractéristiques imposées 7

III.B. — Transmission du bruit par une chaine d’équipements

On s’intéresse maintenant a un signal traité par une suite d’appareils en cascade : amplificateurs,
filtres, etc. Afin de prendre en compte 'action de ces instruments sur le bruit, par analogie avec
le phénomene d’atténuation, on définit le facteur de bruit F' d’un instrument par la relation
F = %% — %%. On supposera que F est positif.

'd 22 — Montrer que pour un instrument donné, de facteur de bruit F' et de gain ~, recevant
en entrée un signal bruité par Bg, on a Pg, = fvPp,. On vérifiera que f > 1 et on exprimera
f en fonction de F.

Les instruments sont maintenant en série (ou cascade). L’instrument k est caractérisé par un
couple (vx, fr). La puissance du bruit entrant dans chaque instrument est supposée indépendante
de ces instruments, elle sera noté Pp,,. La chaine est supposée linéaire, c’est-a-dire qu’en notant
P, la puissance en sortie de I'instrument k on aura Ps, = v, (Ps,_, — Pp) + PBsk pour tout
entier £ > 2. La chaine est dite auto-alimentée, cela signifie que Ps, = Ppy . On peut donc
schématiser la chaine de traitement par la figure 4.

(727 .f2)

Instrument 2

("Vlw fk)

Instrument k&

>

Instrument 1

FIGURE 4 — Modélisation d’une chaine de traitement bruitée
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'd 23 — Déterminer l'expression de Ps,. On pose y13 = 7172, déterminer 'expression de fio
qui permettrait de caractériser 'ensemble des deux premiers instruments par un couple (712, f12)
dans une chaine auto-alimentée équivalente.

d 24 — On pose 13 = 73712, apres avoir déterminé fi3, démontrer la loi de Friis donnant
le facteur de bruit f;, d'un instrument équivalent a I’association en cascade de n instruments.
Quel est 'instrument qui va déterminer la qualité de la chaine dans une association en cascade
de n amplificateurs ?

FIN DE LA PARTIE III

IV. — Exemple de bruit thermique élémentaire

Considérons un condensateur idéal de capacité C', chargé sous une tension constante U, en
équilibre thermique a la température 1" avec un circuit électrique. L’agitation thermique pro-
voque des échanges aléatoires de charges entre le condensateur et le circuit, de sorte que la
tension instantanée u(t) aux bornes du condensateur peut s’écrire u(t) = U 4 b(t), ou la tension
de bruit thermique b(t) est de moyenne nulle.

‘A 25 — Déterminer 'expression de I’énergie électrique moyenne (F¢) stockée dans le conden-
sateur, en fonction de C, U et a7 = (b?).

'd 26 — On admet que le bruit thermique généré dans le circuit au niveau du condensateur
est associé a un degré de liberté énergétique quadratique. Déterminer ’expression de o, en
fonction de T', C' et kg. Commenter le sens de variation de o, avec C. Commenter la valeur
numérique obtenue pour C' = 47nF a température ambiante.

FIN DE LA PARTIE IV

Données numériques :

o Célérité de la lumiere dans le vide : ¢ = 3,00-108m -s71;
e Constante de Boltzmann : kg = 1,38 -10723J . K™!;
e Nombre d’Avogadro : Ny = 6,02 - 10® mol ! ;
e Constante de la gravitation : 4 = 6,67 - 10" m? - kg™' - s72;
e Pour le Soleil :
— masse : Mg =1,99-10%kg .
e Pour la Terre :
— masse : Mp =5,97-10*kg;
— rayon moyen : Ry = 6,37 - 103km ;

— période de révolution : Tr = 365,24 jours terrestres ;

— vitesse de libération & sa surface : 11,2km - s~ *.

e Pour Jupiter :
— masse : M; =1,90-10*"kg;
— période de révolution : Ty = 4335 jours terrestres ;
— demi-grand axe de l'orbite : a; = 778 - 10 km.

FIN DE L’EPREUVE
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La capacité thermique des gaz

La capacité thermique des gaz est une grandeur thermodynamique assez facile a mesurer
expérimentalement. Elle a joué un grand role dans la compréhension de la nature microsco-
pique des gaz et de la matiere en général. Elle a également été un point de questionnement
fondamental au moment de la construction de la physique quantique. Dans cette épreuve, on se
propose d’expliquer a l'aide de différents modeles théoriques les valeurs mesurées de la capacité
thermique de différents gaz parfaits diatomiques a différentes températures.

Hormis le nombre 7 tel que 42 = —1, les nombres complexes sont soulignés : z € C. Les vecteurs
seront traditionnellement surmontés d’une fleche, par exemple ¥ pour une vitesse; sauf s’ils
sont unitaires et seront alors surmontés d'un chapeau, par exemple u tel que ||u]| = 1.

I. — De la molécule a l’oscillateur harmonique

On considere une molécule diatomique dont les deux atomes A et B sont liés par une liaison
covalente : I'énergie potentielle d’interaction entre les deux atomes est attractive a longue
portée et répulsive a courte portée. L’étude est menée dans le référentiel du laboratoire supposé
galiléen. On suppose la molécule isolée et on néglige I'interaction gravitationnelle entre les deux
atomes devant l'interaction conduisant a la liaison covalente.

' 1 — Tracer l'allure du profil d’énergie potentielle E|, de cette molécule en fonction de la
longueur ¢ = AB de la liaison. On y fera figurer la longueur d’équilibre ¢, de la liaison et
I’énergie de liaison Ej.

‘A 2 — Donner un ordre de grandeur de £, en nm et de E; en kJ-mol~'.

1 3 — Compte tenu de 'allure de la courbe de la question 1, et moyennant une hypothese a
préciser, justifier que 'on peut assimiler la liaison covalente a un ressort dont on exprimera la
constante de raideur k£ en fonction d'une dérivée de E,,.

On suppose cette approzimation valide dans toute la suite.

'd 4 — Exprimer I'énergie cinétique de la molécule en fonction des vitesses U4, Up et des
masses my, mp des atomes A et B dans le référentiel du laboratoire.

'd 5 — Calculer un ordre de grandeur de la vitesse caractéristique des molécules dans lair
a 300 K et sous une pression de 1 atm. On prendra R = % J-mol - K~ pour valeur de la
constante des gaz parfait et M, = 30 x 1072 kg - mol ™ pour la masse molaire de ’air.

'd 6 — Exprimer I'énergie mécanique F,, de la molécule dans le référentiel du laboratoire, en
fonction de Ey, ¢, (., k, U4 et Up.

'd 7 — On note G le barycentre de la molécule tel que m Aa + mB@ =0 et Ug sa vitesse
dans le référentiel du laboratoire. On appelle référentiel barycentrique, le référentiel ayant les
mémes vecteurs de base que le référentiel du laboratoire mais d’origine GG. Ce référentiel est-il
galiléen 7 On justifiera sa réponse.

dA
4 8 — On note & = T établir la relation Ey, — By = % (m | Ta)® 4 [|7]% + kr?) dans

laquelle on exprimera les constantes m et p en fonction des masses my4, mp et la variable r en
fonction de ¢ et /.
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3 9 — En éerivant AB = ((t)e, avec e, = ||2_B) & décomposer E,, en la somme de trois

termes que I'on supposera indépendants dans ce probleme et qui représentent respectivement
la translation Fi.., la vibration E;, et la rotation FE,, de la molécule. On explicitera chacun
de ces termes en fonction des grandeurs les plus adaptées.

FIN DE LA PARTIE I

II. — Capacité thermique d’un gaz parfait diatomique

On s’intéresse maintenant a un gaz parfait de N molécules diatomiques identiques. On cherche
a déterminer I'expression de la capacité thermique de ce gaz en exploitant le modele développé
dans la partie précédente.

'd 10 — Exprimer I’énergie interne U de cet ensemble de particules en fonction de N et (E,,),
ou (Ey,) est I’énergie moyenne d’une molécule de cet ensemble de molécules.

4 11 — Enoncer le théoréme d’équipartition de 1’énergie.

‘d 12 — Montrer que dans le modele classique développé dans la partie I la capacité thermique
molaire cy,,, du gaz est une constante que 'on exprimera en fonction de R.

La figure 1 présente les relevés expérimentaux de la capacité thermique molaire du dichlore Cly
gazeux et du dihydrogene H, gazeux a diverses températures.

4

3.5

)
=
=

2.5

. H H HEHEH Température [K] ; H HESHEHHH
10° 10" 10° 10°

FIGURE 1 — Mesures de la capacité thermique molaire du dichlore (Cly) et du dihydrogene (Hz)
gazeux en fonction de la température.

'd 13 — Commenter les deux courbes de la figure 1 au vu des prédictions théoriques obtenues
précédemment.

FIN DE LA PARTIE 11
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III. — L’oscillateur harmonique en physique quantique

On envisage dans cette partie un traitement quantique de 'oscillateur harmonique étudié dans
les parties précédentes. L’objectif est d’obtenir I'expression quantifiée des valeurs possibles de
I’énergie de cet oscillateur harmonique dans cette théorie.
On note ¥(z,t) la fonction d’onde du systeme décrivant l'oscillateur harmonique associé a
la molécule diatomique considérée. Ce systeme est un point matériel M dont la masse est le
parametre p introduit a la question 8. Ce point évolue évolue le long d'un axe (O,u,), la distance
x = OM représente ’élongation du ressort de raideur £ modélisant la liaison chimique entre les
deux atomes a travers le potentiel V(x) = %kazQ. Il s’agit donc d’un probleme unidimensionnel.
Le systeme est de plus stationnaire, on peut donc séparer la fonction d’onde en deux parties
sous la forme U(z,t) = f(z)e "' ot E représente les valeurs de I'énergie accessibles a ce
systeme. Pour l'oscillateur harmonique, on montre que ces valeurs de E doivent étre positives.
La fonction W(z,t) est une solution de norme unité de I’équation de Schrédinger
h? 0%V (x,t L0V (xt
—ﬂ—g;’ ) + V(2)¥(z,t) = Zh—_(‘gt’ )

'd 14 — Ecrire ’équation différentielle vérifiée par la fonction f(x) en fonction des parametres
k, u, het E.

1\ /4 A 2\ 2
On effectue le changement de variable o = x (/}2—2) et I’'on pose v = ( lf;k ) .
d 15 — Quelles sont les dimensions de « et de 7

'd 16 — Ecrire I'équation différentielle vérifiée par la fonction f(«) en fonction du seul pa-

rametre 7.
A 17 — Vérifier que dans le régime o — 00, on peut écrire f(a) ~ et3e”

1 18 — Justifier succinctement que seule la solution o — e=3% est physiquement acceptable.

Des lors que nous connaissons le comportement asymptotique de la solution recherchée, nous
. . . 1
pouvons l'extraire de celle-ci en effectuant le changement de fonction f(a) = g(a)e 2

'd 19 — Déterminer ’équation différentielle vérifiée par la fonction o +— g(ar) 7

Pour résoudre cette équation, on effectue un développement en série entiere de la fonction g :
+00
gla) = Z by o
p=0

'd 20 — Exprimer le coefficient b5 en fonction du coefficient b,, de I'entier p et de 7.

Si I'on conserve tous les termes de la série, on montre que le comportement asymptotique de
la fonction a +— g(a) 'emporte sur exp(—a?/2) en 400 ce qui ne permet pas de construire
de solution physiquement acceptable. La seule possibilité est de tronquer la série en imposant
I'existence d'un entier n tel que si p > n alors b,19 = 0.

‘1 21 — En déduire que les énergies accessibles a un oscillateur harmonique en régime quan-
tique sont de la forme

1
E, = <n—|—§) hw avecn € N

ou w est une grandeur que I'on exprimera en fonction de u et k.
FIN DE LA PARTIE III
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La capacité thermique des gaz

IV. — Capacité thermique et quantification

Comme dans la partie 11, on s’intéresse a un ensemble de N molécules diatomiques identiques.
Ce gaz est a I’équilibre thermique a la température 7T'. La probabilité 7(FE) quune molécule de
ce gaz se trouve dans un état d’énergie F, s’écrit

7(Ea) = A exp(~BE,)

ol [ est une fonction de kg et de T" uniquement.

'd 22 — Par analyse dimensionnelle, exprimer (5 en fonction de kg et de T'.

Contrairement a la partie II ou 'on avait utilisé 1’expression classique de 'énergie, on utilise
maintenant l'expression de I'énergie de 1'oscillateur harmonique obtenue dans le modele quan-
tique a la question 21. C’est Albert Einstein qui eut cette idée le premier en 1907 afin de
tenter de régler certains problemes de la physique classique dans le traitement du comporte-
ment des solides a basse température. L’idée est ici la méme, mais rend compte de la vibration
des molécules diatomiques.

‘d 23 — Exprimer la constante A en fonction de h, w, 5.
'd 24 — En déduire 'expression de I’énergie moyenne (E) de I'ensemble de ces N particules
en fonction de h, w, 5 et N.
'd 25 — Montrer que la capacité thermique molaire a volume constant cy,, de ce gaz s’écrit
R & 1 L Bhw
cym =R—5— avec{ = —
v sinh?(¢) 2
1,0 On désigne par T, la température, dite de vi-
x(w) / bration, caractéristique des vibrations de la molécule
0.8 / qui est telle que T, = E
/ o
0,6 'd 26 — Réécrire 'expression de cy,, en fonc-
tion de T, et T.
0,4
/ La figure 2 représente I'allure de la fonction
0,2
x(u) = u?/sinh?(u ")
0 u
0 1 2 3 4 9 1 27 — La table ci-dessous fournit la tempé-
FIGURE 2 — Graphe de x(u) rature de vibration de quelques molécules diato-
miques. Quelle partie des mesures présentées sur
la figure 1 le modele est-il censé représenter 7 La
théorie est-elle en accord avec 1’expérience ?
Molécule 'H, ’H, 'H—2H Cly Bry HCl HBr
T, K] 6220 4390 5380 808 463 4230 3790

FIN DE LA PARTIE IV

FIN DE L’EPREUVE
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Et pour un neutron de plus...

Dans I’ensemble du sujet, les vecteurs sont surmontés d’une fleche en général : U, 7; les vecteurs
unitaires sont notés i, é,, ... Pour les notations complexes, on écrira 5> = —1 et on adoptera la
notation a = ag exp (—jwt) ou bien a = age ™" pour décrire une fonction du temps sinusoidale,

a(t) = agcos(wt). Un point sur une fonction désigne sa dérivée totale par rapport au temps :
o a0

—at
Les positions dans I'espace seront repérées en coordonnées cartésiennes (x,y,z), rapportées a
la base orthonormée (é,,é,,é,), ou bien en coordonnées sphériques (7,6, ), rapportées a la
base orthonormée locale (é,,€ég,€,). N désigne I’ensemble des entiers naturels, N* I'ensemble
des entiers strictement positifs.

Le sujet porte sur I'étude classique puis quantique du noyau et de I'atome de deutérium
(également appelé hydrogene lourd). Le deutérium (symbole D ou bien 2H) est un des deux
isotopes stables de I’hydrogéne. Le noyau du deutérium 2H, connu sous le nom de deuton,
contient un proton et un neutron, tandis que le noyau de I'isotope le plus répandu de I’hydrogene
ne contient qu'un proton, *H. L’abondance naturelle du deutérium dans les océans de la Terre
sous forme d’eau semi-lourde (HDO) ou lourde (D50) ) est d’environ un atome pour 6420 atomes
d’hydrogene.

Ce probleme comporte trois parties compléetement indépendantes : I, IT et III; pour cha-
cune de ces parties, certaines questions peuvent également étre abordées de maniere indépendante,
a condition d’admettre éventuellement certains résultats affirmés par ’énoncé. La partie I est
une introduction sur les proportions de masse. La partie IT décrit, en mécanique classique les
propriétés générales de I'atome de deutérium, puis de son noyau, le deuton, et leur application
a la découverte du Deutérium par UREY en 1931. La partie 111 décrit, en mécanique quantique,
certaines propriétés générales des interactions a forces centrales, avant de les appliquer a ’étude
du noyau du deuton.

Les notations, valeurs des constantes fondamentales et les autres données numériques nécessaires
a la résolution du probléme sont regroupées dans un tableau a la fin de I’énoncé. Les applications
numériques comporteront au mieux deux chiffres significatifs.

I. — Masses du deuton et du deutérium

1 1 — Quelle est la proportion en masse
du deutérium dans I’hydrogene océanique ?

d 2 — Quelle est la proportion en masse
du deuton (le noyau) dans le deutérium
(Patome) ?

‘A 3 — Comparer les proportions (en
nombres de molécules) de 'eau lourde
D,0 et de I'eau semi-lourde HDO dans les
océans. On précisera les hypotheses néces-
saires a cette comparaison.

b)

/

(i

Le premier échantillon d’eau lourde a été

isolé par le physicien Gilbert LEWIS en )
1933 pUIS une production industrielle par FIGURE ]_ - EChantIHOIl d7eau ].Ollrde fabrqué par

électrolyse a été mise en pratique par NORSK HYDRO, photographie (© Alchemist-hp.
I’entreprise norvégienne NORSK HYDRO

de 1934 a 1943.
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'd 4 — Citez des applications industrielles de I’'eau lourde.

II. — Etude classique de ’atome de deutérium

L’étude classique des propriétés de 'atome de deutérium (formé de son noyau, le deuton, et d'un
unique électron) est elle-méme divisée en deux sous-parties indépendantes : I’étude des raies

d’émission de I'atome de deutérium (II.A) et l'influence de l'effet DOPPLER sur leur mesure
(IL.B).

II.A. — Spectroscopie atomique et découverte du deutérium

Un atome d’hydrogene (ou de deutérium) est constitué d’'un électron unique, de charge —e,
de masse m,, soumis a l'interaction coulombienne d'un noyau supposé fize a l'origine O des
coordonnées. Les valeurs F, de I’énergie de cet électron sont quantifiées et données par la

relation A

E
E, = — % avec Ey =

o2 2etneN*
n

mee
(4meoh)?
L’état fondamental est celui d’énergie minimale, il correspond donc a n = 1 et sa valeur
numeérique est £, = —70 = —13,6eV.

'd 5 — On appelle série de BALMER I’ensemble des raies d’émission d’un atome d’hydrogene
associées a une transition d'un niveau excité E,, (avec n > 2) vers le niveau n = 2. Exprimer
les longueurs d’onde )\, associées a ces transitions en fonction de Ejy, n, de la constante de
PLANCK h et de la célérité de la lumiere dans le vide ¢. Calculer numériquement les longueurs
d’onde A3 et A4 ; quel est le domaine spectral associé?

On peut établir, et on admettra, que la prise en compte des (faibles) mouvements du noyau ato-

. NI , . . m
mique ameéne a remplacer, dans toutes les équations ci-dessus, la masse m, par m,, = m
me

ot M est la masse du noyau : M = m, dans le cas de I'hydrogéne < ordinaire > 'H et
M = m,, +m, dans le cas de 'hydrogene < lourd > (ou deutérium) ?H ou D.

'd 6 — Pour une des raies de la série de BALMER, on note A, (avec n > 2) la longueur

d’onde émise par un atome d’hydrogene ordinaire, A/, la longueur d’onde émise par un atome
ANo— N\, Me
———— T’écart relatif associé. Montrer que § ~ ——— ol k est une entier
n KMy,

que 'on déterminera; calculer ¢ ; quelle conséquence en déduisez-vous quant a l'identification

spectroscopique du deutérium ?

de deutérium et § =

II.B. — Role de la température de I’échantillon

Compte-tenu de la faible proportion des atomes de deutérium dans un échantillon naturel, la
détection des raies d’émission (2 la longueur d’onde \') du deutérium, et donc 'identification
de celui-ci, nécessite que les raies d’émission < majoritaires > de I’hydrogene (a la longueur
d’onde \) ne recouvrent pas les raies du deutérium. En d’autres termes, la largeur naturelle Aw

Aw
des raies d’émission de 'hydrogene doit vérifier — < § (ou I’écart relatif 0 a été introduit
W

ci-dessus, question 6). Pour cette étude, 'atome d’hydrogene, émetteur du rayonnement étudié,
sera assimilé a un point matériel de masse m ~ m,, ; il sera étudié¢ dans le cadre de la mécanique
classique (c’est-a-dire ni quantique, ni relativiste).

Cette largeur naturelle des raies d’émission est essentiellement liée a ’agitation thermique de
la source d’émission ; on va donc établir le lien liant la pulsation effective d’émission par un
atome d’hydrogene, et la pulsation apparente a laquelle 'onde sera observée, en fonction de la
vitesse relative de cet atome et du récepteur.
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Considérons deux référentiels (K) = (Ozyz) et (K') = (O'2'y'2’) en mouvement relatif, entiere-
ment caractérisé par la vitesse V. = tip//xc de O’ relativement a (K) et par la vitesse angulaire
Q de rotation de (K') relativement & (K).

'd 7 — Rappeler I'expression générale de la loi de composition des vitesses reliant les vitesses
Un/xc et Uy d'un méme point mobile M relativement aux référentiels (K) et (K').

Le référentiel (K) = (Ozyz) est celui du laboratoire; le référentiel (K') = (Ez'y’z") est attaché
a un point £ mobile mais les vecteurs directeurs des axes des deux référentiels sont identiques,
e, = €y, €, = ¢, et €&, = é,. Enfin, la vitesse de E relativement & (K) est vgx = V =
Veey + Ve, + V.e., elle est supposé constante.

'd 8 — Montrer, en application de la loi de composition, que les coordonnées (x,y,z) dans (K)
et (2/,y/,2") dans (K') d'un méme événement vérifient les relations :

¥ =x — Vit + xj v =y—Vit+y 2 =z-Vit+ 2z
ou xp, Y, et 2z, sont certaines constantes.

Un récepteur de lumiere, fixe dans le référentiel (K), et situé a grande distance de I’émetteur
FE, recoit une onde électromagnétique émise, dans le vide, dans la direction é,. L’émetteur
E est un atome d’hydrogene et la grandeur lumineuse associée & cette onde s’écrit S(2't) =
Spexp [7 (kz’ — wt)] en notation complexe.

Jd 9 — Quelle relation lie w et k7

‘A 10 — Déterminer I'expression de I'onde S, dans le référentiel (K) de sa mesure, en fonction
de z et t. En déduire qu’elle est observée a une pulsation apparente w,p, que I'on déterminera en
fonction de w, ¢ et de certaines composantes de V. Cette relation caractérise ’effet DOPPLER.

L’émetteur E est un atome d’hydrogene au sein d’un échantillon thermostaté a la température
T'; en conséquence, sa vitesse varie de maniere aléatoire (agitation thermique) avec la loi de
distribution de BOLTZMANN : le nombre d’atomes dont la composante V, prend une valeur
comprise entre v et v + dv est AN = K exp (—owQ) dv.

‘1 11 — Exprimer « en fonction de T et de certaines constantes physiques. On ne cherchera
pas a calculer K.

A 12 — Tracer la courbe représentative (G) de f(v) = dN/dv en fonction de v.

Dans le cas d'une courbe gaussienne comme celle tracée ci-dessous, on définit la largeur Av de
la courbe comme 'écart Av = v, —wv_, ol vy et v_ sont les deux valeurs de v correspondant a
des points d’inflexion de la courbe.

v
U— +

‘4 13 — Exprimer la largeur Av de la courbe (G), en fonction de 7', de la constante de

BOLTZMANN kg et de la masse m,, de 'atome d’hydrogene ; commenter.

'd 14 — En déduire l'allure de la courbe de distribution des pulsations mesurées wap, et

calculer sa largeur Aw,yp,,, définie comme ci-dessus.

Aw
'd 15 — En pratique, on impose le critere de détection —=2 < 5-107%. Calculer numériquement

w
la température caractéristique a laquelle doit se dérouler ’expérience afin de pouvoir identifier
spectroscopiquement le deutérium. Conclure.

Page 3/6 Tournez la page S.V.P.



Physique II, année 2018 — filiere MP

III. — Le deuton

III.A. — Potentiels radiaux en physique quantique

L’étude d’un systeme de deux particules ponctuelles de masses m; et mo, si tuées en A; et

A, et telles que A; Ay = 7 est réalisée en utilisant les coordonnées sphériques (7,6, @) pour le

vecteur 7. Les particules sont en interaction, décrite par I’énergie potentielle E,(r) ; la probabi-

lité d’observer une particule dans 1’élément de volume dr entourant le point 7 est donnée par

dp = |¥(7,t)|*dr, ou la fonction d’onde W(7,t) est solution de I’équation de SCHRODINGER,
2

ov
—2—A\Il + E,(r)¥(7,t) = gh—— ou A est 'opérateur de LAPLACE ou laplacien; le coefficient p
0

ot
. , . , . ) ) 1 1 1
qui remplace, dans cette équation, la masse d’une particule unique, est donné par — = —+—.
2 my Mg
On rappelle aussi I'expression de 'opérateur laplacien en coordonnées sphériques :

Af:rlg[a (2af)+Aangf} avec A f = L 9 (sin8g>+ L Of

ar \" or sin 6 90 00 sinzea_QOQ
: 54 : - g R(T) —Jwt
On cherche une solution de I’équation de SCHRODINGER sous la forme U (7t) = Y (6, p)e ",
r
'd 16 — Indiquer et justifier brievement 1’expression liant 1’énergie E' d’un tel état et la pul-

sation w.

' 17 — Montrer que R(r) et Y (6, ) vérifient les deux équations

h*C

n? d*R
+ [Ep(r) + m] R(r) = ER(r) et AugY = —CY(6,¢)

24 dr?
ou C est une certaine constante.

On rappelle les résultats de la mécanique classique pour 1’étude du mouvement d’une particule
de masse p en mouvement dans un champ de forces centrales décrit par 1’énergie potentielle
Ey(r)
— le mouvement est plan et peut, dans ce plan, étre décrit en coordonnées polaires r, 0 ;
— le moment cinétique est constant, directement perpendiculaire au plan du mouvement
avec pour moment cinétique o = ur?6;
1
— le mouvement est entierement décrit par la conservation de 'énergie £ = 5 1%+ Ueg (1),
1 o2
olt I'énergie potentielle effective a pour expression Ueg(r) = E,(r) + 5 a
wur
‘A 18 — Précisez, dans 1'équation vérifiée par R(r) établie ci-dessus, les expressions analogues

1
de I'énergie cinétique radiale 3 wi?, de I'énergie potentielle effective et du moment cinétique o.

1 19 — Quelle serait la valeur de la constante C' pour une fonction d’onde purement radiale ?
On ne fera pas nécessairement cette hypothese dans les questions qui suivent.

'd 20 — On procede a une nouvelle séparation des variables en posant Y (0, ¢) = 0(0)P(y).
établir les équations différentielles vérifiées par ©(0) et ®(¢p).

‘d 21 — Justifier le plus précisement possible le fait, qu’a une constante multiplicative pres,
que l'on peut imposer ®(¢) = &% ou m € Z.
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d 22 — On peut montrer, et on admettra, que les solutions de ’équation différentielle vérifiée
par ©(0) sont des polynomes de degré ¢ (avec ¢ > |m|) de la variable z = cos 6 :

O() = ax’ + ... + a1z + ag

En ne considérant que le terme de plus haut degré, exprimer C' en fonction de ¢ seulement.
Quel est le moment cinétique o pour une fonction d’onde caractérisée par £7

III.B. — Energie de liaison du deuton

Le deuton est le noyau de I'atome de deutérium 2H, formé d’un neutron et d’un proton. Il s’agit
d’un des tres rares noyaux stables comportant un nombre impair a la fois de neutrons et de
protons (avec °Li, °B, N et '®Ta); en effet, de tels noyaux impairs—impairs sont en général
peu ou pas stables. L’énergie de liaison du deuton est faible (2,23 MeV seulement) et il n’a
qu'un état fondamental, de moment cinétique nul (nombre quantique orbital ¢ = 0) et pas
d’état excité stable.

On considere les états liés stationnaires d’une particule de masse p dans le puits de potentiel
défini par :
E,=—-Vy pour 0<r<a et E,=0 pour r >a

avec Vo > 0. On écrit la fonction d’onde indépendante du temps d’'un état lié (=V, < E < 0),

R(r)

a symétrie de révolution (radiale), ¥(r) = ——= ou R(r) est solution de ’équation radiale
r
n* d’R
—ZW + Ep(T) R(T) = ER(T)

Dont les solutions sont de la forme R(r) = Asin(kr) pour r < a, et R(r) = Be X" pour r > a.

d 23 — Justifier ces formes et exprimer k et K en fonction de E et Vj.

4 24 — Expliciter les conditions de raccordement en r = a.

d 25 —2 O‘? pzose X = ka et Y = Ka. Ecrire deux relations distinctes liant X et Y en fonction
uvoa

72
a expliciter).

de p* = , indépendamment des valeurs des constantes A et B (qu’on ne cherchera pas

'd 26 — Représenter graphiquement, sur un systeme d’axes (X, Y), les deux relations établies
a la question précédente.

d 27 — Montrer qu’il n’existe d’état 1ié que si V4 est supérieur a une certaine valeur Vi, que
I’on déterminera en fonction de A, u et a.

d 28 — Quelle est la valeur maximale V., de Vi pour qu’il n’existe qu’'un seul état 1ié ?

On utilise ce modele pour décrire I'interaction nucléaire entre un neutron et un proton, formant

le deuton (noyau de I'atome de deutérium). Le rayon du deuton est a = 2,0- 107! m ; la masse
M My

1 est la masse réduite du deuton, p = . expérience montre qu’il n’existe qu’'un seul

My, + My,
état lié, d’énergie Fy < 0.

d 29 — En déduire que, dans ce modele, Vi < Vo < Vinax et calculer Vi, et Vinax en MeV.

Page 5/6 Tournez la page S.V.P.



Physique II, année 2018 — filiere MP

d 30 — Que vaut "énergie de liaison si Vy = Vigin 7

d 31 — L’énergie de liaison du deuton est Fy; = —2,23 MeV. Comparer a Vi, ; en déduire
que Vj est proche de V.

'd 32 — En explicitant les relations établies ci-dessus entre X et Y pour V, proche de Viy,

trer ane vy = 2[4 22 o)
montrer que = - - - .
q 0 2ua® |2 hmw s

A 33 — Calculer Vj (en MeV) et comparer a Fj.

FIN DE L’EPREUVE

Le tableau ci-apres récapitule les valeurs de certaines grandeurs physiques ou constantes fon-
damentales.

Célérité de la lumiere dans le vide c=3,0-10m-s7!

Charge élémentaire e=16-10"1°C

Constante de BOLTZMANN kg =14-1002J-K!
Constante de PLANCK h=66-10"3J-Hz !
Constante de DIRAC h=h/2r=1,0-1073] -5
Masse de ’électron me =9,1-1073 kg

Masse du proton m, = 1,673 - 107" kg > m,
Masse du neutron m, = 1,675-1072" kg ~ m,,
Permittivité diélectrique du vide € =2-89-10712F -m™!
Température d’ébullition de ’azote (sous 1 bar) T = 774K

Température d’ébullition de I'hydrogene (sous 1bar) 75 = 20,3K
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L’indice et le froid

Ce sujet comporte deux parties totalement indépendantes. Au sein de chaque partie, de nom-
breuses questions sont également indépendantes. La premiere partie concerne la loi de Gladstone-
Dale relative a la variation de l'indice de I’air en fonction de la pression et la température. La
deuxieme partie est consacrée a I’obtention de température extrémement basse par désaimantation
adiabatique.

Les vecteurs sont surmontés d’une floche (E) ou d’un chapeau s'ils sont unitaires (7). Par
défaut, la norme d'un vecteur ||E|| est notée simplement E. La mesure algébrique d'un vecteur
sur un axe est indicée par le parametre représentant 1’axe, nous notons ainsi £, = E- W,.

Les valeurs des constantes fondamentales nécessaires a la résolution du probleme sont regroupées
dans une annexe a la fin de ’énoncé. Vous y trouverez également un rappel de quelques fonc-
tions de trigonométrie hyperbolique et du théoréeme de Schwarz.

Sauf indication contraire, les applications numériques seront des ordres de grandeur qui com-
porteront toujours deux chiffres significatifs. Le nombre complexe i est tel que i2 = —1.

I. — Vérification de la loi de Gladstone-Dale

Apres avoir étudié les propriétés optiques de différents liquides dans le domaine du visible,
Gladstone et Dale ont proposé en 1858 une loi empirique relative a l'indice de réfraction, noté
n, indiquant que n — 1 est proportionnel a la masse volumique du liquide. Cette loi a ensuite
été étendue au cas du fluide diélectrique homogene et isotrope, comme le sont les gaz et les
mélanges de gaz. Cette partie du sujet propose une vérification expérimentale de cette loi pour
’air, et une explication théorique rudimentaire.

Nous notons ngy l'indice de 'air a la pression py et a la température T, ambiantes dans le
laboratoire. Nous rappelons que 'indice de réfraction d’un milieu est défini par le rapport de
la vitesse ¢ de la lumiere dans le vide sur la vitesse de phase v de la lumiere dans le milieu

considéré, soit n = —, cet indice est généralement plus grand que 1.
v

‘d 1 — Montrez que, sous réserve d'une approximation usuelle que vous préciserez, la loi de
Gladstone-Dale, pour I'air, conduit a écrire que n—1 est proportionnel au rapport de la pression
sur la température de 'air. En travaillant a température constante, montrez que la variation
d’indice n — ng est proportionnelle a la variation de pression.

a

Nous posons par la suite n — ng = ?<p — p0> ol a est une constante qui dépend de la
0

composition de 'air (humidité, taux de CO,, ...).

1 2 — La variation de l'indice de 'air avec la pression est tres faible, mais parfaitement me-

surable avec un instrument tres sensible comme 'interférometre de Michelson. L’interférometre
est éclairé par une source étendue monochromatique de longueur d’onde A dans le vide, et réglé
de facon a observer des anneaux sur un écran. Représentez, sur un schéma symbolique, un
interférometre de Michelson en précisant la position de la source lumineuse et de I’écran. Des
lentilles minces dont vous préciserez le role sont a utiliser. La lame séparatrice sera représentée
par un simple trait. Quelle est la position relative des miroirs 7 Nous notons f’ la distance focale
de la lentille de projection. Déduisez-en la différence de marche ¢ induite par U'interférometre
dans cette configuration en précisant vos notations. En supposant que le centre de la figure
d’interférence est un point brillant d’éclairement maximal, donnez le rayon du k%™¢ anneau
brillant en fonction de k, f/, A et dg la différence de marche au centre de la figure. On supposera
les angles des rayons lumineux par rapport a ’axe optique de la lentille suffisamment petits
pour en négliger 'ordre 3 devant les précédents.
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Une cuve est introduite entre un miroir de 'interférometre et la lame séparatrice. Cette cuve
contient de ’air dont on peut faire varier la pression par une simple pompe a main. Un ma-
nometre permet de mesurer la pression relative atteinte. En gonflant lentement, I’air de la cuve
reste sensiblement a température ambiante. Une microfuite permet ensuite de ramener tres
lentement la pression de la cuve a py. Dans votre analyse, la cuve sera idéalisée et vous étes
invités a négliger le role des parois du dispositif.

Une photodiode est placée a la place de ’écran au centre de la figure d’interférence et permet
de décompter le nombre de franges brillantes N qui défilent lentement lors de la diminution de
la pression dans la cuve. La longueur de la cuve traversée par les rayons lumineux est L = 4 cm.

‘1 3 — Reliez la différence de marche supplémentaire due a la présence de la cuve a la variation
d’indice n — ng, puis au nombre de franges IV, sur la frange centrale éclairant la photodiode.
Déduisez-en 'expression de N en fonction notamment de a et de la variation de pression p — pg
dans la cuve.

d 4 — Pour Ty = 300K et A = 530nm, le tableau suivant donne le nombre de franges N
pour quelques valeurs de surpression p — py exprimées en bar :

p—po 0105107 1 [13]15118]2 123125
N (0|17 26|40 56| 68 |82 92102 111

Calculez numériquement le coefficient a en détaillant votre démarche. Si vous aviez disposé
d’un outil d’analyse numérique (calculatrice, ordinateur + python, etc- - - ), comment aurait-on
pu exploiter ces données ?

Nous utilisons par la suite la valeur en ordre de grandeur de a = 1,0 x 107K - Pa™!

La loi empirique de Gladstone-Dale pour 'air peut étre expliquée dans le cadre du modele de
I’électron élastiquement lié. Nous assimilons une molécule d'un gaz composant ’air & un noyau et
deux électrons optiquement actifs. Nous notons 7(¢) le vecteur position d'un électron par rapport
au noyau, 9(t) sa vitesse, m, la masse de I’électron et —e sa charge électrique. L’interaction
entre le noyau et I’électron est modélisée par deux forces s’exercant sur 1’électron : une force
de rappel élastique —m, w37 et une force de frottement fluide —m.I['d. L’électron est soumis au
champ électrique de 'onde plane que nous considérons localement identique a E (rt) = EO et

1 5 — Etablir I’équation différentielle régissant 1’évolution de la position de 1’électron. Pour-
quoi n’avons nous pas pris en compte l'effet du champ magnétique de 1'onde sur ’électron ?
Nous nous intéressons a la solution en régime forcé de cette équation. En utilisant la notation
complexe, donnez I'expression de la vitesse ¥ d’un électron en fonction du champ électrique.

1 6 — Pourquoi ne prenons-nous pas en compte le mouvement des noyaux des molécules
induit par le champ électrique de 'onde plane ? Montrez alors que le vecteur densité de courant
électronique total peut s’écrire :

kn*e? w

j=~E avec =
1= L wi — w? +ilw

ou k est un facteur numérique que 'on déterminera et n* est le nombre volumique, c’est-a-dire
le nombre de molécules par unité de volume du gaz.

Page 2/6 Tournez la page S.V.P.



Physique II, année 2019 — filiere MP

a7 —A quel type de filtre correspond v 7 Soit vy le maximum du module de 7, déterminez
I'expression de 7. Nous définissons la fonction de transfert H(w) = %, exprimez cette fonction
de transfert et préciser I’expression de son facteur de qualité (). Représentez le gain de ce filtre
dans un diagramme de Bode pour un facteur de qualité de l'ordre de la centaine.

'd 8 — L’air est assimilé a un milieu neutre électriquement mais polarisable : une onde
électromagnétique dans le domaine du visible induit un mouvement des électrons qui se traduit
par 'apparition d’un vecteur densité de courant selon la question précédente. Donnez alors les
équations de Maxwell dans ce milieu. Montrer qu’en introduisant une permittivité relative e,
complexe que I'on identifiera, on peut écrire ’équation de propagation pour le champ électrique

. O’E
sous la forme AE = ——.
Ho€o€ a2
d 9 — On néglige les frottements fluides et on suppose que la pulsation de I'onde w est tres

inférieure a wy, montrez alors que cette permittivité relative se simplifie en :

ke*n*

e =1+ 5
mEEOWO

Quelle est la relation entre la permittivité relative et 'indice n ? En remarquant que n? —1 < 1,
donnez 'expression de I'indice en fonction de n*, e, m., € et wy.

‘d 10 — Reliez le nombre volumique n* a la pression et la température de I'air. Déduisez-en
I’expression de l'indice en fonction de la pression, de la température et des autres constantes.
Exprimez alors le coefficient a en fonction de e, m,, €y, kg et wy. Calculez la valeur numérique
de wy et commentez le résultat obtenu.

FIN DE LA PARTIE I

II. — Refroidissement par désaimantation adiabatique

Le refroidissement par désaimantation magnétique est une technique assez ancienne puisque
les premieres expériences ont été présentées en 1933, découlant de théorie proposée par De-
bye (1926) et Giauque (1927). Elle connait actuellement un regain d’intérét dans le domaine
spatial. L’atténuation du bruit thermique sur les capteurs des satellites nécessite en effet
des températures extréemement basses qui doivent étre obtenues dans un milieu en apesan-
teur et avec un dispositif le plus léger possible. La technique de refroidissement par effet
magnétocalorique ne nécessite pas de compresseur, elle est donc compatible avec 1’absence
de pesanteur. La capacité thermique importante permet de réduire la masse du dispositif. La
température de refroidissement attendue est de 'ordre de 50 mK.

L’aimantation, notée M , est une grandeur intensive définie comme la densité volumique de
moment dipolaire magnétique. Il s’agit donc du moment dipolaire magnétique moyen par unité
de volume.

Le dispositif de refroidissement comporte un premier étage de refroidissement a adsorption
qui amene 1'étage de désaimantation magnétique a la température de 350 mK. Le réfrigérant
utilisé pour la désaimantation est un sel d’alun de chrome de formule KCr(S04)2 qui est pa-
ramagnétique. Les ions présentent un moment magnétique orbital principalement d’origine
électronique. En présence d’un champ extérieur, le sel présente une aimantation que I’on cherche
a exprimer.
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'd 11 — Considérons une spire de courant circulaire, traversée par l'intensité I, dont la sur-
face est notée S. Son vecteur surface S est orienté par u vecteur unitaire normal. Le moment
magnétique associé est défini par g = [ S avec S = Sa. Plongé dans un champ magnétique
extérieur B , le circuit subit une action qui tend a aligner le moment magnétique avec le champ
magnétique. Cette action se traduit par un couple de force i A B. Montrez qu’il existe deux
positions d’équilibre et indiquer leur stabilité. Tracez succinctement le graphe de ’énergie po-
tentielle magnétique F,,, = —ji .B en fonction de I’angle entre les deux vecteurs qui la définissent.
Retrouvons-nous les positions d’équilibre et leur stabilité ?

Dans le cadre du modele semi-classique de Bohr, nous considérons un électron, de masse m
et de charge ¢ = —e, en orbite circulaire uniforme de rayon r autour d’un noyau. Le moment
cinétique de cet électron L = FAm.7 est quantifié, sa norme valant L = ph ou A est la constante
de Planck réduite et p € N*.

'd 12 — Exprimez la norme du moment cinétique en fonction notamment des normes de 7”et, .
En remarquant que I’électron effectue un tour en une période 7, exprimez l'intensité électrique
correspondant a ce circuit élémentaire en fonction de e et des normes de 7 et ¢. Déduisez-en
I'expression du moment magnétique. Montrez alors que le moment magnétique est colinéaire
au moment cinétique. Déduisez-en que sa norme p est aussi quantifiée p = pupg et exprimez la
constante g appelée magnéton de Bohr en fonction de e, m, et h. Calculez avec un seul chiffre
significatif la valeur numérique de ppg.

Les sels ioniques d’alun présentent un moment magnétique permanent dont l’orientation est
aléatoire. En présence d'un champ magnétique extérieur, ce moment magnétique tend a s’orien-
ter selon le champ. Notons Oz ’axe du champ magnétique, soit B = B.. L’énergie potentielle
fait intervenir la projection du moment magnétique selon Oz qui est elle-méme quantifiée.
Ainsi I’état quantique du nuage électronique d’un ion dans un champ magnétique est défini par
4 nombres quantiques (n,l,m k).

Le nombre k est entier si m est entier ou demi-entier si m est demi-entier. Il peut prendre 'une
quelconque des valeurs de I’ensemble M tel que

e M — {-m, —m+1,---, —1,0,1,--- ;m — 1, m} si m est entier
{-m, —m+1,---, — %,%,--- ,m—1,m} si m est demi-entier
L’énergie potentielle associée a cet état s’écrit E, = —kgugB ou g est un facteur numérique,

appelé facteur de Landé. Contrairement au ferromagnétisme, l'interaction entre les ions est
négligeable. Nous considérons n* ions du sel d’alun par unité de volume dont nous cherchons a
exprimer 'aimantation.

‘d 13 — En utilisant la distribution de probabilité de Boltzmann, montrez que la proportion

exp(kz)

P, d’ions dans I'état E), peut s’écrire sous la forme P, = ou la quantité Z permet de

normaliser la distribution, et dans laquelle on exprimera z en fonction de g, ug, B, kg et T.
d 14 — Exprimez Z en fonction de = et des k. Montrez que Z peut s’écrire comme la somme

des premiers termes d’'une suite géométrique. Déduisez-en 'expression de Z sous la forme d’un
rapport de deux sinus hyperboliques. La fonction Z est appelée fonction de partition.
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'd 15 — La projection du moment magnétique selon 'axe Oz vaut p, = kgup, exprimez sa

moyenne (j1,) dans la distribution dipolaire en fonction de g, up et des proportions Py, puis en
1dZz

d
fonction de la dérivée Ep [ln(Z )} = ———. Comme les composantes du moment magnétique
x

- Z dx

selon les autres axes sont nulles en moyenne (pas de direction privilégiée), montrez que I’ai-
mantation totale M des n* ions par unité de volume a pour expression

M = M, {th [(7:;%%) ] 2th1(%) }

ou l'on exprimera M., en fonction de n*, g et ug. Ce modele a été proposé par le physicien
francais Léon Brillouin en 1927.

'd 16 — Dans le régime = < 1, on constate expérimentalement que I'aimantation suit la loi

de Curie M = VT ol v est une constante spécifique du sel d’alun considéré. Exprimez, dans

le cadre du modele obtenu, v en fonction de n*, g, ug, du facteur m(m + 1) et de kg.

M ()

4 17 — Nous prenons ici m = 3. On définit la fonction de Brillouin f(z) = . Pour

(o]
quelles raisons physiques fondamentales observe-t-on, d’'une part que lirr(l) f(z) =0, et d’autre
T—

part que le graphe de f(z) présente une asymptote horizontale ? Tracer 'allure de f(x) pour
M
x > 0. Expérimentalement, la susceptibilité magnétique y = % de ce sel d’alun est voisine

de x = 1,0 x 107* pour n* proche du millier de moles par m?, & la température de 300 K.
Retrouvez-vous cet ordre de grandeur avec g = 27

B
Le sel d’alun utilisé dans la désaimantation suit la loi de Curie M = vy—.

Lorsquun champ magnétique extérieur est appliqué, les moments magnétiques tendent a s’ali-
gner selon le champ extérieur. Cet alignement est exothermique. Le sel d’alun est relié au
premier étage de refroidissement qui évacue I'énergie thermique produite. Le sel est ensuite
isolé thermiquement, et le champ magnétique est lentement diminué. Cette transformation est
considérée comme adiabatique réversible.

'd 18 — L’énergie interne volumique u des n* ions d’alun par unité de volume est une fonction
d’état de ce systeme. Sa variation est donnée par du = T'ds+ BdM ou s = s(T,B) est 'entropie
volumique du systeme. Quelle serait 1’équivalent du terme BdM pour un gaz soumis a des forces
de pression ? Le sel est un solide, nous introduisons, a ’aide de ’approche des multiplicateurs
de Lagrange, la fonction enthalpie volumique h = u— BM . Exprimez la différentielle de h. Dans
le cadre du modele utilisé, h ne dépend que de T', nous définissons cp la capacité thermique du
systeme par dh = cg dT. Déterminez la variation ds de ’entropie en fonction de cg, v, B, T et
des variations de température d7" et de champ magnétique dB.

ocp vB

d 19 — Montrer que | — | = —n—
q ( 0B T

de température considérée, la capacité thermique d’un sel paramagnétique non soumis a un
champ magnétique extérieur est celle d'un systeme chaud a deux états, i.e proportionnelle a

ou 'on déterminera la constante 7. Dans la gamme

.. . , T L
I'inverse du carré de la température cg(T,B = 0) = 7 Ol « est une constante caracteristique

du sel considéré. En déduire I'expression de cg en fonction de 7, a et des variables T' et B.
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d 20 — Le réfrigérant est soumis a un champ magnétique de B; = 20mT et refroidi a
une température T; = 350 mK avant d’étre isolé thermiquement. Le champ magnétique est
lentement abaissé jusqu’a une valeur résiduelle de By = 2,0mT. Déterminez I'expression de la
température finale 7Ty en fonction de v, a, By, B; et T;. Dans les conditions de I'expérience,
nous pouvons annuler le parametre «, déduisez-en I'expression simplifiée de T en fonction de
By, B; et T; puis sa valeur numérique.

FIN DE LA PARTIE II

Constantes et valeurs numériques
— Constante de Boltzmann : kg = 1,4 x 10723J - K~!
— Nombre d’Avogadro : Ny = 6,0 x 102 mol !
— Constante des gaz parfaits : R = kgNy =8,3J-K~!. mol !
— Constante de Planck : h =6,6 x 1073 J - s
— Constante de Planck réduite : h =2 =11 x 107 J-s
— Permittivité du vide : ¢¢ = 8,9 x 10712 F - m™!
— Perméabilité du vide : pp = 1,3 x 107 H - m™!
— Charge élémentaire : e = 1,6 x 10712 C
— Masse de 1'électron : m, = 9,1 x 1073 kg

Formulaire de trigonométrie hyperbolique
On appelle sinus et cosinus hyperbolique de la variable réelle ¢, les fonctions :

t_—t t —t
hit) = == et ch(t) = *’26
: : : , o sh(t)
La fonction tangente hyperbolique de la variable réelle ¢ est définie par le rapport th(t) = h()’
¢

Au voisinage de t = 0, le développement de Taylor de la tangente hyperbolique s’écrit :

1
th(t) =t — §t3 + o(?)

On rappelle également que %(Sh(t)) = ch(t) et %(Ch(t)) = sh(t).

Théoreme de Schwarz, ou de Young
Soit f(z,y) une fonction & valeurs réelles définie sur un ouvert de R? et au moins deux fois

dérivable. Elle vérifie :
9 (or\_9 (of
oy \ox /) 0x \ 0y

Identité entre opérateurs différentiels
Soit @ un vecteur de R?, on a

rot rot @ = gr?id diva — Ad

FIN DE L’EPREUVE
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La loi de WIEDEMANN-FRANZ

En 1853 les physiciens allemands GusTAV WIEDEMANN et RUDOLF FRANZ remarquerent
expérimentalement que le rapport de la conductivité thermique A d’'un métal par sa conductivité
électrique v semblait constant pour tous les métaux.

Une vingtaine d’années plus tard, en 1872, le physicien danois LubviG LORENZ découvrit qu’en
fait ce rapport dépendait linéairement de la température selon la relation

é:,'@'T.

v

Cette relation est désormais connue sous le nom de loi de WIEDEMANN-FRANZ et la constante
k, appelée coefficient de LORENZ, est indépendante du métal considéré.

Apres sa découverte expérimentale, cette relation est restée pendant longtemps un grand
mystere pour les physiciens et questionnait sur le probleme du transport de l'électricité et
de la chaleur dans les métaux. Elle résista a la modélisation pendant un demi-siecle.

Avec la découverte de I’électron et de ses propriétés en 1897 par le physicien anglais JOSEPH
THOMPSON des modeles furent envisageables. L’un des tout premiers est établi par le physicien
allemand PAUL DRUDE en 1900, il permet d’interpréter le transport des électrons dans les
métaux dans le cadre d’'un modele classique.

Ce modele permet de justifer certains traits de la loi de WIEDEMANN-FRANZ mais n’apporte
pas toute satisfaction.

Il sera repris une trentaine d’années plus tard dans un contexte quantique par les physiciens
allemands ARNOLD SOMMERFELD et HANS BETHE. L’analyse microscopique fine des solides
devenait possible : elle fut a l'origine de tres grandes avancées technologiques qui jalonnerent
le XX€ siecle et reste encore tout a fait d’actualité.

Nous proposons dans ce sujet de commencer (Partie I) par étudier un protocle expérimental per-
mettant de déterminer la conductivité électrique d’'un métal (le cuivre). La loi de Wiedemann-
Franz sera alors démontrée dans un modele statistique simple (Partie II), puis elle sera testée
expérimentalement pour le cuivre (Partie III). Ces trois parties sont tres largement indépen-
dantes.

Sauf mention contraire, on limitera les applications numériques a des estimations ne comportant
au plus que deux chiffres significatifs. Les données numériques utiles pour réaliser les applica-
tions numériques ainsi qu’un formulaire sont rassemblés en fin d’énoncé. Les vecteurs unitaires
sont surmontés d’un chapeau : ||u,|| = 1.
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I. — Détermination expérimentale de la conductivité élec-
trique du cuivre

Dans cette partie, on cherche a mettre en place un protocole expérimental permettant de
déterminer la conductivité électrique du cuivre et a exploiter un résultat de mesure.

Pour ce faire, on dispose d'un fil de cuivre de longueur 10,0 metres, de section circulaire de
diametre 2,0 mm, recouvert d’une résine isolante, que I'on enroule grossierement pour réduire
I'encombrement (on néglige toute déformation due a I’enroulement). Ce fil est plongé dans un
bain thermostaté, muni d’un agitateur, pour maintenir sa température au voisinage de 20°C.
On commence par connecter le fil aux bornes d’'un ohmmetre dont un extrait de la notice est
fourni dans la table 1.

On se place sur le calibre le mieux adapté. L’ohmmetre affiche 0,1 €2.

4 1 — Quel calibre est le mieux adapté pour cette mesure (on justifiera ce choix)? Quelle
incertitude doit-on associer & la valeur affichée ? Commenter.

Calibres Précision Courant de Résolution
Mesure

500 Q 1 mA 0,1 Q

5 kQ 0,3% L 4+ 3 UR 125 pA 1Q

50 k<2 12,5 LA 100
500 k2 1,25 pA 100 2

5 MQ 0,5% L 4+ 3 UR 125 nA 1 kQ
50 MQ 1% L + 3 UR 30 nA 10 kQ

TABLE 1 — Tableau extrait de la notice de 'ohmmetre utilisé.

On cherche a déterminer la résistance électrique du fil a I’aide d’un autre montage, exploitant la
loi d’OHM, un générateur de courant continu pouvant délivrer quelques amperes sous quelques
volts, un voltmetre et un amperemetre, dont les notices indiquent :

Chute de
Calibres Précision Résolution
tension maximale

50 mA pc | 0,3% L + 2 UR < 800 mV 100 pA peC
500 mA pc | 0,3% L + 3 UR < 800 mV 100 nA pC
10 A pc 1% L + 3 UR < 700 mV 10 mA pc

TABLE 2 — Tableau extrait de la notice de 'amperemetre.

Calibres ‘ Précision ‘ Impédance d’entrée ‘ Résolution
500 mV DC 11 MQ 0,1 mV DC
5V bc 11 MQ 1 mV pc
50 V pc 0,3% L + 2 UR 10 mV pc
500 V pC 10 MQ 100 mV pc
600 V DC 1V bc

TABLE 3 — Tableau extrait de la notice du voltmetre.

Pour mesurer une résistance a l'aide d’un voltmetre et d’'un amperemetre, deux montages sont
possibles et représentés sur la figure 1.
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U, U,
© ©
@ .
Montage 1 Montage 2

D D

FIGURE 1 — Mesure d’une résistance

‘1 2 — En notant respectivement R4 et Ry les résistances internes de 'amperemetre et du
o : . |Ri — R| | Ui
voltmetre, évaluer pour chacun de ces montages ’erreur systématique ¢; = T ou R; = T
i

représente la résistance mesurée dans chacun des montages ¢ = 1 ou ¢ = 2. Représenter sur un
méme graphe les variations de cette erreur relative en fonction de R. Justifier que, dans cette
expérience, seul I'un des deux montages est pertinent.

Avec le montage adapté, pour une intensité lue a 'ampéremetre de 5,23 A, le voltmetre affiche
287,5 mV (a chaque fois, on se place sur le calibre le mieux adapté).

A4 3 — Estimer (avec un chiffre significatif) la résistance électrique du fil. Comparer (de
maniere chiffrée) la précision de cette seconde méthode de mesure a celle de la question 1.
Comment procéder pour améliorer encore la qualité de cette seconde mesure ?

1 4 — Déduire de la question précédente une estimation de la conductivité électrique du
cuivre.

I1I. — Relation entre conductivités thermique et électrique
dans un métal

Dans cette partie, on se propose d’établir la loi de WIEDEMANN-FRANZ. Pour ce faire, on
considere un fil de cuivre rectiligne d’axe Ox, homogene et comportant n électrons de conduc-
tion par unité de volume. Lorsqu'un champ électrique uniforme et permanent E est appliqué
a ce matériau, chaque électron de vitesse U et de masse m est soumis a la force de Cou-

m_,
LOMB fC imposée par ce champ et a une force de frottement fluide fD = ——v qui modélise
T
macroscopiquement l'interaction de 1’électron avec le matériau.

'd 5 — En écrivant le principe fondamental de la dynamique a cet électron, déterminer sa vi-
tesse limite dans ce modele. En déduire I’expression de la conductivité électrique v du matériau.

On peut s’interroger sur le sens physique de la durée 7. On adopte pour cela le modele suivant :
Soit un ensemble de N électrons de conduction. On désigne par 7;(t) la vitesse, a U'instant ¢, du
i—eme électron de cet ensemble. On note p(t) la quantité de mouvement & 'instant ¢ moyennée
sur 'ensemble des porteurs de charge, soit

1 N
:sz?}z

Lors de son déplacement, un électron subit diverses collisions; on note p;; la quantité de
mouvement du i—eme apres I'une de ces collisions. Un électron pris au hasard subit une collision
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entre les instants ¢ et t+dt¢ avec une probabilité d¢/6 ou 6§ est une constante positive. On rappelle
qu’en ’absence de collision il est uniquement soumis a f¢.

d 6 — Justifier la relation p;(t 4+ dt) = gﬁfa + (1 — ﬁ) pi(t) + J%dt

0 0
dpi(t)
dt

dt — 0. Commenter 1’expression obtenue et relier 6 a la durée 7.

d 7 — Déduire de I’équation précédente une relation entre , plt), ]% et 6 dans la limite

On note II(¢) la probabilité qu'un électron n’ait pas subi de collision entre un instant initial
t = 0 et l'instant t. L’instant initial est choisi tel que I’électron a subi sa derniere collision a
I'instant ¢ = 07, c’est-a-dire juste avant I'instant initial.

‘1 8 — Par une approche semblable a celle de la question 6, établir I’équation différentielle
vérifiée par TI(¢) pour ¢t > 0. Intégrer cette équation pour obtenir l'expression de TI(¢) en
fonction de 7, puis calculer la moyenne temporelle de la durée entre deux collisions subies par
un électron. En déduire une interprétation physique de la durée 7.

Pour obtenir I’expression de la conductivité thermique, on adopte un modeéle unidimensionnel de
type gaz parfait. On note v la vitesse quadratique moyenne des électrons et on considere qu’ils
se déplacent de facon équiprobable selon +u, ou —u, a la vitesse v. Dans ce modele, 1’énergie
thermique est véhiculée globalement par les électrons le long de I'axe Ox, au gre des chocs. On
se place également en régime stationnaire. On note £ (T(x)) I’énergie cinétique moyenne d’un
électron situé en z (a la température T'(z)).

4 9 — A T'aide d’un bilan sur une section droite de métal située A ’abscisse x, montrer que
le flux thermique j, par unité de surface s’écrit :

Jq = %m} [S(T(x —v7)) —E(T(x + ’UT))]

'd 10 — En précisant les différentes hypotheses de votre calcul, exprimer j, en fonction de v,

d
Tn et de la chaleur spécifique d’un électron Cyy = —. En retrouvant la loi de FOURIER

x
dans cette relation, déduire I'expression de la conductivité thermique A du gaz d’électrons.

'd 11 — Dans le cadre du modele du gaz parfait classique monodimensionnel exprimer fina-
lement A en fonction de n, T, kg, 7 et de la masse m de ’électron.

A
1 12 — Exprimer le rapport ~T en fonction de e et kg dans le modele classique monodimen-

sionnel étudié jusqu’a présent. Comment se généralise cette relation dans le cas tridimension-
nel? On justifiera sa réponse. Cette relation donne le coefficient de LORENZ dans le modele
classique de DRUDE.

En fait le gaz formé par les électrons libres contenus dans un métal ne peut absolument pas
étre décrit dans un contexte classique méme a température ambiante. Un modele quantique
tridimensionnel proposé par ARNOLD SOMMERFELD en 1926 donne les résultats suivants :

2 (kgT 1
Cy = (e kg avec ep = —mv%
2 € 2

ol €p et vp sont respectivement l'énergie de FERMI et la vitesse de FERMI du gaz d’électron.
Dans ce modele quantique la vitesse des électrons est donnée par leur vitesse de FERMI.

On admet enfin que les expressions de la conductivité thermique obtenue a la question 10
révisée a la question 12 et celle de la conductivité électrique de la question 5 restent valides
dans un contexte quantique.
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‘1 13 — Exprimer le coefficient de LORENZ k en fonction de e et kg dans le modele quantique
proposé par SOMMERFELD. Cette relation constitue la loi de WIEDEMANN-FRANZ dans le
modele de DRUDE-SOMMERFELD.

‘1 14 — Comparer les valeurs du coefficient de LORENZ dans les cas classique et quantique.
Pour les métaux conducteurs 1’énergie de FERMI des électrons est de l'ordre de 'électron-volt

et on rappelle qu’a température ambiante kg1 ~ 4% eV. Que peut-on dire du modele classique ?

III. — Détermination expérimentale de la conductivité
thermique du cuivre

Pour déterminer expérimentalement la conductivité thermique du cuivre, il est utile de connaitre
sa capacité thermique massique et sa masse volumique p.

'd 15 — Proposer une expérience permettant de déterminer la masse volumique p du cuivre,
puis une autre permettant de déterminer sa capacité thermique massique c.

Pour accéder expérimentalement a la conductivité thermique du cuivre, on se propose d’étudier
la méthode du < flash ». Dans cette méthode, on utilise une plaque de cuivre d’épaisseur
constante L = 3,12 mm selon 'axe Ox et de dimensions grandes devant L suivant les axes Oy
et Oz — en sorte que la température dans la plaque est supposée ne dépendre que de x et t.
La plaque est située entre les abscisses © = 0 et = L et on néglige les pertes latérales par
convection ou par rayonnement. Par linéarité de I’équation qui sera établie a la question 16, on
supposera (sans perte de généralité) que la température (exprimée en degrés Celsius) est nulle
partout dans la plaque pour ¢ < 0. A l'instant ¢ = 0, une lampe & infrarouge, positionnée du
coté x < 0, émet un flash lumineux puissant. Il en résulte, en ¢ = 0, un profil de température
dans la plaque T'(x,0), dont la forme sera détaillée plus loin.

1 16 — Etablir 'équation différentielle vérifiée par T'(z,t) dans laquelle on fera apparaitre le
coefficient de diffusion thermique D que I'on exprimera en fonction des parametres du probleme.

On cherche des solutions sous la forme T'(z.,t) = f(z) x g(t).

ld 17 — Déterminer deux équations différentielles vérifiées par f(x) et g(t). En déduire la
forme générale de la fonction T'(x,t).

Pour modéliser 'effet de la lampe flash, on utilise le profil de température initial suivant :

r. .
— si0<z<)
T(z,0) = 0

0 sinon

oul’, § et L sont trois constantes. L’évolution est suffisamment rapide pour que la plaque puisse
étre supposée isolée, en premiere approximation, pour ¢ > 0.

1 18 — Justifier qu’il faut chercher la solution du probléeme sous la forme :

T(xt) = Z exp(—ay, t) [uy, cos (k,x) + wy, sin (k,x)]

d 19 — Exprimer les coefficients w,,, puis les coefficients k,, et «,, en fonction de n, L et D.
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1 20 — Etablir I’expression des coefficients u,, et en déduire que :

> sin(2T9)
T(xgt)=T1]1+2 E —L = exp(—ay, t) cos (k,x)
n=1 L

L’épaisseur  est supposée tres petite devant L. Un capteur optique permet de mesurer la
température T'(L,t) de la face arriere de la plaque (située a l’abscisse © = L) en fonction du
temps t.

d 21 — Déduire de I'expression obtenue a la question précédente, que I’expression approchée
de T'(L,t), pour t > 0, est :

T(Lt)~T((t) avec ()= |1+2) (—1)"exp(—ant)
n=1
La figure 2 représente la courbe ((¢) en fonction de aj t.

1
0.8 —
0,6 .

¢ yal
0.4 /
0,2 A
/
7 oyt
0
1 2 3 4 5

F1GURE 2 — Graphe de la fonction ¢ en fonction de la variable a;t obtenu a l'aide dune
simulation en Python.

On note 1/, 'instant en lequel ((t1/2) = 1/2.

'd 22 — Exprimer une relation entre a; et t;o.

La figure 3 représente la courbe expérimentale T'(L,t) obtenue pour la plaque de cuivre étudiée.

I(L,t) [u.a.]

M"N‘Wmmuu .
Ly

émission /

du flash /
;

/

0 L . ‘Ld/

16 32 48 64 80 96 112 128 144 160

>t [ms]

FIGURE 3 — Graphe expérimental de la température (en unités arbitraires) de la face de la
plaque en x = L en fonction du temps.
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1 23 — Estimer la valeur de la conductivité thermique du cuivre.

'd 24 — Les valeurs obtenues aux questions 4 et 23 (on prendra 7' ~ 300 K) sont-elles
compatibles avec la loi de WIEDEMANN-FRANZ ?

Données numériques

e ¢ =1,6x 107 C est la charge élémentaire

o kp=14x10"2J.K ! est la constante de BOLTZMANN

e c=40x102J-K'-kg ! est la capacité thermique massique du cuivre
e p=29,0x 10%kg - m~? est la masse volumique du cuivre

e m =91 x 1073 kg est la masse d'un électron

Formulaire

Pour tout réel a # 0 et pour tout couple (m,n) d’entiers positifs on a :
Q@

¢ Tmu Tnu 5

/ cOS (—) cos (—) du = 2

0 « o 0

FIN DE L’EPREUVE

sim=n%#0

sim#n
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Le marteau de THOR

Dans la légende nordique, MJOLLNIR, le marteau de THOR, dieu de la foudre et du tonnerre, est 'arme
la plus puissante des Dieux pour défendre 1’Univers contre les forces du chaos. Selon une légende
populaire tenace, le célébre marteau aurait été forgé dans un matériau présent au coeur d’une naine
blanche qui est, en quelque sorte, le cadavre d’une étoile.

FIGURE 1 — THOR au combat avec son célébre marteau, illustration de JOHANNES GEHRTS (1901)

Le sujet proposé comporte 4 parties largement indépendantes, la premiére concerne quelques propriétés
élémentaires du marteau. Les trois suivantes étudient 1’étoile LAWD 21, une naine blanche représentative
de ce type d’astre.

Les vecteurs sont généralement indiqués par des fléches, comme la position 7(t) sauf s’ils sont uni-
taires et sont alors surmontés d’un chapeau |[e,|| = 1. La valeur moyenne temporelle d’une quantité
périodique dans le temps est indiquée par des crochets : (f(t)) ou (7(¢)). Un petit formulaire et les
données nécessaires pour les applications numériques sont regroupés en fin d’énoncé. Les applications
numériques comporteront un seul chiffre significatif.
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I Le marteau

L’extrémité du marteau de THOR peut étre assimilée & un parallélépipéde de dimensions 15 x 15 X
21 cm3. 11 est constitué a partir du matériau d’une naine blanche qui posséde typiquement les carac-
téristiques suivantes : sa masse est M, = 1 x 10%° kg, son rayon R, = 1 x 10* km.

[d — 1. Déterminer numériquement la masse du marteau de THOR.

THOR est un personnage doté de super-pouvoirs mais qui posséde une morphologie comparable a celle
d’un humain. Grace & son marteau doté d’un petit manche, il est capable de briser des rochers.

[d — 2. Dans un environnement terrestre, proposer une évaluation numérique de la variation d’énergie
potentielle du marteau lorsque THOR I'utilise pour frapper des rochers. Commenter le résultat
en sachant que 'explosion d’un baton de dynamite utilisé dans les mines ou les travaux publics
dégage une énergie de l'ordre de 106 J.

II Analyse du spectre de I’étoile naine

L’objet LAWD 21 est la 21°¢ étoile du « Luyten Atlas of White Dwarfs » instauré dés le milieu du xXx°©
siécle par I'astronome hollandais WILLEM JACOB LUYTEN.

Elle est située dans la constellation boréale d’ORION. Trés peu lumineuse dans le visible, son spectre est
essentiellement situé dans I'ultra-violet lointain. Cette partie du spectre lumineux n’est pas accessible
depuis la surface de la Terre, c’est le satellite FUSE (Far Ultraviolet Spectroscopic Ezplorer) qui a
permis d’obtenir le spectre de la figure 2.

+30

u Ly [ 3 : Gémeaux

U %1072 J.m] Meilleur.ajustement 1 Taureau
I par la loi de PLANCK T 20

+10

in
\/ Inita i
] Rigel o
i Salph
Eridan
1 Siius Liévre
A [ 1 -20
nm J Grand
chien
6h 5h Ih

168 11I2 11I6 "
FIGURE 2 — Le spectre est sur la partie gauche avec le meilleur ajustement possible par une
loi de PLANCK. Sur la partie droite de la figure on trouve la position dans le ciel de cette
étoile. Ce spectre a été tracé en utilisant les données du satellite FUSE disponibles sur le site
http://archive.stsci.edu/fuse/

Ce spectre d’émission est composite. Il contient des composantes discrétes, principalement les raies
de la série de LyMAN. Ces raies sont issues de I’atmosphére de cette étoile en grande partie consti-
tuée d’hydrogéne. Le spectre montre aussi une forte composante continue bien ajustée par une loi de
PLANCK. Cette composante continue correspond & I’émission de corps noir issue de la surface de cette
étoile.
Les niveaux d’énergie de 1’électron de I'atome d’hydrogéne dépendent du nombre quantique principal
n € N*, ils sont donnés par la relation E,, = ——3 avec Ey = 13,6€V.
n
d — 3. Les raies de LyMAN du spectre de la figure 2 sont dues au retour de I’électron dans son niveau
fondamental. Vérifier numériquement la vraisemblance de cette affirmation.
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d — 4. La raie la plus marquée du spectre est la raie LYMAN [ notée Ly 3 sur le spectre de la figure
2. On constate que la raie LyMAN ¢ est plus proche de la raie LYMAN v que cette derniére est
proche de la raie LyMAN (5. Expliquer.

(4 — 5. La résolution spectrale du spectromeétre utilisé dans la mission FUSE permet d’étudier la forme
détaillée des différentes raies. Sur la figure 3 on peut voir que les raies possédent une certaine
largeur 0\ autour d’une longueur d’onde particuliére. A quoi est di cet élargissement? En
supposant que 'hydrogéne qui émet ce rayonnement est un gaz parfait déterminer une relation
entre notamment 6\, A et une caractéristique thermodynamique de I’étoile.

i N | ‘ |

31 L &%

U (en unités relatives)

' ] - 8 ]
L ; L . B 8 ]
0,036 nm 4 < » ]
L ; l ] 0,034 nm L J;
i J '\ ] == JW_\H i F ]
SIS L = L | = T G P G i L e e

102,48 102,52 102,56 102,60 102,64 102,68 X 07.24 97.26 97.28 97.30

A [nm] A [nm)]

FIGURE 3 — Détail de deux raies caractéristiques du spectre de 1'étoile LAWD21. Les histogrammes
représentent les valeurs des densités spectrales énergétiques de rayonnement mesurées et les courbes
en pointillé représentent un ajustement de 1'histogramme par une distribution Gaussienne.

Avant I’avénement de la mécanique quantique, BOHR, en 1913, proposa un modéle classique de I’étude
de I'électron dans l'atome d’hydrogéne. Ce modéle ne prend en compte que l'interaction dominante
entre I’électron et le noyau et suggére que ’électron effectue un mouvement circulaire de rayon r autour
du noyau. Afin d’expliquer les spectres mesurés dés la fin du X1X® siécle et, en particulier, les raies de
LYMAN, il imposa que le moment cinétique scalaire L de 1’électron dans son mouvement soit quantifié
selon la loi :

h
L=nh=n—
n n27r

0 — 6. Etablir Pexpression de Ej en fonction de e, me, €¢ et A.
Comme nous 'avions remarqué au départ, le spectre de I’étoile naine présente une composante continue
trés bien décrite par la loi de PLANCK qui donne la densité spectrale énergétique de rayonnement u en
fonction de la longueur d’onde \. Cette densité s’exprime en J- m™. Elle correspond & l’ordonnée du
spectre de la figure 2. En 19goo, PLANCK propose un modéle pour les interactions entre la matiére et
le rayonnement. La matiére est supposée & I'équilibre thermique a la température T — c’est le modéle
dit du corps noir — qui aboutit & I’expression suivante pour la densité spectrale de rayonnement :

_ 8mhe 1

A5 o he )
. _
PANeGT

d — 7. On s’intéresse au maximum de la densité spectrale de rayonnement pour une température T’

u

ol kp est la constante de BOLTZMANN.

hc
T déterminer I'équation vérifiée par x qui assure un extremum & la
B
fonction w. On expliquera rapidement pourquoi la recherche d’un extremum pour u(z) permet

fixée. En posant x =

de trouver un extremum pour u(\).

(d — 8. Montrer, moyennant une approximation raisonnable, que u est maximale pour une valeur entiére
de x. En déduire, dans cette approximation, une expression du produit Apax 7' de la longueur
d’onde A\pax obtenue lorsque u est maximale et de la température T' en fonction de constantes
fondamentales de la physique.
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La loi précédente porte le nom de loi de WIEN, elle s’écrit numériquement sous la forme :

Amax I >~ 3mm - K

O — 9. Déterminer la température de la surface de 1’étoile naine LAWD21.

III Estimation du rayon de la naine blanche

L’essentiel de la matiére constituant le cocur d’une naine blanche est constitué d’atomes de carbone
entiérement ionisés. Le numéro atomique du carbone est Z = 6. On considére uniquement l’isotope 12
du carbone.

1 — 10. L’énergie de premiére ionisation du carbone est E;; ~ 11 eV, celle de seconde ionisation
E;» ~ 24 eV, et celle de derniére ionisation est F;g ~ 490 eV. Un atome de carbone pré-
sent & la surface de la naine blanche est-il & 1’état atomique ou ionisé? On précisera le cas
échéant son degré d’ionisation.

[d — 11. En considérant que I'essentiel de la masse M, de la naine blanche est constitué par des atomes
de carbone totalement ionisés, exprimer N, le nombre d’électrons contenus dans cette étoile en
fonction de M, et m, la masse d'un proton.

Selon la théorie de FOWLER, les électrons contenus dans la naine blanche constituent un gaz parfait
quantique au sein duquel il existe une pression dite de dégénérescence quantique. La pression de dégé-
nérescence quantique liée aux noyaux des atomes de carbone est négligeable devant celle des électrons.
A Tissue de son calcul, FOWLER trouve l’expression de la pression de dégénérescence quantique qui
régne dans la naine blanche :

p TR <3Ne)5/3

15 me \ V4
oll m, est la masse d’un électron et V, le volume de I’étoile.

En 1930, a 'age de 19 ans, le physicien indien CHANDRASEKHAR intégra le prestigieux laboratoire
d’EDDINGTON et de FOWLER pour y réaliser son doctorat. Il développa la théorie de FOWLER en

tenant compte de la Relativité restreinte alors que FOWLER n’avait travaillé que dans le cadre de la
mécanique classique. Dans la suite, nous resterons dans le cadre de la théorie de FOWLER.

[d — 12. Par analyse dimensionnelle, justifier le fait que P, est bien une pression.

On considére que la naine blanche est & ’équilibre lorsque la pression de dégénérescence quantique est
compensée par la pression d’origine gravitationnelle. Il nous faut donc déterminer ’expression de cette
pression gravitationnelle.

1 — 13. Rappeler I'expression de la force gravitationnelle existant entre deux corps ponctuels de masse
mq et mo séparés par une distance r. En déduire ’expression de ’énergie potentielle gravita-
tionnelle de ce systéme & deux corps.

Pour la naine blanche, I’énergie potentielle gravitationnelle est :
3G M?
SR,

(1 — 14. En considérant le travail élémentaire des forces de gravitation lors d’une variation dV; du volume
de I'étoile, donner ’expression de la pression d’origine gravitationnelle.

E,=—

1 — 15. Déterminer I'expression du rayon R, de la naine blanche & 1’équilibre en fonction de G, h, me,

97)2/3
my, et M,. Sachant que %% ~ %,

de R, selon la théorie de FOWLER.

et en prenant M, = 103 kg, estimer I'ordre de grandeur
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IV  Au coeur de la naine blanche

Au coeur de I’étoile, les atomes de carbone sont intégralement ionisés. La répulsion électrostatique entre
les noyaux de carbone peut étre assez forte pour les contraindre & se placer au voisinage d’un noeud
d’un réseau que nous supposerons cubique de c6té a. Ce noeud est le site de chaque noyau. Chaque site
est donc au centre d’une petite cellule cubique de co6té a. L’ensemble forme donc a priori un solide de
type cristallin. Dans un modéle simple mais effectif, un volume V' de ce solide fond lorsqu’en moyenne
sur I’ensemble de celui-ci, le carré de 'amplitude s> du mouvement d’agitation des noyaux autour de
leur site devient trop important a 1’échelle du pas du réseau a. Selon le critére de LINDEMANN proposé
en 1910, en écrivant s2 = y2a2, la fonte se produit dés que 7 devient de 'ordre de 10%.

(4 — 16. Exprimer le nombre de noyaux d’atomes de carbone N, contenu dans la naine blanche en fonction
de N, puis en fonction de m,, et M,. En déduire une expression de a en fonction de m,, M, et
R,. I’évaluation de la valeur de a conduit & a ~ 4 x 102 m.

Le mouvement d’un noyau autour de son site est sous le contréle du champ électrique dans ce voisinage.
Dans ce type de solide, les électrons sont totalement délocalisés dans le solide et sont assimilables a
un fluide de densité uniforme tandis que les noyaux sont agités de petits mouvements autour de leur
site. Dans le modéle de WIGNER-SEITZ, on représente une cellule élémentaire par une boule de rayon

e
a dont la densité volumique de charge est uniforme et égale a p = ——. On repere la position du noyau
a

de I'atome de carbone de masse m, = 12m,, par un point M tel que ¥ = OM = re, ou e, est le vecteur
unitaire radial des coordonnées sphériques. Le point O est le centre de la distribution sphérique de
charge dans laquelle évolue le noyau. On suppose par la suite que l'on a toujours r < a.

2er
er.

d — 17. Montrer que le champ électrique dans lequel évolue un noyau est : E=— 3
goa

J — 18. En restant dans le cadre de la mécanique classique, justifier que 7(¢) est confiné dans un plan.
Montrer que les coordonnées cartésiennes de 7(¢) dans ce plan sont des oscillations harmoniques
dont on exprimera la pulsation w en fonction e, a, m, et gg. Quelle est la nature de la courbe
¢ ={tecR,7(t)}?

Exprimer la constante s = <F2(t)> en fonction de deux des quatre conditions initiales du
probléme plan.

d — 19. Déterminer 'expression de I’énergie mécanique &£ d'un noyau en fonction de w, m, et 5%.

Le résultat classique que nous venons d’obtenir est spécifique & chaque noyau qui est caractérisé par une
valeur de 8(2). A T’échelle d’un échantillon de volume V' de I’étoile, on peut le généraliser en remplagant

s2 par sa valeur moyenne s? sur 'ensemble des valeurs de s3 dans le volume considéré.

Une autre facon de procéder est de considérer directement les aspects statistiques de ce probléme dans le
cadre de la mécanique quantique. Comme nous venons de le voir lors des deux questions précédentes les
noyaux peuvent étre assimilés a des oscillateurs harmoniques de pulsation commune mais d’amplitudes
différentes. En mécanique quantique, I’étude d’un oscillateur harmonique de pulsation w permet de
montrer que son énergie est quantifiée par un entier naturel ¢ et s’exprime selon :

1
Si:<i+2>ﬁw pour €N

Dans un cadre statistique simplifié, on peut assimiler un volume V' occupé par les noyaux dans I’étoile
a une assemblée d’oscillateurs harmoniques de pulsation w en équilibre thermique & la température T

(4 — 20. Dans le cadre de la physique statistique, déterminer ’expression de la probabilité p; pour qu'un

oscillateur harmonique décrit par la mécanique quantique posséde I’énergie mécanique &;. On

ourra poser = ——.

p poser f3 T

J — 21. En déduire I'expression de I’énergie moyenne d’un oscillateur harmonique £y dans le cadre de
ce modéle statistique quantique.
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d — 22. En rapprochant I’expression de &y de la valeur classique moyennée sur un volume V', montrer
que
1 h [e he
v = g avecqy =A- Y et0=nB
tanh — eV mpa kpy/gompa’
on précisera les valeurs simples des deux constantes numériques A et B.

0 — 23. Sachant que 73 ~ 1072 et § ~ 5,5 x 10° K, évaluer v a la surface de la naine blanche et au
coeur de celle-ci otl on estime que la température est T, ~ 107 K. En déduire I’état de la matiére
constituant I’étoile & la fois en surface et plus en profondeur.

Formulaire

En coordonnées sphériques (7,6,¢) de vecteurs unitaires associés (e,,€p,e4), on donne pour une fonction
scalaire f(r,0,¢) son gradient et son laplacien :

—  Of . 10f._. 1 of .
gradf = ar " + r 90 + rsinﬁ&p%

18 ([ ,0f 1 0 (. of 1 9%
A= ( 5) T 25090 (S””’%> T 2?0052

Données numériques

Constante de PLANCK : h = 6,6 x 10734 J - s

h
Constante de PLANCK réduite : h = o = 1,1 x 10737 s

s

Constante de BOLTZMANN : kp = 1,4 x 10723 J . K~!
Constante de NEWTON : G = 6,7 x 10~ m3 - kg™! - 572

Permittivité diélectrique du vide : g = 8,9 x 10712 F - m~
Célérité de la lumiére dans le vide : ¢ = 3,0 x 103m - s~

1
1

Masse du proton et masse du neutron : m, = m, = 1,7 x 10727 kg
Masse de 1'électron : m, = 9,1 x 10731 kg
Charge de I'électron : e = 1,6 x 10717 C

FIN DE L’EPREUVE
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Déformations élastiques

Ce sujet est consacré a I’étude de certaines propriétés de systémes élastiquement déformables.
Les parties I, IT et ITI sont trés largement indépendantes sous réserve de revenir aux définitions
de la constante de raideur k£ d’un ressort et du module d’élasticité £ d’un matériau présentées
dans la partie I.

La partie I étudie les ressorts élastiques linéaires et leurs associations a partir de la loi de Hooke.
La partie IT en propose une généralisation en abordant la description du module d’élasticité des
solides déformables. Enfin, la partie IIT décrit une expérience de mouvement brownien reliant
les oscillations d’un ressort et I'agitation thermique du gaz dans lequel le dispositif expérimental
est plongé.

I Ressorts et lo1 de Hooke

Le physicien anglais ROBERT HOOKE est le premier & avoir énoncé (en 1676) la loi associée a
la déformation élastique d’un ressort, établissant son allongement comme une fonction linéaire
de la force exercée sur ses extrémités. Il ne s’agit en général que du premier ordre d’un déve-
loppement en série de Taylor et la loi linéaire de Hooke peut donc devenir inexacte pour les
grandes déformations.

I.A°  Mouvements d’un ressort

On notera k la raideur d’'un ressort élastique,
‘ ‘ de masse négligeable, de longueur au repos £.

| | Si 'une de ses extrémités est fixe en O, I'exer-
OW M cice d’une force de tension T = —T'd (ou U est
un vecteur unitaire) sur l’extrémité mobile M
I ‘ du ressort induit une déformation de celui-ci de
sorte que (cf. figure 1) OM = (U soit colinéaire
a T avec T = k[0 — £y).

|-

FIGURE 1 — Loi de Hooke

C’est la loi de Hooke. On note aussi o = 1/k la souplesse du ressort.

(d — 1. Montrer que la force de tension ainsi exercée sur M est conservative et déterminer I’énergie
potentielle E,(T, o) associée en fonction de T et o.

Les deux extrémités P et M d’un tel ressort sont maintenant astreintes a se déplacer le long
de laxe fixe et horizontal (Ox) du référentiel galiléen (R). Deux points matériels de masse
mar = my et mp = my sont attachés aux extrémités du ressort et leur action sur 'axe (Ox) est
notamment décrite par les forces de frottement F_, M= —\Vuy et F_>p = —)X\yVp Oll on a noté
Vi et Vp les vitesses de M et P dans ce référentiel (cf. figure 2) ; on notera aussi OM = ()€,

ot OP = u(t)3,.

P M

e @ — ;-

FIGURE 2 — Deux masses reliées par un ressort
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O — 2. Etablir les équations différentielles vérifices par z(t) et xo(t).

O — 3. On en cherche des solutions de la forme x;(t) = zo; + a;e" ou xo1, To2, a1, ag €t u sont
des constantes. Déterminer et commenter la relation liant x¢; et zgs.

(d — 4. Montrer que la condition a; # 0 impose une équation algébrique du quatriéme degré
vérifiée par u, que I'on écrira en fonction de my, ma, A1, Ay et k.

A — 5. On suppose enfin ici que m; = my = m, \; = Ay = 0. Montrer qu’il n’existe alors que deux
solutions physiquement différentes de cette équation, pour chacune d’elles on exprimera
p ainsi que le rapport as/a; et on précisera la nature du mouvement des masses.

I.B Association de ressorts

On associe maintenant deux ressorts élastiques en série; on notera o = 1/k; et 09 = 1/ky
leurs souplesses, ¢y, et {yo leurs longueurs au repos et on suppose qu’ils restent alignés le long
de la droite (Ox) liant leurs extrémités les plus éloignées (cf. figure 3). On néglige la masse du
point d’attache A.

o1, lor 02, Loo
' <7

FIGURE 3 — Association de ressorts en série

1 — 6. Exprimer, en fonction notamment des abscisses xp, 4 et )/ les forces de tension exercées
par les deux ressorts.
En déduire qu’ils sont équivalents & un unique ressort donc on déterminera la souplesse
o ainsi que la longueur a vide /.

( — 7. Représenter sur un schéma l’association de deux ressorts en paralléle et donner I’expression
de la raideur équivalente a cette association.

De ces études, on peut déduire ce qui suit : la raideur k£ d’un fil métallique élastique de longueur
L et de section (constante) s s’exprime sous la forme :

s
kEk=FE= 1
> (1)
ol E est une grandeur caractéristique du matériau appelée module d’élasticité ; cette notion a
notamment été présentée par 'anglais THOMAS YOUNG en 1807.

[ — 8. Rappeler les analogies de cette relation avec celles exprimant les résistance et/ou conduc-
tance électrique d’un élément conducteur métallique.

En déduire la dimension du module d’élasticité.

I.C Tensions dans une tige élastique

Dans cette partie I.C on néglige les effets de la pesanteur. Une tige métallique homogene, de
section s, de masse M et de longueur au repos L, caractérisée par le module d’élasticité F,
est étirée le long de son axe horizontal par la rotation entretenue a vitesse angulaire constante
W = wp€, de son point d’attache O autour de I’axe vertical (Oz). Du fait des effets centrifuges
dus a la rotation, la tige s’allonge en régime permanent ; I’élément de tige qui se trouve au repos
a la distance r passe a la distance r 4+ £(r) (cf. figure 4).

On étudie le systéme matériel > qui, au repos, est compris entre les distances r et r + dr de

laxe (Oz).
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7 en mouvement

wWo (> '~ au repos
FIGURE 4 — Elongation lors d'un entrainement centrifuge

1 — 9. Exprimer la masse dM de Y en fonction notamment de dr. Justifier que ce systéme se

dr

e

[ — 10. Exprimer la force de tension T'(r) exercée par X sur la partie intérieure de la tige (celle
comprise entre 0 et ) en fonction de E, s et 9¢/0r.

comporte comme un ressort de souplesse do =

(1 — 11. En déduire la condition d’équilibre relatif de ¥ dans le référentiel entrainé avec la tige en
2

rotation sous la forme o2 = —x7r ou Y est une constante que I’on exprimera en fonction
r
de E, wy, L, M et s.
1 — 12. Préciser la condition aux limites aux extrémités (r = 0 et » = L) de la tige pour la

fonction ¢ ; en déduire £(r). Exprimer aussi 7'(0) en fonction de M, w3 et L ; commenter
I’expression obtenue.

IT Module d’élasticité des solides déformables

II.A Estimation en ordre de grandeur

Le module d’élasticité, relié a la raideur £ d’une tige élastique de longueur L et de section
s par la relation (1), est lié aux variations d’énergie de la tige lors d’une dilatation ou d’une
compression. L’énergie concernée est, dans le cas d’un matériau métallique, celle des électrons,
de masse m, = 9,1-1073! kg au sein des mailles du cristal métallique ; on notera a la dimension
caractéristique de ces mailles.

Dans une premiére approche heuristique, on fait I’hypothése que le module d’élasticité ne dépend
que de m., a et de la constante de Planck h = 6,6-107%* J-s sous la forme E = C m®h”a” ot la
constante adimensionnée C' est de l'ordre de grandeur de I'unité.

(d — 13. Par analyse dimensionnelle, déterminer les entiers «, 3 et .

(d — 14. Rappeler 'ordre de grandeur usuel de a; en déduire celui de E.

II.B Modéle quantique du puits infini 3D

On rappelle ici I'équation de Schrodinger pour une particule de masse m lorsque l'interaction

avec 'extérieur est décrite par le potentiel d’interaction U (T)

h2 = 5 — . a —
—%A\P(r, t)+U@)V(Tt) = Jﬁaqf(r,t) (2)
ol j> = —1, U(T t) est la fonction d’onde et i = h/27. Dans ce qui suit, on étudie une particule

dans un puits de potentiel infini défini & trois dimensions par U = cte = Uy pour 0 < z < ay,
0<y<aset <z <astandis que U — +0o en dehors de cette région bornée de I'espace.
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1 — 15. Quelles sont I'interprétation physique et la dimension de la fonction d’onde W(T,t) 7

[ — 16. On cherche des solutions de I'équation de Schrodinger de la forme W(Tt) = ®(x,y,2) W (t).
Quelle est la forme de W (t) ? Comment s’appelle ce type de solution ?

1 — 17. On suppose encore ®(x,y,2) = Fi(x)F3(y)F3(z). Déterminer les fonctions F; (i = 1,2, 3)
en fonction de a; et de trois nombres entiers n; € N*, & une constante multiplicative
arbitraire pres.

(d — 18. Montrer que I'énergie &£; de I’état fondamental de la particule s’écrit :

h? 1 1 1
=Uy+—|—=+—=+—= 3
gf O+8m[a%+a§+a§} ()

La particule de masse m, qui reste dans son état fondamental, évolue lentement d’un état
isotrope ot le volume V' = a® du puits est celui d’'un cube de coté a & une situation comprimée
ou une des dimensions a; = a — da < a tandis que les deux autres dimensions augmentent
simultanément et symétriquement (as = ag & tout instant) de maniére & maintenir constant le
volume V' = ajaqas du puits.
d — 19. Exprimer la variation A&, de I’énergie de I'état fondamental qui accompagne cette trans-
formation.
(4 — 20. On suppose da < a. Montrer qu’au premier ordre non nul en da/a la variation d’énergie
se met sous la forme A&, = %K da?, on exprimera K en fonction de h, m et a.
On rappelle que (1 —€)72 =1+ 2¢ + 3€* + o(€?).

II.C Compression d’une tige

On s’intéresse maintenant a une tige (cf. figure 5) de section constante s, d’axe (Ozx) et de
longueur L, réalisée dans un matériau qui peut étre décrit comme dans la partie I1.B : il est
divisé a I’échelle microscopique en zones cubiques de coté a et supposées alignées avec les axes
de coordonnées (Ozxyz).

-g--

FIGURE 5 — Compression d’une tige

Un opérateur exerce alors sur chaque extrémité de la tige une force F' uniformément répartie
de maniére & diminuer la longueur de la tige qui passe de L & L — dL. On admet que le travail
de cette force a pour effet 'augmentation de I’énergie des électrons du milieu, a raison d’un
électron de valence par cube élémentaire de coté a.

d — 21. Exprimer, en fonction de a, L et s le nombre N de cubes élémentaires de coté a a I'intérieur
de la tige.

1 — 22. En supposant la compression uniforme, relier la variation da de la dimension de cube
selon (Ox) a L, a et JL.

1 — 23. En déduire 'augmentation d’énergie A&, de la tige; en déduire I'expression de F' en
fonction de K, s, a et dL.

(1 — 24. En déduire I'expression du module d’élasticité E, défini par la relation (1), en fonction
de h, a et m.. Comparer au résultat de la partie IT.A.
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III L’expérience de Kappler

On dispose au sein d'un gaz thermostaté a la température 6 une plaque de masse m retenue
par un ressort vertical de raideur k¥ = 1/0, disposée dans le champ de pesanteur d’intensité
g (figure 6). Sous I'action des chocs des molécules du gaz, cette plaque se déplace de maniére
aléatoire le long du seul axe vertical (Oz) de part et d’autre de sa position d’équilibre zy; on
parle de mouvement brownien.

FIGURE 6 — Oscillations dues au mouvement brownien

1 — 25. Le point d’attache du ressort est en z = 0 et on note ¢; sa longueur au repos. Déterminer
la position d’équilibre 2y puis exprimer 1’énergie potentielle totale dont dérivent les forces
¢lastiques et de pesanteur en fonction seulement de o et 2’ = z — 2.

Z/2

Dans ce qui suit on pourra introduire la fonction E,(z") = 3.

On admet que les valeurs de 2’ lors du mouvement brownien sont alors régies par la loi de
probabilité de Boltzmann : on note kg = 1,4-1072* J-K~! la constante de Boltzmann et P(z)dz’
est la probabilité pour que la plaque soit disposée entre les altitudes 2z’ et 2’ + dz’. On admet

donc V'expression P(z') = 0] exp (—7(0)2").

On donne les valeurs des intégrales / e dqt = —ﬁ et / e?qt = =, L
0 2V a 0 4\ a3

d — 26. Exprimer v(0) et calculer ((#) en fonction de kgf et o.
[ — 27. Sans faire de calculs, que vaut la valeur moyenne (2’) 7

O — 28. Calculer la valeur moyenne (2'?) ; commenter, au regard du théoréme d’équipartition.

En 1931, le physicien allemand EUGEN KAPPLER a publié dans la revue Annalen der Physik
les résultats d’une expérience basée sur ce principe en utilisant un miroir suspendu a un fil de
torsion vertical (ressort en rotation). L’expérience concluait a la validité de la loi de Boltzmann
avec une mesure précise de la constante de Boltzmann.

d — 29. Connaissez-vous d’autres cas de mouvement brownien ? D’autres expériences ayant conduit
a une vérification expérimentale de la loi de Boltzmann ?

FIN DE L’EPREUVE
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Thermodynamique du froid

Le sujet, consacré a I’é¢tude de certaines propriétés physiques a trés basse température, com-
porte deux problémes totalement indépendants numeérotés I (étude de transferts thermiques
conductifs et convecto—conductifs) et IT (étude d’un réfrigérateur par détente d'un gaz).

Les vecteurs sont surmontés d’une fleche (), a 'exception des vecteurs unitaires notés avec un
chapeau (u). Les applications numériques seront réalisées avec seulement deux chiffres significa-
tifs. Les données numériques nécessaires et un formulaire, relatif en particulier aux coordonnées
sphériques, figurent en fin d’énoncé.

I Refroidissement des supraconducteurs

Parmi les applications importantes des basses températures, on compte la supraconductivité :
certains métaux ou oxydes métalliques acquiérent, en dessous d’une certaine température cri-
tique (7' < Ty ) un caractére supraconducteur, le matériau pouvant conduire un courant élec-
trique permanent sans aucune dissipation d’énergie. Cette propriété est par exemple mise a
profit pour la production de champs magnétiques intenses.

Dans tout ce qui suit, le matériau supraconducteur est assimilé & un conducteur thermique de
conductivité thermique A de la loi de FOURIER, de masse volumique p et de capacité thermique
massique c¢. On rappelle que, dans ce cas, 'évolution de la température a I’intérieur du matériau
conducteur est donnée par I’équation de diffusion thermique :

oT
pear = AAT ot A est 'opérateur laplacien.

Les échanges thermiques entre ce matériau et le fluide qui ’entoure seront, dans tous les cas,
décrits par la loi de NEWTON : le transfert thermique pariétal (a la surface ou sur les bords)
du solide de température 1" vers le fluide de température 7%, par unité de temps et par unité
d’aire, est jpar = k(1" — Ty) ot k est une constante. Les études menées en I.A et I.B sont
totalement indépendantes.

I.A Refroidissement progressif d’un supraconducteur

Le matériau (supraconducteur) étudié dans cette partie I.A a la forme d’une boule de rayon
R, de température uniforme T'(¢). Il est entiérement plongé dans un liquide réfrigérant qui
maintient, & grande distance du matériau, la température uniforme et constante Ty < Ty (cf.
figure 1).

Liquide de refroidissement

FIGURE 1 — Boule de supraconducteur en cours de refroidissement

[ — 1. Donner, en les justifiant, les unités (ou les dimensions) de k et A.
Etablir, dans le cas unidimensionnel, I’équation de diffusion thermique rappelée ci-dessus.
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1 — 2. Rappeler 'expression de la diffusivité thermique Dy, d’'un matériau.
A quelle condition, portant sur la durée At du refroidissement, ’hypothése consistant a
considérer la température du matériau comme uniforme est-elle 1légitime ? On se placera
dans ce cas dans la suite.

(1 — 3. Exprimer en fonction des données la capacité thermique Cyy, de la boule solide, ainsi que la
résistance thermique d’isolement Ry, associée aux échanges pariétaux convecto-conductifs
a sa surface.

Pour I’étude du refroidissement, il faut aussi tenir compte des transferts thermiques au sein
du liquide réfrigérant. On admet que la température Ty en un point M du liquide supposé
immobile ne dépend que de la distance r au centre O de la boule (figure 1). On néglige la
capacité thermique massique du liquide réfrigérant ; sa conductivité thermique est notée \.

O — 4. Montrer que T¢(r,t) =Ty + [T5(t) — To] R/r
1 — 5. Pourquoi est-il licite de décrire les transferts a travers le fluide en termes de résistance
thermique ?

Exprimer la résistance thermique Ry, associée au refroidissement conductif, en fonction
de X et R.

On suppose pour finir que X' > Rk.

1 — 6. Déterminer 1'équation d’évolution de la température 7'(t) de la boule solide; on posera
_ pRc
3k
0 —7. On notera T; = T(t = 0) la température initiale du matériau. Tracer l'allure de la
courbe T'(t) et exprimer la durée At au bout de laquelle le matériau débute la transition
conducteur — supraconducteur.

I.B Refroidissement stationnaire d’un fil supraconducteur

L’absence de résistivité dans les matériaux supraconducteurs n’empéche pas, notamment dans
le cadre de régimes transitoires électromagnétiques, 'existence de dissipations de puissance
dues au champ électrique induit. Il s’ensuit un chauffage local du matériau supraconducteur.
Le passage éventuel de celui-ci au-dessus de la température critique 7. a alors un effet catas-
trophique : 'effet Joule apparait, la température augmente de plus en plus et la surchauffe du
bobinage peut détruire celui-ci : c’est le phénomeéne de quench (voir figure 2).

FIGURE 2 — Fuite d’hélium suite a la destruction (quench) d’un aimant supraconducteur utilisé
pour la RMN. Département de Chimie de 'université de 1’Alberta
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On va dans ce qui suit s’intéresser aux conditions de refroidissement propres a éviter le phéno-
meéne de quench.

Le matériau supraconducteur étudié a la forme d’un fil cylindrique de rayon R, de trés grande
longueur (figure 3). Il est entiérement plongé dans un liquide réfrigérant qui maintient une tem-
pérature uniforme Ty < T, avec lequel les échanges thermiques se font selon la loi de NEWTON.
La totalité du fil cylindrique est le siége d’une production de puissance électromagnétique avec
la densité volumique supposée uniforme et constante p,,.

To
JUSTISSTPIOIJOI 9P apmbIT

Vue de dessus

FIGURE 3 — Fil supraconducteur en régime stationnaire

(d — 8. Exprimer la puissance totale Ps(r) évacuée par une hauteur H de la partie du fil située
au plus a la distance r de I'axe avec 0 < r < R, cf. figure 3.

1 — 9. En déduire, en régime permanent, l'intensité jy,(r) de la densité volumique de flux ther-
mique conductif dans le fil.

(1 — 10. Déterminer 'expression de la température de surface T en fonction de Tj, k, p, et R .
@ — 11. A quel endroit dans le fil la température est-elle maximale ?
Déterminer 'expression de la valeur T,., correspondante.

Montrer que le phénomeéne de quench ne se produit pas si p, est inférieur a une valeur
critique pmax que l'on exprimera.

II Reéfrigérateur a détente de gaz

Les premiéres études des propriétés des systémes physiques a trés basses températures, et en
particulier la découverte de la supraconductivité, ont été faites en utilisant des réfrigérateurs
a détente de gaz, a la suite des travaux des néerlandais VAN DER WAALS et KAMERLINGH
ONNES. Les parties IT.A (étude statistique des gaz parfaits), II.B (modéle énergétique de VAN
DER WAALS) et II.C (refroidissement par détente) sont indépendantes.

On noubliera pas que le modéle utilisé pour la description thermodynamique des fluides n’est
pas le méme : modéle des gaz parfaits dans la partie II.A et modéle avec interactions entre
molécules dans la suite.

Page 3/7



Physique II, année 2024 — filiere MP

FIGURE 4 — KAMERLINGH ONNES (& gauche) et VAN DER WAALS (& droite) photographiés
devant la machine a liquéfier I’hélium, laboratoire de 1’Université de Leiden, 19o8

II. A  Thermodynamique des gaz parfaits

On étudie ici un systéme thermodynamique formé de N particules réparties sur p niveaux
d’énergie €; (j = 1,2,...,p) non dégénérés. Le systéme est maintenu & température constante
T par contact avec un thermostat et on notera § = 1/kgT.

p
1 — 12. Rappeler la loi statistique de BOLTZMANN. On notera Z () = Z exp (—f¢;).
j=1

1 — 13. Exprimer ’énergie moyenne € d’une des N particules du milieu en fonction de Z(3) et sa
dérivée.
En déduire I'expression de I’énergie interne U(/3) du systéme.

[ — 14. Montrer qu’on peut exprimer, en fonction d’'une somme (qu’on ne cherchera surtout pas
a calculer), 'écart-type 0. associé a la moyenne &.
Quel est I'écart-type oy associé ? Que peut-on en en déduire ?

Les états possibles du systéme étant trés nombreux, les sommes exprimant Z(3) et donc U(f)
explicitées ci-dessus sont remplacées par des intégrales : le nombre dg d’états distincts corres-
pondant & un intervalle d’énergie de s’exprime alors sous la forme dg = ¢(¢)de ou g(e) est la

densité d’états, on adoptera I'expression Z(f) = / q(e) exp (—pP¢) de ou l'intégrale est étendue
a toutes les valeurs possibles de ’énergie €.
[ — 15. Préciser 'unité (ou la dimension) de la densité d’états g(¢).

On étudie maintenant les propriétés thermodynamiques d’un gaz parfait monoatomique formé
de N atomes identiques, décrits dans le cadre de la mécanique classique : un atome de masse m a

TS . . dr . PSR .
pour vecteur position 7(t) et pour vitesse (t) = o relativement au référentiel d’étude, supposé

galiléen et lié au récipient fixe, de volume V', qui contient ce gaz. L’énergie des molécules est
purement cinétique donc 0 < € < +o0.

[ — 16. Montrer que ¢(¢) est proportionnel & v/e. Pour la suite, on pourra poser q(¢) = Q+/¢ sans
préciser la constante ().

[ — 17. En déduire I'expression de Z() en fonction de 3, @ et de 'intégrale A = / Vze *dr
0

(il est aussi inutile de calculer A).
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(1 — 18. Déterminer enfin I’énergie interne U du gaz, en fonction de N et §; commenter le résultat
obtenu et proposer une généralisation dans le cas d’'un gaz parfait diatomique.

II.B Le modéle de van der Waals

On peut rafiner le modeéle du gaz parfait en considérant maintenant le modéle d’un fluide F
constitué de molécules assimilées a des sphéres de rayon rg en interactions : I’énergie potentielle
d’interaction entre deux molécules est attractive, ne dépend que de la distance r entre leurs

a
centres et s’écrit €, = —— ou r > 2rq et a est une constante. Le volume total occupé par le
T
— NE
fluide est V', la température T" et ’énergie cinétique moyenne du gaz sera notée E, = BlT :
/y —_

[ — 19. Quelle est la nature des interactions décrites ici?
Quel est le signe de a'?

Pour le calcul de l'interaction entre une molécule donnée de centre O (& l'origine des coordon-
nées) et le reste du gaz, on admet que les N — 1 autres molécules sont réparties uniformément
en fonction de la distance r avec une densité particulaire n* = v uniforme pour r > 2ry (voir
la figure 5).

1 — 20. Quel est le nombre (moyen) dN de molécules dont le centre est situé a une distance de O

comprise entre r et r + dr?

En calculant une intégrale, déduire 1’énergie potentielle d’interaction moyenne z; de la
molécule centrée sur O avec toutes les autres. On pourra considérer que V' > 13 pour
évaluer les bornes d’intégration.

FIGURE 5 — Interaction d’une molécule avec le reste du gaz
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1 — 21. En déduire I'expression de I’énergie interne du fluide F se met sous la forme

_ Nk:BT_NQa
v—1 V

U

dans laquelle on exprimera la constante a en fonction de a et 7.

Un modeéle un peu plus élaboré de physique statistique permet également d’obtenir I’entropie
de la méme quantité de fluide F, elle s’écrit :

TV —u)
S =5 ke NIn ———=
0B T — w)

4
ou I'exposant ¢ ainsi que Sy, Ty, V sont des constantes et u = N §7r(27’0)3.

A — 22. Justifier physiquement le signe de c.

Pour toute évolution infinitésimale d’un systéme fluide de température T et a la pression P, on
indique la relation dU = T'dS — P dV entre les variations dU, dS et dV de I’énergie interne, de
I’entropie et du volume.

1 — 23. En déduire ¢ en fonction de v ainsi que I'équation d’état P = P(T,V,N) du fluide F.
Commenter.

II.C Refroidissement par détente adiabatique

Dans cette derniére partie les grandeurs thermodynamiques utilisées sont toujours les mémes
que dans les parties précédentes mais elle s’entendent pour une mole de fluide.
On étudie les évolutions d'un fluide F caractérisé par I’énergie interne molaire (admise) :

RT A

y—1 V

et par I’équation d’état molaire (également admise) :

<P+%> (V- B)=RT

o A et B sont des constantes strictement positives (leurs valeurs numériques pour Ny et H,
figurent en fin d’énoncé) et v > 1. Enfin, le modéle constitue une correction par rapport au
modeéle du gaz parfait ; en particulier, on se limitera partout au corrections du premier ordre
en fonction des constantes A et B.

1 1
0 — 24. Montrer que I'enthalpie molaire H(7T,P) du fluide s’écrit H = CpT — KP (T — 17) ol

RT, = 5 et Cp > 0 et K > 0 sont des constantes que 'on exprimera en fonction des

données.

1 — 25. Comment nomme-t-on la détente adiabatique et isenthalpique d’un fluide ?
La transformation ainsi décrite est-elle réversible 7
A quelle condition une détente de ce type permet-elle un refroidissement ?
Faire 'application numérique pour N, et Hy et conclure.

FIN DE L’EPREUVE
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Données numériques

Grandeur Notation Valeur numérique
Constante d’Avogadro Na 6,0-10%3 mol~*
Constante de Boltzmann kg 1,410 J. Kt
Constante molaire des gaz parfaits R 8,3J-K 1.mol~!

Coefficients de I’équation de van der Waals

Pour le diazote N, ‘ Pour le dihydrogéne H,
A=1410"'SI B =3910"°8I ‘ A=2510"2SI B=2,710"°8SI

Repérage sphérique d’un point M

Le point M de coordonnées cartésiennes (z,y,z) peut aussi étre repéré par ses coordonnées
sphériques r, 6 et  rappelées sur le schéma ci-apres :

(02),
ze. |
9 M 6}
Y y
| | i
(Ox)
Formulaire en coordonnées sphériques
Gradient -
SN of . 1%A -

grad f = G et g%t TG 9

Laplacien scalaire :
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Mesure et caractérisation du champ de pesanteur

Notations et données numériques utiles dans ’épreuve :
— constante de Boltzmann : kg = 1,3 x 10723 J - K1
— constante de Planck : h = 6,6 x 10734 J - 5

— célérité de la lumiére : ¢ = 3,0 x 10® m - s~}

— unité de masse atomique : u = 1,7 x 10727 kg

— constante de gravitation universelle : G = 6,7 x 107" m?.s72 . kg™!
— masse de la Terre : mr = 6,0 x 10** kg

— masse de la Lune : my = 7,3 x 10* kg

— masse du Soleil : mg = 2,0 x 10*° kg

— rayon de la Terre : Ry = 6,4 x 10° m

— distance Terre-Soleil : ds = 1,5 x 10! m

— distance Terre-Lune : dy = 3,8 x 10® m

— masse atomique du rubidium : m =85 u

— intervalle entre deux impulsions laser : 7 = 5,0 x 1072 s

— longueur d’onde associée au transfert de quantité de mouvement : A\ = 7,8 x 10~"m

De nombreux domaines technologiques nécessitent de connaitre de maniére précise la valeur
du champ de pesanteur g (tel que le poids P dun corps de masse m s’écrive P = mg ). Ce
sujet s’intéresse dans sa premiére partie & un modéle permettant d’expliquer la dépendance
temporelle du champ de pesanteur mesurée par un appareil de précision étudié dans sa seconde
partie. Dans tout le probléme on notera g = ||g]| 'intensité de la pesanteur.

I Mesure de la variation temporelle de g

Un dispositif quantique de précision étudié dans la seconde partie permet d’accéder a de trés
faibles variations du champ de pesanteur. Dans cette premiére partie, on s’intéresse tout d’abord
au champ de gravitation en un point M de masse m fixé & la surface de la Terre (et donc
immobile par rapport a celle-ci. On note § = gu le champ de pesanteur en M ol @ est le
vecteur unitaire de la verticale locale orientée vers le bas. On observe expérimentalement que g
dépend faiblement du temps. On introduit alors g, la moyenne temporelle de g sur une période
d’étude et 0g = g — g. La courbe de la figure 1 représente les variations de dg en fonction du
temps mesurées grace au dispositif étudié dans la seconde partie. La valeur moyenne de ¢ a
I'endroit considéré et sur la période considérée est g = 9808 907 500 nm - s~2, I’axe des abscisses
est gradué en jour julien moyen!. La durée d’observation est d’environ 25 jours.

Le but de cette partie est de comprendre I'origine de cette variation temporelle et d’en donner
une expression approchée. Pour cela, on s’intéresse aux forces gravitationnelles exercées sur le
point M de masse m. On considére ici que chaque astre (Terre, Soleil, Lune, etc.) exercant une
influence gravitationnelle est a symétrie sphérique. Pour un astre (A), on notera A, R, et m,
respectivement son centre, son rayon et sa masse (en particulier, la Terre (T) sera décrite par

une sphére de centre T, de rayon Ry et de masse mr). On note également dy = |T'A| la distance
entre les centres A et T' de I'astre (A) et de la Terre.

1. Le jour julien est un systéme de datation consistant & compter le nombre de jours et fraction de jour
écoulés depuis une date conventionnelle fixée au ler janvier de ’an 4713 av. J.-C.
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FIGURE 1 — Variation temporelle de I'intensité de la pesanteur

Q — 1. Evaluer graphiquement les trois temps caractéristiques 7 < 75 < 73 qui apparaissent sur
la courbe de la figure 1.
Que peut-on conjecturer sur les origines respectives des variations de g sur chacune de
ces échelles de temps?

(1 — 2. Rappeler la définition d’un référentiel galiléen, du référentiel de Copernic %, et du réfé-
rentiel géocentrique Z,.

(A — 3. On considére que le référentiel %, est galiléen. Montrer que %, ne l'est pas.

La force gravitationnelle F’;Hm exercée par un astre (A) sur un corps ponctuel de masse m
placé en M et le champ gravitationnel G,(M) créé par 'astre (A) en M vérifient la relation

Fyoym = mGa(M).

O — 4. Enoncer le théoréme de Gauss gravitationnel, reliant notamment le champ de gravitation
G et la constante de gravitation universelle G.

En déduire I’expression du champ QA(M) crée par un astre (A) pour AM > Ry, en fonction
de G, my et AM.

On introduit une base (€,,€,,€,) fixe dans %, telle que le plan &, = (T€;,€,) coincide avec le
plan équatorial terrestre. On considére que la Terre est en rotation uniforme autour de I'axe
(T,e.) par rapport au référentiel %, et on note & = we, son vecteur rotation. On considére un
point M de masse m situé a la surface de la Terre et un astre quelconque (A). Le vecteur unitaire

o —

radial de la base sphérique locale en M est e, = m/RT. On note finalement V4 = (m,ﬂ)
I'angle vu depuis de le centre de la Terre entre le point M et le centre de lastre (A). Ces
notations sont explicitées sur la figure 2 dans laquelle les échelles, notamment de distance, ne
sont pas respectées.

Dans le référentiel géocentrique %, les trajectoires du point M appartenant a la surface de
la Terre, ainsi que celles des centres L et S de la Lune et du Soleil peuvent étre considérées
comme circulaires uniformes, de périodes respectives Ty, T, et Tg.

( — 5. Donner la valeur approximative, en jours terrestres, de chacune de ces périodes.

Déterminer la valeur numérique de w en radian par seconde.

On suppose que l'influence gravitationnelle d’un astre (A) est non négligeable. Pour un point
M de masse m posé a la surface de la Terre, immobile par rapport a la Terre et soumis a des
forces de contact de résultante R, I'intensité de la pesanteur est définie par

R+mg=0
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FIGURE 2 — Caractérisation géométrique du probléme

d — 6. En étudiant le mouveinent de M dans le référentiel Z%,, montrer que l'on peut e_x;;rimer
g sous la forme ¢ = Gr(M) + 7 + 71 ol jo s’exprirzle en fonction de & et de T'M alors
que 77 est simplement la différence entre Gy (M) et Gy (7).
A — 7. Comment intervient le terme 7, dans la variation du champ de pesanteur locale ?
En considérant uniquement 'effet d’un astre (4), on note dg, 'expression théorique de la quan-
tité d¢g discutée dans le préambule de cette partie 1.
1 — 8. Déterminer 'expression de dg, en fonction de €, et de I'un des trois termes g}(M), ~o ou
T
En pratique, astre perturbateur (A) considéré est toujours trés loin de la Terre. Ainsi, dy > Ry

et I'on peut chercher & donner une expression approchée de ¥, en se limitant uniquement aux
termes d’ordre 1 en Rr/dj.

1 — 9. Montrer que, dans cette approximation, 7; s’exprime sous la forme

T = —G;LA (W + uﬁ)
A

o
otl 'on précisera I'expression de p en fonction de T'M, T A, dy, Ry et W 4.
En déduire 'expression de dg, en fonction de G, my, dy, Rr et U .
o
1 — 10. Déterminer l'expression de |dgy| dans le cas particulier ot TM et T'A sont colinéaires et
de méme sens.

Calculer alors, dans ce cas, les valeurs de |dgL| et |dgs|, variations de g dues respectivement
a la Lune et au Soleil ainsi que de leur rapport k = |0gi|/|dgs|. Commenter les valeurs
obtenues.

On se place dans un modéle dans lequel on admet que pour tous les astres (A) autres que le
Soleil et la Lune on a |dgy| < |dgs|.

(d — 11. En prenant en compte les résultats des questions précédentes, écrire ’expression la plus
simple possible de |0g| correspondant au modéle étudié en fonction notamment du temps ¢.

Apreés avoir tracé 'allure de la fonction ¢ — |dg|(t) sur un mois, comparer ce résultat aux
données expérimentales de la figure 1.
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IT Gravimétre a atomes froids

Dans un gravimeétre & atomes froids, on utilise des atomes de rubidium, de masse m, refroidis
a une température Ty de ordre du microkelvin. A cette température, chaque atome peut étre
décrit par un paquet d’onde dont le centre évolue comme une particule classique, suivant un
mouvement de chute libre sous I'action de la seule pesanteur. Les atomes se comportent alors
comme des ondes de matiére dont la propagation peut conduire a des phénomeénes d’interfeé-
rences. Ces interférences peuvent étre exploitées pour mesurer ’accélération de la pesanteur
avec précision.

Dans cette partie, on considére le référentiel terrestre (Ozyz) comme galiléen et on néglige toute
action autre que celle de la pesanteur sur les atomes de rubidium. On s’intéresse uniquement au
mouvement s’effectuant le long d’un axe vertical Oz orienté vers le bas par le vecteur unitaire
€.. On note p = muv - €, la projection selon €, de la quantité de mouvement d’une particule de
masse m et de vitesse . Enfin, on considére g uniforme et indépendant du temps.

Lors de la chute d'un paquet d’onde, celui-ci interagit avec un rayonnement électromagnétique
(impulsion laser) qui influe sur son mouvement de la maniére suivante :

— At = 0, une impulsion permet de dédoubler chaque paquet d’onde en deux parties
(désignées par les indices 1 et 2 par la suite) en communiquant a un des deux paquets,
par exemple le paquet 2, une quantité de mouvement supplémentaire p., dans le sens +¢..
On note p; et py les projections selon Oz des quantités de mouvement associées a chaque

paquet. L’évolution de chaque paquet entre t = 0 et ¢ = 7 constitue I'étape @

— A t = 7, une autre impulsion laser augmente p; et diminue p, de maniére instantanée de

la quantité p,. L’évolution de chaque paquet entre t = 7 et ¢ = 27 constitue I'étape @

— A t = 27, une nouvelle impulsion diminue p; de la quantité P+, PUis une mesure permet
de tester I’état du paquet d’onde total.

Les impulsions utilisées pour modifier les quantités de mouvement des paquets aux instants
t=0,t=r7ett= 27 sont équivalentes a celles que produirait un laser monochromatique
de longueur d’onde A\g. On note p, la norme de la quantité de mouvement d’un photon de
ce rayonnement. On introduit également p2 = (p?), moyenne quadratique de la quantité de
mouvement due a ’agitation thermique des atomes de rubidium a 7j.

(d — 12. Déterminer les expressions de p, et py en fonction notamment de )\ et Tp, ainsi que leurs
valeurs numériques. Commenter.

On étudie ici le mouvement des centres des paquets d’ondes, et on admet qu’ils évoluent chacun
de la méme maniére qu’une particule de masse m, étudiée en mécanique classique. A t = 07,
aprés interaction avec le faisceau laser, on prend comme conditions initiales p;(07) = po et

p2(07) = po + ps.
(d — 13. Dans cette vision classique, exprimer, en fonction de pg, p, m, g et 7, les distances d; ,
et dy, parcourues par chacune des particules dans la phase @
(1 — 14. Exprimer, toujours en fonction de pg, p,, m, g et 7, les distances d;; et dgp parcourues

par chacune des particules dans la phase @

En déduire que les centres des paquets d’ondes occupent la méme position 'instant ¢ = 27.
On notera zy cette position.

1 — 15. Déterminer 'expression de I’énergie potentielle de pesanteur V(z) en prenant V(0) = 0.
En déduire la relation entre p(z), m, g ,z et 'énergie mécanique E d’une particule soumise
uniquement & 'action de la pesanteur.
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On s’intéresse désormais au traitement quantique de la chute des paquets d’ondes dans le champ
de pesanteur. On rappelle que I'évolution de la fonction d’onde (M, t) associée a une particule
de masse m et d’énergie potentielle V' s’écrit :

h? oY

L’énergie potentielle V' dépendant uniquement de z, on peut chercher les solutions sous la forme
U(z,t) = o(2)¢(1).
d — 16. Montrer que les fonctions ¢ et ( vérifient deux équations différentielles indépendantes.

B
—zit

En déduire que ¢ peut finalement s’écrire sous la forme ¢ (z,t) = ¢(2)e "=, et justifier

que F est une constante réelle.

On peut chercher les solutions sous la forme ¢(z) = ¢g exp [%a(z)], avec ¢g constant et o(z)

une fonction que 1'on peut exprimer sous la forme d’un développement en puissances de h/i du

type
h 2
(?>
ou chaque o;(z) est une fonction réelle.
Dans les cas ou le potentiel varie peu sur les échelles spatiales considérées, condition que ’on
supposera vérifiée par la suite, on admet qu’on peut alors limiter les calculs a4 'ordre 1 en A/i.
Dans la suite, on se place dans le cas ou F > V(z) pour toutes les valeurs de z considérées.

o(z) =oo(z) + ?Ul(z) + @)2 oa(z) + o

1

(d — 17. Montrer que o est solution de ’équation différentielle

h

—o" + 0% =2m[E - V(2)] = Rk (2).

i
En se limitant a 'ordre 1 en i/i et en écrivant qu'un nombre complexe est nul si et seule-
ment si sa partie réelle et sa partie imaginaire sont nulles, établir le systéme d’équations
différentielles vérifiées par og(2) et o1(z), puis montrer que la fonction d’onde s’écrit alors
sous la forme :

z

o+(2) = o exp [j:z/ k(u)du}
k(z) 0

ou P est une constante que I'on ne cherchera pas a déterminer. Préciser laquelle (£) de

ces solutions est physiquement acceptable.

Dans le cas particulier d’un potentiel uniforme V' = V;, déterminer I'expression de 1(z,t)

et commenter cette derniére expression.

On peut montrer que la prise en compte des termes d’ordre 2 dans 'expression de ¢ conduit
un expression du type :

¢+(z) = ;{:22) 1+ 4;7?(2) i—‘: + 77} exp {:i:i /OZ k(u)du}

avec dans notre cas n < 1.

(1 — 18. Déterminer I'expression de la longueur d’onde de de Broglie A\ 5 associée a une particule

de quantité de mouvement p.

d)\g
dz

Exprimer, en fonction de <5342 la condition légitimant I'approximation d’ordre 1 pour o.
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Pour comprendre l'origine du déphasage entre les deux parties 1 et 2 du paquet d’onde associé
a la particule, on s’intéresse a la phase de la fonction d’onde, et on note

eil2) = [ k(.

avec j € {1,2}. On définit la différence de phase ¢ au point Mj de cote z = 2z par

¥ = 902(M0) - 901(M0>

On se place dans 'approximation o, suivante :« pour le calcul de @, les valeurs de k; et ks sont

considérées constantes durant chacune des étapes @ et @, et égales a leur valeur au début de
chaque étape ». Cette approximation revient a négliger 'énergie potentielle V' (z) devant E. On
note alors ¥ = ¥ + ¢ Pexpression approchée de ¢ obtenue & I'aide de cette approximation,

ot 0 et ) sont les déphasages respectifs dus aux étapes @ et @

J - 19.

Déterminer, dans "approximation o7, les expressions ki,, k1p, k2o €t ko, des grandeurs k;

et ko en fonction de py et p, pour chacune des étapes @ et @
Déterminer les expressions de ¢? et ¢ déphasage entre les paquets lors de ces deux étapes.

En déduire que ¢° s’exprime alors sous la forme ¢° = ug ot 'on précisera Iexpression de
1 en fonction de 7 et \g, on déterminera également sa valeur numérique.

Une méthode de mesure par fluorescence (non détaillée) permet de recueillir a Uinstant ¢ = 27
un signal s proportionnel & la densité de probabilité de présence de la particule au point M,.

J - 20.

J - 21.

Montrer que s = sof(p), ou s¢ est la valeur maximale du signal s et ¢ — f(p) une
fonction que 'on précisera.

On désire pouvoir mesurer l'intensité de la pesanteur g avec une incertitude relative
dg/g = 1079, Déterminer la précision minimale avec laquelle on doit étre capable de
déterminer le déphasage ¢ pour obtenir la précision voulue sur la mesure de g.

Une variation du signal s est détectable uniquement si elle dépasse un seuil noté As. A
partir de I’étude du graphe de la fonction ¢ — f(p) déterminer les valeurs de ¢ autour
desquelles la mesure de g est la plus précise.

Dans le calcul du déphasage précédent, on a négligé les variations de ki et ko liées a la chute
du paquet d’onde dans le champ de pesanteur. On cherche ici a estimer I'influence de cette

approximation, pour l’étape @ uniquement. On note ¢, le déphasage entre les centres des

paquets d’ondes 1 et 2 & la fin de I'étape @ .

J - 22.

J - 23.

Montrer que ¢, = F (py + py,dae) — F (po,di,0) o0t F : (z,y) — K [(2 + vy)*/? — 2°], on
précisera les expressions de v et K en fonction notamment de m, g et A.

Evaluer le rapport m?gd, ./p3.
Conclure quant a la légitimité de I’approximation .27.

FIN DE L’EPREUVE
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L’anémométrie a fil chaud

L’anémométrie a fil chaud est une technique permettant de mesurer
la vitesse d’écoulement d’un fluide. Elle est basée sur 'influence de la
vitesse d’écoulement du fluide sur le transfert thermique conducto-
convectif d’un solide conducteur plongé dans ce fluide.

Le systéme le plus couramment utilisé est un petit fil cylindrique,
d’un diameétre typique d,, de 'ordre de quelques micromeétres, par-
couru par un courant et donc chauffé par effet Joule.

Ce petit fil est fixé a des broches d’alimentation par I'intermédiaire
d’une gaine d’adaptation qui permet notamment ’alimentation du
fil et de fixer la longueur active du fil, notée Ly, qui est ici de I'ordre
de quelques millimétres.

Quelques valeurs numériques concernant certaines caractéristiques
physiques du fil chaud sont rassemblées dans le tableau ci-dessous.

Broche

Gaine ——>»
d’adaptation

Broche

FIGURE 1 — Anémométre

Matériau Résistivité a Conductivité Masse Capacité
20°C : pog thermique : Ay volumique : iy thermique
[4€2 - cm)] [W-em™ - K™ | [kg-m™3] x 10* | massique : ¢y
[kJ-kg™" - K1)
Tungsténe 5,5 1,9 1,93 0,14
Platine 9,8 0,72 2,15 0,13
Platine-iridium 32 0,17 2,16 0,13

Les applications numériques seront réalisées avec au plus 2 chiffres significatifs.

I Etude énergétique de 'anémométre

I.A Bilan d’énergie dans le fil chaud

Le fil conducteur (en tungsténe par exemple) est parcouru par un courant électrique continu
d’intensité I. Il est plongé dans un fluide en écoulement. On utilisera les notations suivantes :

e Caractéristiques du fil (que 1'on repére avec I'indice « w » pour wire en anglais) :

masse

volumique iy, capacité thermique massique ¢, température Ty, résistivité (inverse de la

conductivité) électrique py,, conductivité thermique Ay, longueur L, et diamétre d.,.

e Caractéristiques du fluide (généralement de I'air que 'on repére lorsqu’il a ambiguité avec
I'indice « f» pour fluide) et de I’écoulement : masse volumique pi¢, viscosité n, température

T}, pression pg, vitesse de I’écoulement V. Ces caractéristiques sont supposées constantes

pendant la mesure.

Si I'on note h le coefficient de transfert thermique conducto-convectif, la puissance thermique

surfacique cédée par le fil au fluide a travers la surface S est donnée par la loi de Newton :

0Qs
O (T, — T,
On notera (Ox) 'axe du fil, ses extrémités étant situées en © = — Ly /2 et © = + Ly /2.

(1)

( — 1. Rappeler la loi d’Ohm locale. Définir les grandeurs intervenant dans cette loi et donner
leurs unités usuelles. Etablir I'expression de la résistance électrique totale, notée Ry, du

fil en fonction de py, Ly et dy.

En déduire la puissance P; dissipée par effet Joule dans le fil en fonction de py, Ly, dy

et I, puis la puissance volumique dissipée par effet Joule : &, =

Page 1/7
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a - 2.

Rappeler la loi de Fourier de la conduction thermique. Définir les grandeurs intervenant
dans cette loi. On dit souvent qu’il s’agit d’une loi phénoménologique. Que cela signifie-
t-il 7 La température est supposée homogéne sur chaque section du fil d’abscisse x. Que
peut-on en déduire ?

Etablir I'équation de diffusion thermique dans le cas d'un fil & la température T'(x,t) ou
seuls les transferts thermiques par conduction ont lieu.

On se place en régime permanent dans tout le reste de la partie I et on suppose la vitesse 1%
de I’écoulement uniforme et indépendant du temps. En plus des transferts thermiques par
conduction, on prend en compte les transferts thermiques par conducto-convection et ceux
provenant de l'effet Joule. Les transferts thermiques sont intégrés dans le terme conducto-
convectif.

a - 3.

Dans la loi de Newton (1), la grandeur h dépend de la vitesse V de Découlement. Quelle
est son unité? Expliquer qualitativement comment varie h en fonction de V = HVH
Expliquer alors comment évolue Ty, quand V' augmente.

. En effectuant un bilan énergétique sur un élément de volume de fil compris entre les

abscisses x et x + dx, établir I’équation aux dérivées partielles vérifiée par la température
Ty (z,t).

La résistivité du fil dépend en fait de la température T, de ce dernier. Expérimentalement, on
mesure que si le fil est en contact avec un fluide a la température Tt, sa résistivité p,, vérifie la
relation :

pw = pr[1+a(Ty = T7)] (2)

ol pr est sa résistivité a la température du fluide et « = 1073 K~ est un coefficient expérimental
supposé constant. On note enfin 7 (x) = T, (z) — T¢.

- 5.

Mettre I’équation obtenue a la question 4 sous la forme :

d2T1 (ZL‘)

W‘FKlTl(J?)—'—Kg:O (3)
Exprimer les constantes K7 et K5 en fonction de 'intensité I et des caractéristiques du
fil, du fluide et de I’écoulement. On montrera, en particulier, que a Ky = K +4h/(Aydy).

Dans la plupart des anémométres a fil chaud, K; est négatif. Déterminer la condition
correspondante sur le coefficient conducto-convectif h. On se place dans ce cas dans toute

la suite et on pose :
1

© VK

On considére que le contact thermique assuré par les gaines d’adaptation entre les extrémités
du fil et les broches de 'anémomeétre (voir figure 1) se fait sans résistance thermique (contact
parfait). Les broches et les gaines sont a la température T du fluide.

J - 6.

Rappeler la définition d’une résistance thermique ainsi que son unité. Quelle est la consé-
quence d'un contact sans résistance thermique ?

Déterminer la solution générale de I’équation différentielle (3).

En tenant compte des conditions aux limites dans le probléme et de sa symétrie, montrer
que Ti(x) s’exprime assez simplement & partir de la fonction cosinus hyperbolique. En

déduire I'expression du profil de température Ty, (z) dans le fil de la sonde en fonction de
T, gca K27 Tf et Lw-
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 — 7. Déterminer la puissance thermique Qg cédée par le fil a ’ensemble des deux gaines d’adap-

tation en fonction de /., K5, Ly, Ay €t dy.
[ — 8. Montrer que la moyenne spatiale (T,) de la température du fil s’écrit selon la relation

(Ty) = T; + Kyl? [1 — Atanh (%)]

dans laquelle on précisera I’expression du parameétre A.

La figure 2 représente la distribution de température dans le fil chaud pour différentes valeurs

L
du rapport k = —. La fonction tracée est

—0,2 0

c
Tw - T}
fly) = ——— avec Yy =x/Ly
( ) <Tw> - Tf /
A W) L 90
L5t I —
l//,’ \\\\\ e k _ 2
s . N
A AN
1,04 /& N
iy Vi)
P/ \ \
-/ AW
!l A Wi
[ |
il 7 !
i \d
H/ \
¥/ \ X
i i
1 L
! 0,2 0,4

FIGURE 2 — Représentation graphique de la fonction f(y) pour quatre valeurs du paramétre k.

1 — 9. Pour un fil de tungsténe de diamétre d,, = 5pum, de longueur L, = 1,2mm et fonc-
tionnant dans un régime de température Ty, tel que ¢. = 30d,,, évaluer, en faisant les

approximations pertinentes, la valeur numérique du coefficient

Tw, max T‘f
&=
<TW> — 1%

ol Ty max est la température maximale atteinte dans le fil. En exploitant la figure 2,

commenter la valeur trouvée.
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I.B Puissance thermique cédée au fluide

d — 10. Commenter les courbes de la figure 2. Quelle approximation peut-on faire quant a la
température T}, dans le cas d'un fil long (on précisera ce que « long » signifie ici) 7

La résistivité p, du fil est toujours supposée dépendre de la température du fluide avec lequel
il est en contact selon la relation (2).

A — 11. Calculer la résistance R,, o, d'un fil supposé long en fonction de sa résistance Ry a la
température T, de v et des températures (Ty,) et Tf.

Toujours dans le cadre d'un fil long, on fait I’hypothése que la puissance thermique Qg cédée par
le fil aux deux gaines d’adaptation est négligeable devant la puissance Qj dissipée par effet Joule
le long du fil ou celle, notée Qs, correspondant aux échanges thermiques conducto-convectifs
regus par le fluide a 'interface entre le fil et le fluide.

(d — 12. Déterminer, en régime permanent, ’expression de Qj en fonction de la différence (T, ) —T;.

Pour un fluide de viscosité n et de masse volumique i, qui s’écoule a la vitesse V' autour d’un
obstacle fixe de taille caractéristique d,,, on définit le nombre de Reynolds R, = usVdy/n. 1l
compare deux modes de transport au sein du fluide.

A — 13. Sachant que la viscosité n s’exprime en Pa - s déterminer la dimension de R..
On définit par ailleurs le nombre de Nusselt, N, = hdy, / ;.

[ — 14. Déterminer la dimension de N, et proposer une interprétation physique de cette quantité.
Comment varie N, lorsque la vitesse V' du fluide s’écoulant autour du fil augmente ?

On admet que le nombre de Nusselt vérifie la loi de King N, = A+ B /R, ot A et B sont des
constantes connues qui ne dépendent que de la nature du fluide en écoulement.

1 — 15. En exploitant 'expression de (T,) obtenue a la question 8 et les résultats de la question 5,
montrer que dans le cas d’un fil long on peut écrire
dy .,

l, = avec 0=

Aw Ruy,o0
© 2

1
No X Re (4)

On précisera la valeur numérique de l'exposant v.

1 —16. On considére de nouveau un fil de longueur Ly, quelconque. Etablir expression de la
puissance thermique Q¢ associée au transfert conducto-convectif du fil vers le fluide.

On suppose que la relation (4) reste valable en ordre de grandeur pour un fil de longueur
quelconque et que, de plus, le coefficient 6 qu’elle fait intervenir est de I'ordre de I'unité pour
toutes les mesures effectuées.

(1 — 17. En étudiant le rapport Qf/Qg, et sachant que dans le contexte d’étude N, ~ 10 SI, justifier
a posteriort que 1'on puisse simplifier le probléme en ne considérant pas les pertes dans
les gaines d’adaptation sous I’hypothése d’un fil long.

En utilisant le résultat de la question 12 et en supposant que ’on puisse appliquer la loi
de King, montrer que, pour un fil long, la mesure de la vitesse V' du fluide se raméne a
une mesure de résistance. On déterminera ’expression de V' en fonction notamment de

pro, Rf et I.
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IT Anémométrie & deux fils

On étudie a présent une autre technique qui utilise deux fils paralléles séparés par une distance e
comme représenté sur la figure 3 ci-dessous.

Cette technique est plus précise que la précédente car elle permet de faire deux mesures : la
premiére n’utilise que le premier fil ; la seconde étudie la réponse induite par le premier dans le
second.

Récepteur

Emetteur

FIGURE 3 — Disposition des 2 fils.

— Le premier fil (I’émetteur, repéré par un indice e), froid initialement (c’est-a-dire a la tem-
pérature du fluide environnant 77), est traversé par une impulsion électrique d’intensité
I = 1A et d'une durée 7 de quelques us, appelée « phase de chauffe », a 'issue de laquelle
le fil s’est donc échauffé.
On fait ensuite passer dans I’émetteur un faible courant Iy, = 1mA, dont on négligera
I'influence thermique, et on mesure la tension & ses bornes en fonction du temps. On
obtient ainsi I’évolution de la résistance électrique R.(t) en fonction du temps et donc
celle de sa température T, (1).

— Un second fil (le recepteur, repéré par un indice r) est placé parallelement au premier, en
aval dans I’écoulement du fluide (ici de I'air), & une distance e = 0,5 mm du premier. Sous
l'action de I’écoulement, une trainée d’air chaud (zone échauffée du fluide par 'impulsion
thermique de I’émetteur) va atteindre le récepteur.

L’acuité et la durée de cette trainée d’air chaud vue par le second fil vont dépendre
notamment de la norme V' de la vitesse de I'air.

Hormis leur température et donc leur résistance, les caractéristiques de ces deux fils sont sup-
posées identiques a celles du fil utilisé dans la partie 1.

On se concentre tout d’abord sur le fil émetteur de I'impulsion thermique afin d’étudier la
premiére possibilité de mesure de la vitesse de I’écoulement. On néglige la conduction thermique
dans le fil et entre le fil et les broches. On suppose donc, conformément a ce qui a été fait
précédemment, que la température du fil est homogéne et ne dépend que du temps, tout comme
sa résistance toujours obtenue dans le cadre du modele de résistivité résumé par la relation (2).
Pendant la phase de chauffe, 'impulsion étant trés bréve, on négligera les pertes d’énergie dues
a la convection de I'air autour du fil lors de cette phase. L’origine des temps t = 0 correspond
au début de I'impulsion électrique.

[ — 18. Montrer que, pendant la phase de chauffe, la température T,(t) vérifie une équation dif-
férentielle qui peut se mettre sous la forme
d(T, — Ty) -1 R¢I? (5)
dt T1 O
ou 'on exprimera la durée caractéristique 7, de montée en température et le parametre C'
en fonction des paramétres du probléme. Que représente C'?
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1 — 19. Résoudre cette équation en exprimant finalement 7,(¢) en fonction de ¢, Tf, « et 7.

En déduire, en fonction de 7, 7, et «, 'expression de 'amplitude de I'impulsion ther-
mique AT max = L6 max — It obtenue dans le fil émetteur apres qu’il a été parcouru par
I'impulsion de courant.

( — 20. Une fois 'impulsion terminée, i. e. pour ¢ > 7, le fil émetteur ne regoit plus de courant
qui le chauffe, il se refroidit par convection au contact thermique de I'air en mouvement.
Déterminer la température de I'émetteur 7,(¢) durant cette phase dite de relaxation en
fonction de ¢, 7, Tf, AT, max ainsi que d’une nouvelle durée 7, caractéristique de cette
phase de relaxation dépendant notamment de N,,.

Sur la figure 4 ci-dessous le graphe de gauche indique Iallure de T,(¢) mesurée lors des phases
de chauffe et de relaxation au contact de deux écoulements de vitesse différente.

Sur cette méme figure 4, le graphe de droite montre de facon plus quantitative en échelle semi-
logarithmique, des relevés expérimentaux de la phase de relaxation pour différentes valeurs de
la norme de la vitesse de I’écoulement.

Toh i t > 7 : Phase de relaxation

7

------- o 40 cm/s
Tge. | —O— 83 cm/s

>—<T : Phase de chauffe

0 Temps [unités arbitraires]

FIGURE 4 — Mesures au niveau de I’émetteur. Sur la figure de droite on a représenté les mesures
et leurs différentes régressions linéaires.

(d — 21. Pendant la phase de chauffe, on constate sur la partie gauche de la figure 4 que les
deux courbes sont confondues. Quelle hypothése émise plus haut ce résultat permet-il de
confirmer ?

d — 22. Expliquer qualitativement comment 1’analyse des courbes de la figure 4 permet une pre-
miére mesure de la norme de la vitesse de I’écoulement du fluide.

L’air réchauffé par I’émetteur va étre transportée par convection jusqu’au second fil, le récepteur.
En alimentant ce dernier par un trés faible courant Iy = 1mA, dont on peut toujours négliger
I'influence thermique, on peut mesurer sa résistance et en déduire sa température.

Certains résultats expérimentaux sont rassemblés dans la figure 5 sur la page suivante !

1. Ils ont été collectés dans 'article « Pulsed-wire technique for velocity measurements in natural convection
flow — a numerical optimisation tool », Grignon et al., 1998, International Journal of Heat and Mass Transfer,
volume 41, p. 3121-3129.
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T Y \ ].70 |
: —V =20 cm/s
i T, 0.8
7 -t
: AT
E‘I'. 0.6 — V=40 cm/s
Tf H “~ ---------- O,6 Ay
0 . V=060 cm/s
Temps [unités arbitraires] - 0 ) 10

t [ms]

FIGURE 5 — Analyse des températures.

Sur la partie gauche de la figure 5, on a représenté avec les mémes échelles de temps et d’am-
plitude l'allure typique des pics de températures relevés dans chacun des deux fils.

De fagon plus quantitative, on a représenté sur la partie droite de cette méme figure, le résultat

des mesures de I’évolution de la fonction normalisée (7} (t) — 1) /ATy max pour différentes
valeurs de la norme de la vitesse de I’écoulement.

d — 23. Commenter les deux courbes de la partie gauche de la figure 5. Proposer des explications
qualitatives pour les différents phénoménes que ’on peut observer.

1 — 24. Expliquer qualitativement comment 'analyse des courbes de la figure 5 permet une se-
conde mesure de la norme de la vitesse de 1’écoulement du fluide.

FIN DE L’EPREUVE
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A propos des araignées

Les araignées ou Aranéides sont des prédateurs invertébrés arthropodes. A ce jour, plus de
47000 espéces subdivisées en 117 familles sont repertoriées et 1700 d’entre elles vivent en
France. Les araignées produisent des fils de soie constitués d’un entrelacement de nombreuses
fibrilles élémentaires. Le diamétre de ces fils varient typiquement de 1 jusqu’a 70 pm. A diamétre
équivalent, ces fils sont plus résistants que I'acier et possédent de nombreuses autres propriétés
qui les rendent intéressants pour l'industrie, pour la confection par exemple de nouveaux tex-
tiles, de gilets pare-balles ou encore de cordes d’instruments de musique. Dans la nature, l'usage
que les araignées en font est multiple et dépend des espéces considérées : fil de sécurité pendant
un saut pour fuir ou pour se déplacer (fil d’Ariane), tissage de toile pour piéger des proies,
moyen de s’élever dans les airs et de voyager au gré des courants aériens pour les araignées
montgolfieres (fil de la Vierge), confection de catapultes pour la chasse, création de démes pour
le stockage d’air sous l’eau douce pour les espéces subaquatiques . ..

Nous proposons d’aborder quelques problémes de physique relatifs aux araignées et plus par-
ticuliérement aux trois espéces représentées dans la figure ci-dessous (Fig. 1). Les applications
numériques seront données avec un chiffre significatif. Les vecteurs sont indiqués par des fleches

(') sauf g'ils sont unitaires et sont alors surmontés d’un chapeau (||e;| = 1). Les nombres
complexes sont soulignés a I'exception de j tel que j2 = —1. Un formulaire est fourni en fin
d’énoncé.

Les 3 parties de ce probléme sont indépendantes.

Xysticus

s ey ptiote
f—m] cavatus

FIGURE 1 — Xysticus sp. est une araignée-crabe volante. Hyptiote cavatus est une araignée
catapulte, tisseuse de toiles triangulaires. Les araignées Nephila pilipes fabriquent des fils dont
les propriétés mécaniques rivalisent avec les meilleures fibres artificielles : ils peuvent étre as-
semblés pour former des cordes de violon produisant un son au timbre exceptionnel. Source des
images : Wikipédia.

I Des araignées volantes

Certaines araignées volantes dont la taille est comprise entre 2 et 7mm parviennent, en tirant
profit des forces électrostatiques, a décoller et a s’envoler. Elles arrivent ainsi & parcourir, au
gré des vents, des distances considérables (plusieurs centaines de kilométres) comme ’a observé
pour la premiére fois, Charles Darwin, lors de son grand voyage a bord du Beagle de 1831 & 1836.
Dans cette partie du probléme, nous nous intéressons a la physique permettant d’expliquer un
tel phénomeéne.

(d — 1. En utilisant une schématisation sphérique rudimentaire pour modéliser ces araignées,
estimer un ordre de grandeur m, pour leur masse.
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Par temps clair, le champ électrique, en tout point de la surface de la Terre est radial uniforme,
dirigé vers le centre de la Terre et sa valeur moyenne vaut Fy = 120V - m~!. En premiére
approximation on assimile localement ’atmosphére terrestre a un condensateur plan dont les
deux armatures sont le sol terrestre et la couche de I'ionosphére située a l'altitude zo = 60 km
de celui-ci.

[ — 2. Evaluer la valeur de la densité surfacique moyenne de charge au niveau du sol, notée o.
Des mesures ont permis de montrer qu’il existe une différence de 360 kV entre 'ionosphére
et le sol. Que pouvez vous conclure quant a la validité du modéle électrique atmosphérique
proposé ?

Les araignées volantes positionnent leurs corps de maniére a prendre le vent, en éjectant vers
le ciel des fils de soie, qui grace aux courants d’air et au champ électrique leur permettent de
s’élever. Darwin nota que ces araignées décollent en présence au niveau du sol de 1égers courants
d’air ascendants ayant des vitesses U de l'ordre de 0,1 m-s~! et que le nombre de fils fabriqués
par celles-ci peut atteindre quelques dizaines.

On peut montrer que les forces hydrodynamiques sont insuffisantes pour permettre a elles seules
de faire s’élever les araignées.

Darwin remarqua que les différents fils tissés par une méme araignée s’écartent en éventail du
fait d’'une répulsion électrostatique. Pour corroborer cette hypothése, on modélise chaque fil de
soie comme un fil rigide isolant, de longueur L que I'on supposera inextensible dans un premier
temps, possédant en son extrémité libre, une charge q. Ces charges placées dans le champ
électrique terrestre interagissent entre elles. On suppose qu’il y a 2n fils et que les charges
correspondantes se répartissent régulierement sur le cercle formant la base d’un cone d’angle «
en son sommet S (lequel correspond a l'extrémité commune des soies) avec la verticale (Fig. 2).

FIGURE 2 — Représentation schématique d’une araignée préte a décoller.
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a - 3.

Montrer que le potentiel électrique créé sur une charge par les 2n — 1 autres charges
s’exprime comme :

n—1 n—1
. qa 4 1 1 B 2
V= pregL sinaG(n> avee Gn) —1 = ; Cos (g—ﬁ) + sin (%) N kz:; sin (%)

On précisera la valeur de I'entier p. On pourra éventuellement considérer les points dia-
métralement opposés Ay et Ay, avec 1 <k < n.

En déduire I’énergie d’interaction électrostatique du systéme total constitué des 2n charges
en 'absence de champ électrique extérieur.

S’il n’est soumis qu’a ce potentiel, quelle est alors la forme de I’éventail a 1’équilibre ?

On étudie le mouvement de cet éventail autour de sa position d’équilibre en supposant qu’a
I'instant ¢ tous les fils forment le méme angle «(t) avec la verticale. On simplifie le systéme
en considérant, d’une part, que la masse m de chaque fil est ponctuelle, située en leur milieu
et, d’autre part, on néglige I’énergie potentielle de pesanteur et celle de déformation élastique
devant 1’électrostatique. On suppose finalement que S est fixe.

a - 4.
d-5
d-6

En réalité, lorsqu’elles décollent, les araignées sont situées sur
des zones ou le champ électrique est bien plus important que
dans les conditions normales du fait d’'un phénomeéne connu
sous le nom d’effet de pointe. On retrouve ces conditions au
sommet des arbres ou du mat du Beagle comme dans I'expé-
rience de Darwin.

Déterminer I’équation différentielle régissant ce mouvement. Discuter la stabilité de I’équi-
libre et établir I’expression de la période T, du mouvement au voisinage de la position
d’équilibre en fonction de €, m, L, ¢ et G(n).

. Déterminer 'expression de 1’énergie électrostatique du systéme lorsque celui-ci est main-

tenant immergé dans le champ électrique terrestre Fy existant au niveau du sol ainsi que
I’équation permettant de déterminer la valeur de 'angle o a ’équilibre. Expliquer quali-
tativement comment varie I’ouverture d’équilibre de ’éventail en fonction respectivement
de g, n, L et Ey. On observe un angle a = 30° pour un éventail constitué de 2n = 6 soies
longues de 1 métre. Que vaut alors la charge ¢ ? On donne G(3) ~ 38/(3v/3).

. Calculer le module de la force électrique s’exercant sur I'araignée au niveau du sol pour

une charge dont le module est de 'ordre du nanocoulomb. Par temps clair et uniquement
par la force électrique, combien de fils sont-ils nécessaires pour soulever les plus petites
araignées 7 Commenter ce résultat.

conducteur

air

Pour appréhender un tel effet, on considére un conducteur plan M p
infini dans lequel un endroit posséde la forme d’un coin obtus L

ou aigu (Fig. 3) dont le sommet O forme 'origine d’un repére 0)
de coordonnées polaires. La région de l'espace pour laquelle

=

T

0 < 0 < @ est Dair assimilé au vide ne contenant aucune charge FIGURE 3 — Mode¢le de coin.
libre. Les conditions aux limites sont V' (r,0) = V(r,p) = V.
On note V(M), le potentiel électrique en un point M de I'espace.

1 — 7. Déterminer I'équation différentielle satisfaite par V' (r,0) dans cette région.

On cherche une solution aux variables polaires séparées : V(r,0) = f(r) x g(6). Ecrire les

oo

équations vérifiées par f et g et en déduire que V(r,0) = V + Z a, " sin(w,#). Dans
n=1

cette relation, V' et (a,)nen+ sont des constantes que ’on ne cherchera pas a déterminer.

On précisera par contre 'expression de w,, en fonction de ¢ et de 'entier positif n.
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(d — 8. En ne considérant que le terme n = 1 qui s’avére prépondérant, déterminer I’expression
du champ électrique E(M).

En déduire une condition sur ¢ pour laquelle E (M) peut devenir trés important si M —

0.

II Propriétés mécaniques des fils d’araignée

L’¢élongation relative d’un fil de soie de longueur initiale ¢y de section Sy soumis & une force de

traction d’intensité F' est donnée, dans le régime des faibles élongations, par la loi de Hooke :
o0 1 F

6 ESp
[ — 9. Quelle est la dimension de E'?
Montrer que, dans ce régime, le comportement mécanique du fil peut étre assimilé a celui
d’un ressort de constante de raideur k£ que l'on exprimera en fonction des données du
probléme.

ol F est le module de Young du matériau constituant le fil.

Pour mesurer le module de Young d’un fil d’araignée,
on procéde & une expérience simple. Le fil de longueur
ly est attaché en deux points fixes A et B distants
de /y et situés sur une méme horizontale. Une masse
m est suspendue au point C' milieu du fil. Sous 'effet
du poids de cette masse, le fil adopte a I'équilibre une
forme en V, dans laquelle les deux segments formant
le fil ont la méme longueur /.

On mesure alors la hauteur A dont le milieu du fil s’est déplacé par rapport a I’horizontale.
Cette configuration d’équilibre est représentée sur la figure 4.

C m
FIGURE 4 — Extension d’un fil.

@ — 10. Etablir, lorsque la masse m est suffisament faible, la loi de puissance qui relie h & m et
aux autres variables du probléme.

La figure 5 ci-contre reproduit les résultats de cette
expérience réalisée avec un fil de longueur ¢y = 5cm de 08
rayon a = 5 um et différentes masses m suspendues.

- In(h/lcm)
d — 11. Vérifier que la loi obtenue a la question 10 est

. L. A+
compatible avec 1’expérience. 0
Déterminer la constante de raideur k£ du ressort
équivalent au fil ; en déduire une estimation de la ol S

valeur numérique du module de Young du fil. On — régression linéaire

pourra utiliser la figure 9 du formulaire.

In(m/1mg)
L’araignée Hyptiote cavatus, qui posséde une masse 04 ‘ 1 ‘ 9 ‘ 3
d’environ 7mg, utilise ses muscles pour enrouler 1'un
des fils afin de tendre la toile, comme on utilise son FIGURE 5 — Mesures de h(m).

bras pour tendre la corde d’un arc.

Elle garde alors cette position jusqu’a ce qu'une proie entre en contact avec la toile. Quand
elle relache la tension, la toile subit alors une trés forte accélération puis s’emméle autour de
Iinsecte proie, ce qui marque le début du processus de capture.

La vitesse de I’araignée qui reste accrochée a la toile atteint alors une valeur maximale d’environ

Umax = 3m - s~ ! en ayant subi une accélération maximale prodigieuse am.x = 800m - s~2.
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au repos

—Fils d’arrimage l ><— 1,

Fil de piégeage

Fils de_capture

sous tension

by — AV ly+ AV
Toile d’araignée
triangulaire

(a) (b)

FIGURE 6 — (a) Organisation spatiale schématique de la toile triangulaire servant de piege —
(b) Modéle mécanique équivalent au repos et sous tension

1 — 12. En modélisant la toile par un simple fil de soie dont on négligera la masse devant celle de
laraignée, estimer, en fonction de vy, €t Gmax, 'allongement maximum A/ du fil avant
que Paraignée ne relache la tension (Fig. 6), ainsi que sa raideur k en fonction de m, vyax
et amax-

Evaluer, en fonction de m, vpax €t Gmax, la puissance mécanique instantanée maximale
Prax développée pendant le processus de capture.

Sachant que la puissance massique musculaire maximale que peuvent fournir les arthro-
podes est d’environ &2 = 326 W - kg~ ! par kilo de muscle, estimer la masse de muscle
nécessaire qu’il faudrait & notre araignée pour réaliser ce processus de capture sans aide
extérieure. Conclure.

Dans les films, le super-héros SPIDERMAN, dont O
on estime la masse & m = 7Hkg, poursuit les
voitures en se balancant sur des fils d’immeuble
en immeuble.

Il attache son fil supposé inextensible, de masse
négligeable et de longueur ¢ = 25 m sur un point 0
de I'immeuble situé en face, a I'horizontale par ]
rapport a sa position. Dans ces conditions on a 2

N filaments

donc 0(t = 0) = /2. m
Il se laisse alors entrainer sans vitesse initiale.
(Fig. 7). FIGURE 7 — Le vol de SPIDERMAN.

O — 13. Ecrire les équations du mouvement de SPIDERMAN. En déduire, en fonction de m et
g, lexpression de la tension maximale que doit supporter ce fil si 'on suppose qu’il est
inextensible.

On suppose que le fil que tisse SPIDERMAN est constitué en réalité de N filaments de soie
identiques assemblés en paralléle.
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(d — 14. Déterminer la constante de raideur du ressort équivalent a N ressorts identiques de
constante de raideur k disposés en paralléle.
Sachant que le module de Young d’un filament de soie et son rayon valent respectivement
E = 10MPa et a = 5pum, combien de filaments le fil doit-il comporter au minimum
pour que les filaments ne subissent pas une déformation supérieure a 1 % et donc pouvoir
supporter SPIDERMAN lors de son vol 7
Est-ce cohérent avec le diameétre des fils, de I'ordre du centimétre, produits par SPIDER-
MAN dans les films ?

III Produire de la musique avec des fils d’araignée

Du fait de leurs propriétés mécaniques si particuliéres (valeur importante du module de Young,
large domaine d’élasticité et faible masse linéique), des physiciens ont récemment eu l'idée
d’assembler des milliers de fils de 'araignée Nephila pilipes, particuliérement résistants, pour
fabriquer des cordes de violon.

Lorsque la corde fabriquée est utilisée pour produire du son, il convient de s’assurer que sa
tension soit bien siir inférieure a sa tension de rupture 7,, mais également que la corde fonctionne
dans son régime élastique. Les premiers résultats obtenus se sont révélés trés encourageants et
prometteurs notamment en ce qui concerne la qualité du timbre puisque le spectre du son
produit présente de nombreux pics d’amplitude importante a hautes fréquences.

On étudie les mouvements d’un fil d’araignée de longueur ¢ de masse linéique p, autour de
sa position d’équilibre. Au repos, le fil est rectiligne et paralléle a ’axe horizontal (Ox). On
note z(z,t) le déplacement du point du fil & 'abscisse = a U'instant ¢ par rapport a sa position
d’équilibre z = 0. On ne considére que les mouvements latéraux de faible amplitude s’effectuant
dans le plan Ozz (Fig. 8). Le fil étant accroché en ses deux extrémités en deux points fixes. La
tension du fil au point d’abscisse z a linstant ¢ est notée : T(x,t) = Ty (x,t)e, + To(x,t)E..

T(x+dz,t)
R z(z+dx)
€z ‘ () _/<oz(x,t)
Cr /T(m,t) .
x r+dz

FIGURE 8 — Fil horizontal subissant des déformations de faible amplitude.

On effectue les deux hypothéses suivantes :

e La déflexion est de faible amplitude de méme que 'angle a(x,t) que fait le fil avec I’hori-
z
zontale a la position = et a I'instant ¢ (voir Fig. 8), ce qui entraine : |8_| < 1;
x
e On néglige les effets de la pesanteur.

(d — 15. On considére la portion de fil comprise entre les plans d’abscisses = et x + dx. Exprimer
0z
la longueur de portion de fil ds, cos|a(z,t)] et sinfa(z,t)] en fonction de dx et e
x
En appliquant le théoréme de la résultante cinétique a cette portion de fil, montrer que
T,(x,t) ne dépend pas de x.

Que peut-on conclure pour la norme 7' de la tension dans le fil ?
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[ — 16. Montrer que le déplacement du fil z(z,t) vérifie alors I’équation aux dérivées partielles :

0?2z 0%

oz o (1)

On exprimera c en fonction de T et u. Que représente cette grandeur physique ?

0 — 17. Montrer que des fonctions de la forme z(x,t) = f(z — ct) + g(x + ct) sont des solutions de
cette équation. Interpréter le sens physique des fonctions f et g.

On cherche les solutions correspondant a un régime purement sinusoidal. On utilise la repré-
sentation complexe de ces solutions sous la forme

z(x,t) = Ae? W=k | Bei(witha)

ol w est la pulsation du signal, & 'amplitude du vecteur d’onde, A et B des amplitudes com-
plexes.

(1 — 18. Traduire les conditions aux limites imposées au fil en des contraintes sur z(x,t).
En déduire la relation entre A et B ainsi que les valeurs de w permises.
Comment appelle-t-on ce type d’onde et pourquoi ?

(1 — 19. Sachant que la fréquence de vibration de la note jouée (correspondant a la fréquence de
la note fondamentale) vaut 300 Hz, que la longueur du fil est ¢ = %m et que sa masse
linéique est u = 0,5mg - m~!, quelle doit étre la tension 7" appliquée a la corde ?

Sachant que la tension T, au-dela de laquelle la corde n’est plus dans son régime élastique
est de 'ordre de 10 newtons, que pouvez vous conclure ?

Dans le cadre d'un modéle plus élaboré on prend en compte la raideur du fil & travers son
module de Young E. L’équation de propagation des ondes de déformation de faible amplitude
dans un fil de rayon a devient alors :

0%z 0%z  Erma* 9z
“@_ 3x2+ 4 8x4_0 2)

1 — 20. En supposant que la déformation z(z,t) de la corde est de la méme forme que précédem-
ment, établir la relation de dispersion donnant £ en fonction de w et des paramétres du
probléme.

Montrer que les fréquences propres de la corde s’écrivent alors sous la forme :

£ = Z—E\/1+Bn2, (3)

ol B est une grandeur physique que 'on exprimera en fonction de E, T', { et a.

Sachant que pour la corde fabriquée a partir des fils d’araignée E = 6,0 GPa et a = 350 ym
et que pour une corde classique £ = 2,5 GPa et a = 400 um, que pouvez-vous conclure
sur la nature du son produit a 7" et ¢ fixées?
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Formulaire

Détail de la représentation graphique de la fonction logarithme népérien

In(x)

—0,88 1

—0,92 1

—0,96 1

T

036 o3 om0 o
FIGURE 9 — Graphe de la fonction Inz pour = € [0,36;0,42].

Opérateur gradient en coordonnées cylindriques :

. of . 10f . Of
grad(f) = a—{er + ;a—geg + a—JZcez

Rayon terrestre Ry = 6400 km
e . . —12 1 -9 -1
Permitivité électrique du vide € =89 x 107 ~ T x 1077 F -m
™
Accélération de pesanteur terrestre g=10m -s2
Masse volumique de 1'eau pe=10x103kg - m~3

FIN DE L’EPREUVE
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Des objets astronomiques, de Mars a Sirius

Ce sujet comporte deux problémes totalement indépendants étudiant différents aspects de 1’as-
tronomie (la science des planétes et des étoiles) et en particulier de I'astrophysique (I’étude
des modéles physiques des astres). Le probléme I décrit des notions connues depuis le XVII°
siecle (la mécanique céleste des trajectoires des planétes et les lois de KEPLER et NEWTON).
Le probléme II propose une étude de quelques propriétés énergétiques des étoiles en comparant
leur énergie gravitationnelle avec des termes comparables liés aux autres interactions au sein
de I’étoile.

Pour toutes les applications numériques, on se contentera de deux chiffres significatifs. Les
notations des constantes fondamentales utiles, des données numériques et des rappels de syntaze
Python sont regroupés en fin d’énoncé. On pourra noter ., i,, i, la base cartésienne associée
au repére (Ozxyz) et ,,ug la base locale associée aux coordonnées polaires r, 6 du point M
situé dans le plan (Ozy), cf. figure 1.

Y
lig
oM
Uy A er
p(‘///
2 (@ — 0 > -
O Uy

FIGURE 1 — Base locale associée aux coordonnées polaires

. d
On posera j2 = —1. On notera par un point les dérivées temporelles, f = d_]; Les vecteurs w

sont surmontés d’une fleche, sauf les vecteurs unitaires notés .

I Les lois de Kepler et 'unité astronomique

Ce probléme est consacré aux lois de KEPLER (1609 et 1618) et & une mesure historique de
I'unité astronomique par CASSINI (1672). On notera que ces travaux sont toux deux nettement
antérieurs a la publication de la loi de la gravitation universelle par NEWTON (1687).

On s’intéressera en particulier aux orbites de la Terre et de Mars, la planéte la plus proche de la
Terre avec une trajectoire extérieure. Le plan de sa trajectoire est presque confondu (& moins de
2° pres) avec le plan de l’écliptique (la trajectoire terrestre). Ces deuz trajectoires sont proches
de cercles autour du Soleil.

I. A Mouvements d’une planéte sous ’action d’un astre attracteur

On étudie ici, relativement & un référentiel galiléen (Ry), le mouvement d’un astre & assimilé
a un point P de masse mp sous l’action du seul champ de gravitation exercé par un autre astre
attracteur .7 de masse my et de centre fixe A. On notera 7 = AP, r = ||F]| et 7= ra,.

1 — 1. Quelle condition (inégalité forte) permet de considérer A comme fixe ?

Quelle est I'expression de la force gravitationnelle F' exercée par o/ sur & si les deux
astres sont assimilés a des points?
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d — 2. Que devient ’expression de F si P reste ponctuel tandis que l'astre o7, de rayon Ry < r,
posséde une répartition de masse a symétrie sphérique ? On justifiera sa réponse.

1 — 3. Cette expression reste-t-elle encore applicable si & et o/ sont tous deux & symétrie sphé-
rique ? On pourra, dans tout ce qui suit, considérer &/ et &7 comme des points matériels

A et P.

[ — 4. Montrer que le mouvement de P est plan; on notera (Azy) le plan de ce mouvement.
Définir la constante C' issue de la loi des aires pour ce mouvement et relier cette constante
aux coordonnées polaires (r, ) du mouvement de P dans (Azxy).

On note ¥ la vitesse de P et u,, 1y les vecteurs de la base polaire associée au mouvement de P.
U est fonction du temps et donc aussi de I'angle polaire 6.
Uy + €

—

d
1 — 5. Exprimer d—; et en déduire que ¥(0) = C

ol € est une constante d’intégration et

p un paramétre du mouvement qu’on exprimera en fonction de C', m4 et de la constante
universelle de gravitation G.
Montrer que le vecteur € est sans dimension et situé¢ dans le plan (Azy) du mouvement.

Sans perte de généralité, on peut supposer que € = et, avec e = ||€]| > 0.
0 — 6. Exprimer 7 et 70 en fonction de C, p, e et 6.
En déduire r en fonction de p, e et 6 et montrer que e < 1 pour un mouvement borné.

Quelle est, dans ce cas et sans démonstration, la nature de la trajectoire 7 On admettra
que le mouvement est périodique de période T'.

I.B Période du mouvement
O — 7. En utilisant par exemple la question précédente, montrer que T = Zp*/? /v/Gma ou la
27
de
constante Z s’obtient par le calcul de I'intégrale Z = / —_
o (1+ecosf)?
( — 8. Dans le cas particulier ou e = 0, préciser la nature de la trajectoire et ’expression de T';

en déduire une des lois de Kepler, préciser laquelle et proposer son énoncé « historique »
sous forme d’une phrase en frangais.

Le calcul de l'intégrale Z en fonc-
tion de e peut étre mené de ma- 9.5 1
niére numérique (au moyen d'un
script Python) ; les résultats sont 9.0

illustrés figure 2.
8.5 -

d — 9. Proposer I’écriture  des
lignes de code Python
permettant le tracé de la
figure 2 : courbe en trait 7.5 -
plein puis mise en exergue
d’une dizaine de valeurs 7.0 1
réguliérement réparties
pour 0 < e < %

8.0 A

intégrale /

6.5 1

Note : on pourrait mener le cal- - '

, : , 0.0 0.1 02 03 0.4 0.5
cul exact de l'intégrale qui fournit paramétre @
T(e) = (1—e*)32T_y. Ce calcul
n’est pas demandé ! FIGURE 2 — Calcul numérique de I'intégrale 7
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I.C Mesure de 'unité astronomique

Nous admettrons pour la Terre et Mars des orbites
circulaires centrées au centre S du référentiel de Co-
PERNIC, de rayons respectifs ag (c’est 'unité astrono-
mique) et ay, de périodes Tj et T;.

Le principe de la mesure de ay proposée par CASSINI,
a la fin du XVII® siécle, consistait & observer simulta-
nément, depuis deux observatoires bien séparés (Paris
et Cayenne, distants en ligne droite de ¢ = 7070 km)
la planéte Mars lorsqu’elle est a sa distance minimale

de la Terre, puis d’évaluer I'angle «a entre les deux

directions de visée (Paris — Mars et Cayenne — FIGURE 3 — La Terre et la Lune vues
Mars). depuis Mars par la sonde Mars Global

Surveyor, photo NASA
(d — 10. Représenter sur un schéma unique ’ensemble des paramétres géométriques ag, aq, ¢, «
ci-dessus au moment de la mesure, lors d’une conjonction inférieure (le Soleil, la Terre et
Mars sont alignés dans cet ordre).

(d — 11. En déduire la relation permettant de déterminer a¢ en fonction de Ty, 17, ¢ et a.

1 — 12. La valeur annoncée par CASSINI était o = 14” (secondes d’angle). Est-elle compatible
avec la relation ci-dessus ?

II Structure et énergie des étoiles

Les parties I1.A, I1.B et I1.C sont trés largement indépendantes. Les étoiles a I’équilibre seront
ici décrites comme des boules homogénes de masse M et de rayon R en équilibre sous I’action
de leur propre gravitation et de diverses forces antagonistes qui s’opposent a l’effondrement
de I’étoile : il s’agira de la pression thermodynamique associée a I'agitation thermique dans la
partie ILI.B et d’une propriété strictement quantique, la pression de confinement, dans la partie

I1.C.

; & \ &
/ \ / \
! \ ! \
! | ! |
| | | !
\\ O /I \\ d’}" l’ O
\ / \ /
/
\ o "\ K masse M
Etat initial (pas de masse) Etat intermédiaire ~ Etat final (étoile constituée)

FIGURE 4 — Constitution progressive de ’étoile

II.A L’énergie gravitationnelle

Du fait de la symétrie sphérique de I'étoile, on va définir son énergie gravitationnelle W, comme
I’énergie mécanique qu’'un opérateur fournit a 1’étoile pour la constituer, & partir de gaz sans
interaction car pris a grande distance, en couches concentriques de rayon croissant (figure 4).
Ce calcul sera effectué pour une évolution quasi-statique, I'opérateur agissant a tout instant
pour compenser exactement les forces gravitationnelles.
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(A — 13. Donner et justifier physiquement le signe de W,. Expliquer pourquoi on nomme parfois
Ey = =W, I'énergie de liaison de 'étoile.

(1 — 14. Exprimer la masse volumique p, supposée uniforme et constante, de ’étoile en fonction
de M et R.

En déduire, en fonction de M, R et r, les expressions de m (masse déja constituée dans
une sphére de rayon r) et de dm (masse & apporter pour faire passer ce rayon de r a
T+ dr).

1 — 15. Justifier que la contribution dW, a I’énergie gravitationnelle de cet accroissement (passage

d
de r ar+dr) sécrit dW, = g

r
Calculer 'énergie gravitationnelle totale W, de I'étoile en fonction de G, M et R.

II.B Pression cinétique

Certaines étoiles sont en équilibre sous ’action de la pression cinétique liée a 'agitation ther-
mique qui résiste seule a I'effondrement gravitationnel. On va tout d’abord décrire cet équilibre
dans une géométrie cartésienne, 'axe (Oz) étant dirigé selon le champ de gravitation local
G(z) = G(2)i. (figure 5) avec G(z) < 0. On note aussi p(z) la masse volumique du fluide au
repos et P(z) la pression dans le fluide.

z
S
290 mmmmmmmm oo
al
AT ]
Fluide

FIGURE 5 — Géométrie du champ de gravitation local

1 — 16. On s’intéresse a I’équilibre de la colonne de fluide d’aire S et comprise entre les altitudes z;
et zo. Expliciter, éventuellement sous forme intégrale, les forces exercées sur cette colonne.
En déduire I’équation différentielle reliant P(z), p(z) et G(z2).

La pression équilibrant la force gravitationnelle, les ordres de grandeur des énergies thermique
et gravitationnelle doivent étre comparables; nous allons ici le vérifier en évaluant 'énergie
cinétique de I’étoile dans le cadre d’un modéle trés simplifié dans lequel la masse volumique
p est constante mais qui prend maintenant en compte la géométrie sphérique du systéme. On
suppose ainsi que I'équation d’équilibre local obtenue en géométrie cartésienne a la question 16
se généralise grace a la symétrie sphérique en faisant z — r avec p(r) = cste.

A — 17. Un volume V de fluide est soumis & la pression P, supposée uniforme. Dans quel modéle
I’énergie cinétique d’agitation thermique associée peut-elle s’écrire F, = %PV ? Dans la
suite de cette partie II.B on supposera que c’est bien le cas en chaque point intérieur a
I’étoile.

1 — 18. Expliciter le champ gravitationnel é(F ) ressenti au sein de I’étoile en équilibre a la dis-
tance r du centre, en fonction de G, M, R et r.

, . s . . 3gM2 2 2
En déduire I'expression de la pression P(r) = T (R —1r*).
T
1 — 19. Calculer I'énergie cinétique totale de I'étoile E,. en fonction de G, M et R; commenter.
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II.C Pression de confinement quantique

Nous ne ferons plus ici I'hypothése d’un équilibre de la gravitation par la pression cinétique;
au contraire, nous négligerons tout effet thermique pour les étoiles décrites dans cette partie

I1.C.

L’étoile sphérique étudiée ici, de rayon R, de masse M et de volume V est essentiellement
constituée de /N atomes d’hydrogeéne, donc de N protons de masse m,, et d’autant d’électrons
de masse m, < m,, chacune de ces particules étant confinée dans un volume ¥ = V/N. On va
montrer que le principe d’incertitude impose & chacun des atomes une énergie cinétique dite
de confinement quantique. Celle-ci sera évaluée dans un modéle trés simplifié, chaque particule
restant libre de toute interaction mais confinée dans un volume cubique de coté a tel que a® = 0.

(A — 20. Exprimer a en fonction de M, R et m, seulement.

On rappelle pour un état stationnaire d’une particule de masse m, libre et & une dimension
: . (o A7)\ .
(Ox), I'équation de SCHRODINGER avec i = h/2m : ————— = jh—— pour la fonction d’onde

2m Ox? ot
U(z,t) = (x)e

1 — 21. La particule étudiée étant confinée a l'intervalle z € [0, al, exprimer la fonction d’onde
spatiale 1 (z) et 'énergie e; de I’état fondamental en fonction de h, m et a.

Justifier que cette relation illustre le principe d’indétermination de HEISENBERG.

1 — 22. Que deviennent ces expressions de la fonction d’onde et de I’énergie de I’état fondamental
dans un modele confiné a trois dimensions, x € [0, a], y € [0, a] et z € [0, a]?

1 — 23. En déduire que I'énergie cinétique totale due au confinement de ’étoile se met sous la
forme E, = ~vM 5/3 /R? dans laquelle on exprimera ~ en fonction de h, my, et me.

II.D Le cas des naines blanches

On s’intéresse ici aux naines blanches, étoiles dans lesquelles la pression due au confinement
quantique (avec I’énergie cinétique exprimée en fonction de M et R dans la partie I1.C) est net-
tement supérieure aux effets de 'agitation thermique (que I'on négligera donc ici) et compense
seule les effets de la gravitation (avec I'énergie de gravitation exprimée également en fonction
de M et R dans la partie II.A).

La particularité de ces étoiles (essentiellement composées de carbone) et la prise en compte
des dégénerescences des états d’énergie des électrons introduisent des facteurs numériques dans
I’expression de v obtenu dans un cas simple & la question 23. Ces spécificités ne modifient
toutefois pas 'expression de 1’énergie cinétique totale due au confinement de 1’étoile. En 1926,
FOWLER ! propose la valeur v = 1,6 - 10° SI pour les naines blanches. On utilisera cette valeur
dans le reste du probléme.

(A — 24. Pour une ¢toile de ce type, déterminer le rayon Re, qui assure un minimum de I'énergie
totale.

1 — 25. Calculer numériquement R,q dans le cas d'une masse égale a celle du Soleil et conclure.

En 1931, CHANDRASEKHAR ? explique qu'il faut prendre en compte le caractére relativiste des
électrons confinés dans les naines blanches. Il en deduira un modéle plus correct pour ces étoiles.

(1 — 26. En estimant la vitesse des électrons dans le modéle de FOWLER justifier 'argument de
CHANDRASEKHAR.

FIN DE L’EPREUVE

1. R. H. FOWLER, On dense matter, Monthly Notices of the Royal Astronomical Society, 87, 114, 1926
2. S. CHANDRASEKHAR, The mazimal mass of ideal white dwarfs, Astrophysical Journal, 74, 81, 1931
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Formulaire en coordonnées sphériques

e

grad [F(r)] = -

Données numériques

Grandeur

dF .

div [F(r)i) = 5o

Symbole, valeur et unité

Constante de Planck

Constante de la gravitation universelle

Distance Terre—Soleil (unité astronomique)

Masse de I’électron
Masse du proton
Masse du Soleil
Rayon du Soleil
Rayon de la Terre

Période du mouvement de la Terre (année)
Période du mouvement de Mars

Seconde d’arc

h=6,6310"%*J.Hz !

G =6,67-10 " m3kg=t-s72
ap = 1UA =1,50-10"" m
me = 9,11-:103 kg

m, = 1,67-10"*" kg

My = 1,99-10% kg

Ro = 6,96-10°m

Ry =6,37-10°m

To = 365j = 3,16-107 s
T, = 687]

1”7 = 4,85 prad

5\ 6871 5
On donne (Z) ~ 1.6 et [—} ~ —.

365

Syntaxes Python

Syntaxe d’appel

4

‘ Résultats ou commentaires

* Générer un tableau de n valeurs réguliérement sur [a, 0] :
‘ r est un tableau de type numpy.array

r = numpy.linspace(a, b, n)

x Evalue Pintégrale y =

b

f(x)dx et estime ’erreur numérique

r = scipy.integrate.quada(f, a, b) ‘r = (y, err)

* Créer ou activer une fenétre de tracé :
r = matplotlib.pyplot.figure()

‘ exécuter avant de générer des tracés

* Tracer la courbe représentative de y = f(z)
matplotlib.pyplot.plot(x, y)

‘ x et y, énumérables de méme dimension

* Afficher la ou les fenétres de tracé :
matplotlib.pyplot.show()

‘ exécuter apres avoir généré des tracés
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Impulsion mécanique et mesures optiques

Le sujet comporte quatre parties I, II, III et IV qui, bien que liées les unes aux autres,
peuvent étre abordées de maniére totalement indépendante sous réserve d’admettre éventuel-
lement les résultats affirmés par ’énoncé. Dans les questions posées, exprimer signifie donner
une expression littérale et calculer signifie donner une valeur numérique; toutes les applica-
tions numériques seront réalisées avec seulement deux chiffres significatifs. Les vecteurs seront
surmontés d’une fleche, p ou v. Les grandeurs complexes seront soulignées, ¥ ou z, sauf i, tel
que i = —1.

Dans le langage général, le sens usuel du mot impulsion désigne 1’élan initial qu’on peut donner a
une particule élémentaire ou a un projectile macroscopique qui poursuit ensuite son mouvement.
Le méme mot a un sens plus spécifique en physique ; 'impulsion, d’abord définie en mécanique
classique comme la quantité de mouvement dans de trés nombreux cas, se retrouve en mécanique
quantique comme en mécanique relativiste avec un sens étendu.

Nous admettrons dans tout ce qui suit que I'impulsion 7 d’une particule ponctuelle libre (non
engagée dans une liaison), de masse m et d’énergie E est, dans le cadre général de la théorie
d’EINSTEIN (1905), donnée par la relation dite du triangle relativiste :

E? = p*c + m?c! (1)
ou p = ||p]| et ¢ =3,0x10%m -s! est la célérit¢ de la lumiére dans le vide ; par ailleurs, cette
méme impulsion p’ est, dans la description ondulatoire des particules, associée & la longueur

d’onde A de 'onde associée a la particule par la relation de DE BROGLIE (1924) :

/\:]—? (2)

ol h =6,6x1073*J - Hz ™! est la constante de PLANCK (1900).

I Impulsion de particules élémentaires

d — 1. Quel est, a votre avis, la nature du « triangle relativiste » évoqué par la relation (1)7
Représenter celui-ci.

Quelle est 'unité usuelle, dans le systéme international, de 'impulsion p ? du produit pc?

L’énergie des systémes macroscopiques s’exprime usuellement en joule (J) ou en kilowatt-heure
(1kW - h = 3,6 MJ). Dans toute la suite de la partie I, I'énergie des particules élémentaires sera
donnée en MeV (méga-¢électron volt) ot 1 MeV = 10°eV et 1eV = 1,6 x1071 J. Les masses des
particules seront données en MeV /c? et leurs impulsions en MeV /c. Par exemple la masse de
Iélectron vaut m, = 0,51 MeV/c? et celle du proton vaut m, = 940 MeV /c? (ou, si on préfere,
mec® = 0,51 MeV et m,c? = 940 MeV).

1 — 2. On appelle énergie de repos d’une particule la valeur Ey de I'énergie de celle-ci lorsque
son impulsion est nulle. Exprimer Ejy pour un proton et calculer sa valeur numérique.

Pour une particule en mouvement, le supplément d’énergie E. = E — Ej, porte le nom d’énergie
cinétique.

1 — 3. On s’intéresse d’abord aux particules vérifiant la relation (1) dans le cas de la limite
classique, lorsque E. < Ey. En vous limitant au premier ordre non nul, donner dans ce
cas une expression de F, en fonction de I'impulsion p et de la masse m de la particule.
Quelle est alors la relation entre 'impulsion p et la vitesse ¢ d’une particule ?

Quelle vitesse maximale peut-on donner & un proton pour rester dans la limite classique
telle que E./Ey < 1% ? Méme question pour un électron.
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Si on ne se limite pas aux faibles vitesses, on peut montrer, et on ’admettra, la relation générale
entre la masse m, la vitesse ¥ de norme v = |||, 'impulsion p de la particule et la célérité c de
la lumiére :

. muv
P=—F— 3
1—v?/c? ®)
(1 — 4. En déduire lexpression générale de I'énergie totale £ = f(Ey,v,c) d'une particule de

masse m.

(d — 5. Un photon est une particule associée a une onde électromagnétique dans le vide et dont
la vitesse est donc égale & c¢. Que peut-on en déduire, pour sa masse, de la relation
E = f(Ep,v,c) établie & la question précédente ?
Déduire de (2) 'expression de ’énergie E¥ d’'un photon en fonction de la longueur d’onde
A puis de la fréquence v de 'onde. Faire 'application numérique dans les cas des ondes
lumineuses des domaines bleu (A ~ 400 nm) puis rouge (A ~ 600 nm). On pourra exploiter
le fait que hc >~ 1,2eVxum et on exprimera E en eV.

II Le spectre d’émission des atomes d’hydrogéne

On s’intéresse ici a I’émission d’un photon, d’énergie E et d’impulsion p = E/e¢, par un atome
initialement au repos, de masse m. Au cours de cette émission, I'atome passe de 1’énergie initiale
E; a I'énergie finale By = E; — AE < Ej et il recule avec, dans le cadre d’une description
classique, I'impulsion mv et ’énergie cinétique %va (figure 1) de sorte que I'impulsion totale
du systéme complet reste nulle aprés I’émission, comme elle I’était avant émission. La direction
de 'impulsion p du photon est donc opposée a la vitesse v de ’atome qui recule.

. E
E; N f E
g 18 4 '/ - \‘ N
% % U \ - 7 . p
atome au repos atome qui recule photon

FIGURE 1 — Emission d’un photon par un atome au repos

1 — 6. On admet que I’énergie totale du systéme apres émission est identique a celle de 'atome
au repos avant I’émission. En déduire la relation E = mc? (\/ 14+ 2n— 1) et exprimer 7
en fonction de AE, m et c.

1 — 7. Dans le cas de I'atome d’hydrogéne, AFE est de I'ordre de quelques électrons—volts. En
déduire qu’on peut négliger 1’énergie de recul de I'atome et conclure quant a la relation
entre AE = E; — Ey et I'énergie ' du photon émis.

La résolution de I’équation de SCHRODINGER (1922) dans le cas de 'atome d’hydrogéne montre
que les valeurs de ’énergie F,, de I'atome sont quantifiées en fonction du nombre quantique
principal n € N* et de la grandeur H = 27,2eV selon la relation : E, = —H/(2n?). Cette
expression est confirmée par I’étude des ondes lumineuses, de longueur d’onde \, émises par un
ensemble d’atomes d’hydrogéne qui rayonnent par désexcitation depuis un état initial quantifié
par n; vers I’état final quantifié par ny < n;.

(A — 8. Lorsque I'état final est ny = 1, montrer qu’il existe une Apax telle que A < Apax et donner
une estimation de A\yax. Quel est le domaine spectral correspondant a ces raies d’émission ?
Lorsque I'état final est ny > 2, montrer qu’il existe une Anin que I'on estimera, telle que
A > Amin - Quel est le domaine spectral correspondant a ces raies d’émission ?

Les raies d’émission de I'hydrogéne dans le domaine visible (les raies de BALMER) ont été
étudiées a partir de 1853 par ANGSTR@M ; a quelles valeurs de n ¢ correspondent-elles ?
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C’est la connaissance précise de ce spectre qui a permis ’étude de la quantification de 1’éner-
gie des atomes donc l'introduction de la mécanique quantique au début de XX¢ siecle. Cette
connaissance a été par la suite améliorée au moyen de la spectrométrie interférentielle.

III Mesures interférométriques de longueurs d’onde

En 1907, MICHELSON est le premier américain a recevoir le prix Nobel de physique pour
ses instruments optiques de précision et les mesures spectroscopiques et métrologiques réalisées
au moyen de ceux-ci. En particulier, il publiera en 1892 des mesures relatives aux spectres
d’émission de plusieurs sources, obtenues par spectroscopie interférentielle, et notamment pour
les raies H, (rouge) et Hg (bleue) d’émission par les atomes d’hydrogéne.

ITII.A L’interférométre de Michelson

Le schéma du montage utilisé par MICHELSON est proposé figure 2. Le dispositif monochroma-
teur, formé d’un prisme de verre dispersif et d’une fente étroite, éclaire ’appareil en sélection-
nant une raie quasi-monochromatique de longueur d’onde \q, appartenant au domaine visible.
L’observation est réalisée au moyen d'un oculaire afocal, réglé a l'infini : il donne d’un objet
situé a grande distance une image également a grande distance, mais agrandie.

AZ
1
i
5
&)
5 oD
v i <
TH3
M <
55
M
L r 1
. . >
miroir jmobile €z

b

monochromateur

oculaire

FIGURE 2 — Dispositif de mesure en spectroscopie interférentielle

d — 9. L’interférométre comporte deux lames de verre L; et Lo, paralléles, de méme épaisseur e
et de méme indice optique n, inclinées d’un angle /4 relativement a ’axe (O, €,,) normal
au miroir fixe. La lame L, est munie d’une couche semi-réfléchissante sur une seule de ses
faces; laquelle 7 Justifier, en vous appuyant sur un schéma.
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J - 10.
3 - 11.
a - 12.
- 13.

Aprés réglage des vis Vi et V5 les miroirs fixe et mobile sont rendus rigoureusement
perpendiculaires ; I'axe optique (O, €,) de I'oculaire est alors confondu avec la normale au
miroir mobile et 'opérateur observe, au moyen de cet oculaire réglé a I'infini, des franges
d’interférence. Quelle est la forme de ces franges?

Peut-on encore les observer si 'oculaire est déréglé ?
Tout en observant les franges, I’observateur peut actionner la vis micrométrique et dépla-

cer le miroir mobile dans le plan (O, €;, €, ), le long de I'axe (O, €,). Relier le nombre AN
de franges sombres qui défilent au centre du champ et le décalage Az du miroir mobile.

Exprimer, au moyen d’un schéma approprié, la différence de marche observée a l'infini
dans une direction donnée, en fonction de I’écart séparant les deux miroirs.

Le déplacement maximal de la vis micrométrique & partir du contact optique est noté
AZpax. Déterminer, aprés ce déplacement, 'angle Af qui sépare le centre de la figure de
la premiére frange de méme nature.

Dans le cas d’une des raies de I’hydrogéne atomique, on observe le défilement de N = 3 156
franges pour un décalage Az = 1035 + 2 um. S’agit-il de la raie H, ou Hg?

Avec quelle précision relative mesure-t-on sa longueur d’onde A\ ?

Que vaut alors Af? Commenter.

III.B Cohérence spectrale d’une source

Une source de lumiére éclaire avec la méme intensité Iy les deux voies d’un interféromeétre ;
I’observation est réalisée en un point ou la différence de marche est 9.

J - 14.

Dans le cas ou la source est rigoureusement monochromatique, de longueur d’onde Ay,
exprimer 'intensité /(J) en fonction de Iy, Ag et 0. Définir et calculer le facteur de contraste
C' des franges.

Certaines sources lumineuses sont en fait bichromatiques : elles émettent deux radiations de
longueurs d’onde trés proches \; et Ay et on pose alors \g = % (A1 + A2) et AN =|As — A{| en
admettant toujours A\ < Ag.

J - 15.

J - 16.

Pour certaines sources bichromatiques les deux radiations émises sont de méme intensité ;
c’est le cas des lampes a vapeur de sodium, étudiées notamment par MICHELSON dans
les conditions décrites en ITI.A. Expliciter I'intensité I observée en fonction de Iy, de la

différence de marche d, de A\g et de A\.

Exprimer le facteur de contraste C' des franges et montrer comment il permet la mesure

de Ao/AN.

D’autres sources, comme celles émettant la raie H, de 'hydrogéne, peuvent étre écrites
comme bichromatiques mais les intensités I et Iy < I; émises aux longueurs d’onde A\ et
Ao sont différentes. Pour quelle(s) valeur(s) de ¢ le facteur de contraste des franges est-il
minimal 7 Quelle est cette valeur minimale ?

Dans le cas de la raie double H,, I’écart A\ est de I'ordre de 1,4x107 ! m. Est-il possible
de le mettre en évidence avec le montage proposé ci-dessus ?

III.C Les tubes 4 hydrogéne

Pour I’étude du spectre d’émission de I’atome d’hydrogéne, une premiére technique?, initiée
dans les années 1930, a consisté a utiliser un tube AB contenant de I’hydrogéne moléculaire
(dihydrogéne, formule H,) sous faible pression (150 mbar) soumis a des décharges électriques de

1. D. Chalonge et Ny Tsi Zé, J. Phys. Radium, 1930
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haute tension entre deux électrodes F; et Es; 'observation se fait au travers d’une fenétre de
quartz F' (cf. figure 3). Le spectre d’émission obtenu présente la superposition d’un fond quasi-
continu et de raies bien identifiées, comme le montre la figure 4 tirée de I'article présentant la
technique originelle.

FIGURE 3 — Illustration du dispositif : reproduction de la figure 1 de 'article originel

A — 17. Quel est le role du circuit a circulation d’eau qui entoure le tube central ?
Sur le spectre proposé en figure 4, quelle est 'unité de la graduation donnée en abscisse ?

Quelle est, a votre avis, l'origine du fond continu (essentiellement dans le proche ultra-
violet) marqué en trait pointillé gris?

= nHs 'F a"Y ]“"?
H nﬂ'\ ‘
AN
,/ | \ || ‘~
i
o |
v '-,"!l ] |
e \
Y
o ’

FIGURE 4 — Spectre d’émission du tube & hydrogéne en échelle logarithmique

On préfere actuellement utiliser des lampes a décharge d’une constitution différente : il s’agit
de tubes & décharge remplis de vapeur d’eau permettant I’obtention d’un spectre atomique sans
bande continue. En présence des décharges a haute tension, ce type de lampe est le siége des
réactions H,0 = HO + H.

1 — 18. Quelle propriété du spectre d’émission de la molécule hydroxyle HO est ici mise a profit 7

Ces lampes contiennent une certaine proportion d’eau lourde, molécules HDO dans laquelle un
des deux atomes d’hydrogene 1H est remplacé par un atome de deutérium 2D, dont le noyau est
formé d’un proton et d’un neutron. Si on tient compte de la masse my du noyau atomique,

on peut montrer que la longueur d’onde d’émission d'une des raies spectrales de I'hydrogéne
atomique vérifie la relation :
Me + My

my

A= Axo

oll m, est la masse de I’électron et A, la longueur d’onde idéale si my — oc.
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d — 19. Les raies d’émission du deutérium sont-elles, par rapport a celle de I’hydrogéne ordinaire,
décalées vers le bleu ou vers le rouge ?
De quelle résolution spectrale (en nanométre) faut-il disposer pour séparer les raies de
I’hydrogene et celles du deutérium ?
A partir d’une lecture de la courbe de la figure 4, faire I'application numérique dans le
cas de la raie Hg.

IV L’équation de Klein—Gordon

Lors du développement de la mécanique quantique (ou mécanique ondulatoire), 'onde de ma-
tiere W(7,t) a d’abord été considérée comme solution de I’équation de SCHRODINGER (4) :

h? ov

h

ot 2w

pour une particule de masse m repérée par sa positon 7 et soumise a l'interaction décrite par
la fonction potentiel scalaire V(7). En 1926, KLEIN et GORDON en ont proposé une version
modifiée qu’on écrira :

2
RPAEAY + (m% - V(f)) U(7t) = m?cW(7t) (5)

Dans la suite on s’intéressera exclusivement aux solutions de I'une ou 'autre équation, de la
forme : .
L i
W) = gy exp |~ (B0 = p(E))]
ou ¢ , est une certaine constante complexe, x est I'une des coordonnées cartésiennes de 7, £/ > 0
est 1’énergie de la particule et p(E) > 0 son impulsion.

[ — 20. L’état associé a cette fonction d’onde est-il stationnaire ?
Dans quel sens le mouvement de la particule décrite par cette onde a-t-il lieu ?
Exprimer les vitesses de phase v, et de groupe v, en fonction de E, de p(E) et de sa
dérivée.

[ — 21. Exprimer p(E) et v,(E) dans le cas d'une particule vérifiant I’équation de SCHRODINGER

dans un domaine ot V est constant. En déduire le caractére relativiste ou non du modéle
associé a ’équation de SCHRODINGER.

d — 22. Répondre aux mémes questions dans le cas d’une particule vérifiant I’équation de KLEIN—
GORDON (5).

On s’intéresse enfin a la résolution du probléme physique suivant : la particule étudiée est
libre (V = 0) pour z < 0 et x > a et pourvue d’une énergie E, tandis que, dans I'intervalle
z € [0,a], elle est soumise & une interaction caractérisée par V=V, > E (figure 5) et méme
Vo — E > mc®. Les solutions de 'équation (de SCHRODINGER ou de KLEIN-GORDON) seront
donc écrites, pour x < 0 et x > a, sous les formes respectives :

i

U(x <0it) = yo exp [ - (Bt — pﬁ)] + Ega exp {—% (Et+ px)}

i

Yo > 0t) = Do |1 (Bt - po)

ou I' et R sont deux constantes complexes.
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FIGURE 5 — Barriere de potentiel

On se place d’abord dans le cas de 1’équation de SCHRODINGER.
[ — 23. Quelle est la nature de 'onde dans le domaine = € [0,a] 7
Quelles relations permettent de calculer R et T'? On ne demande pas de les exprimer ici!
Quel phénomeéne physique peut-on mettre ainsi en évidence ?
Quelle est Pinterprétation physique de |T)??
On se place maintenant dans le cas de I’équation de KLEIN—(GORDON.
d — 24. Quelle est la nature de l'onde ;ians le dc;maine x € [0,a] 7 On notera qu’en introduisant
(e —me Z§€+mc ) >0
Les mémes relations que dans 1’étude de la barriére de potentiel dans le cadre de ’équation de
SCHRODINGER conduisent, pour 'onde de KLEIN-GORDON, a la relation (que l'on admettra) :

1 1
TP = avec == (249} ot ¢:_qa
|cos ¢ — iasin | 2\q »p h

e=FE—-Vyonaqg*=

O — 25. Déterminer la valeur maximale de |T)?. Commenter.

FIN DE L’EPREUVE
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La Lune, notre satellite

La Lune est le satellite naturel de la Terre. De tout temps, elle a été pour les humains un objet
de mesure du temps, une source de lumiére nocturne voire une divinité. Elle est aujourd’hui un
objet de recherche scientifique et un symbole de la conquéte spatiale.

Ce sujet aborde différents aspects de 1’étude de la Lune. Il comporte, tout d’abord, 1'étude
antique qu’a réalisée Aristarque de Samos sur la Lune, puis la télémétrie Terre-Lune moderne.
On étudie ensuite une théorie sur l'origine de la Lune avant de s’intéresser a I’étude de son
noyau. Les deux parties sont largement indépendantes.

Les applications numériques seront données avec 2 chiffres significatifs.
Plusieurs données numériques et formules sont fournies en fin de sujet.

I Les caractéristiques de la Lune et de son orbite

I. A La Lune dans 'antiquité

Dés 'antiquité les humains se sont intéressés a la Lune et & ses caractéristiques.

La Lune réalisant une révolution autour de la Terre tout en étant éclairée par le Soleil, la partie
visible de la Lune depuis la Terre change. La succession des phases de la Lune vue depuis la
Terre s’appelle un cycle lunaire et a permis de définir la notion de mois. La durée d'un cycle
lunaire est environ 7., = 30 jours.

L’écart entre la période de révolution 7, de la Lune et le cycle lunaire provient du fait qu’en
méme temps que la Lune tourne autour de la Terre, cette derniére tourne également autour
du Soleil. Aprés une révolution de la Lune autour de la Terre, la phase de la Lune n’est pas la
méme. La Lune doit parcourir une plus grande distance pour finir le cycle lunaire.

( — 1. Rappeler quelle est la période de révolution 7 de la Terre autour du Soleil.
En déduire la fraction ¢ de l'orbite que parcourt la Terre durant un cycle lunaire.

 — 2. En déduire la période de révolution de la Lune autour du centre de la Terre.

Au ITI*me siécle avant Jésus-Christ, Aristarque de Samos réalise des mesures astronomiques afin
de déterminer les dimensions de la Lune ainsi que le rayon de son orbite autour de la Terre. A
partir de ses observations il mesure que :

— la Lune met 1 heure a parcourir son propre diamétre vu depuis la Terre;
— lors d’une éclipse totale de Lune, la Lune reste 2 heures dans 'ombre de la Terre;

— P’angle sous lequel on voit la Lune depuis la Terre est de 2° (on sait aujourd’hui que c’est
environ 4 fois moins).
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1 — 3. A la méme période, Eratosthéne mesure qu’'un arc de 7,2° de la circonférence terrestre
mesure environ 800 km. En déduire la valeur du diametre terrestre.

(1 — 4. En utilisant les mesures d’Aristarque de Samos, déterminer le rapport entre le diamétre
lunaire et le diamétre terrestre. On pourra s’aider d’un schéma.

En déduire la valeur du diameétre lunaire évaluée par Aristarque.

Calculer I’écart relatif de ce résultat avec le véritable diameétre de la Lune qui est d’environ
3500 km. Commenter.

A — 5. On conserve désormais la valeur du diamétre de la Lune valant 3500 km. Déterminer la
distance Terre-Lune a partir des mesures d’Aristarque de Samos.

d — 6. La masse volumique moyenne dune roche est de 'ordre de quelques tonnes par métre
cube. En déduire une estimation de la masse de la Lune puis de I'intensité du champ de
pesanteur lunaire. Comparer avec 'intensité du champ de pesanteur terrestre.

I.B La mesure moderne de la distance Terre-Lune

La mesure actuelle de la distance Terre-Lune se fait a 'aide de la télémétrie laser. Depuis la
surface de la Terre, on envoie une impulsion laser vers des miroirs déposés a la surface de la
Lune par différentes missions, dont celui le plus utilisé, déposé par la mission Apollo 15 en 1971.

Pour produire le laser nécessaire a cette expérience, Yy
on réalise une cavité optique constituée de deux

miroirs en vis-a-vis séparés par de l'air dans le- ‘
quel on place un amplificateur optique. La cavité <>z

optique est paramétrée sur la figure 1. Le repére ‘
orthonormé (€,; €,; €,) est direct. =0 =1
On considére que les miroirs sont constitués de
métal idéal, c’est-a-dire qu'un champ électrique ne
peut pas se propager a 'intérieur. Le champ électrique E; = Ej cos(wt—kx)é, est introduit dans
la cavité optique. Enfin, 'amplificateur optique ne sera pas pris en compte pour la propagation
de I'onde dans la cavité remplie d’air qui sera supposé avoir les mémes propriétés que le vide
pour le champ électromagnétique.

On rappelle la relation de passage pour le champ électrique entre deux milieux 1 et 2 : Eg — El =
% 15 ol B et Ey sont les champs électriques dans les milieux 1 et 2; o est la charge surfacique
de l'interface entre les deux milieux ; € est la permittivité diélectrique du vide ; 7715 est le vecteur
normal a l'interface dirigé du milieu 1 vers le milieu 2.

FI1GURE 1 — Cavité optique.

[ — 7. Quelles sont les caractéristiques du champ électrique E; introduit dans la cavité optique ?
On précisera le nom et I'unité des grandeurs Ey, w et k.

1 — 8. En utilisant la relation de passage fournie, déterminer I’expression du champ électrique
réfléchi par le miroir situé en z = L.

d — 9. Déterminer les expressions du champ magnétique incident BZ et du champ magnétique
réfléchi B, existants dans la cavité.

(d — 10. En déduire I'expression du champ électrique résultant E et du champ magnétique résul-
tant B dans la cavité. Commenter le résultat obtenu en terme d’amplitude, de phase et
de tout autre caractére pertinent.
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(d — 11. Déterminer I'expression du vecteur de Poynting I1 de 'onde électromagnétique résultante
ainsi que sa valeur moyenne au cours d’une période 7 = 27 /w. L’'un des deux miroirs n’est
pas parfaitement réfléchissant, quel en est l'intérét 7 Expliquer le role de 'amplificateur
optique.

A — 12. Justifier que la forme du champ électromagnétique ne permet pas d’utiliser la cavité pour
obtenir n’importe quelle fréquence laser. Déterminer ’expression des fréquences possibles
en fonction notamment de la longueur L de la cavité.

(1 — 13. Le laser utilisé pour la télémétrie Terre-Lune est un laser YAG-Nd de longueur d’onde
A = 1064 nm auquel on a adjoint un doubleur de fréquence. Quelle est la longueur d’onde
utilisée pour cette mesure et quel est le domaine électromagnétique correspondant ?

(d — 14. La durée moyenne de l'aller-retour pour un trés grand nombre d’impulsions laser entre
la Terre et la Lune est At = 2,56s. Déterminer la distance Terre-Lune obtenue par la
télémétrie laser. Comparer avec le résultat obtenu par la mesure d’Aristarque de Samos.
Commenter.

II Les origines de la Lune

L’origine de la Lune a été soumise & de nombreuses hypothéses. Des hypotheéses les plus folklo-
riques aux hypotheéses les plus sérieuses, 1’origine de la Lune est toujours soumise a controverses,
malgré un consensus important de la communauté scientifique sur la théorie de I'impact.

II.A La théorie de la fission

La théorie de la fission est introduite par ’astronome Georges Darwin, fils du célébre biologiste,
a la fin du XIX®™e siecle. Dans cette théorie Darwin suppose que, lorsque la Terre était encore
en formation et liquide, sa rotation a suffi & la déformer et & en expulser une partie. Ce morceau
expulsé de la Terre serait a l'origine de la Lune. Darwin imaginait méme que le grand océan
pacifique était le vestige de cet événement.

On a représenté sur la figure 2 ci-aprés les différentes phases de cette théorie : 1.La Terre
non déformée, 2.La Terre déformée par rotation, 3.La création d’un bourrelet pré-lunaire et
I’expulsion de la Lune et 4.La Lune créée.

® @
Terre non Terre
déformeée § déformeée

@

Terre et
Lune

Expulsion
de la Lune

FIGURE 2 — Etapes de la formation de la Lune dans la théorie de Darwin de la fission.
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1 — 15. Expliquer en quoi la plus faible densité de la Lune par rapport a la Terre est un argument
en faveur de la théorie de la fission.

On étudie un morceau de roche terrestre de masse m, posé sur la surface de la Terre. On se place
dans le référentiel terrestre non galiléen en coordonnées sphériques (€,; €; €,). On rappelle que
la latitude d’un point de la surface terrestre est 'angle entre le rayon de la Terre en ce point et
le plan de I’équateur, lui-méme orthogonal & I’axe de rotation terrestre.

(1 — 16. Rappeler le nom et 'expression générale de chacune des forces d’inertie. On précisera
clairement la signification des différentes grandeurs introduites.

(d — 17. Reéaliser un bilan des forces exercées sur 1’élément de masse m posé a la surface de la
Terre. Réaliser un schéma de la situation dans le cas ol la masse considérée se trouve a
la latitude \.

(d — 18. Justifier la forme de la Terre déformée par rotation représentée sur la seconde étape de la
figure 2. Déterminer une estimation de la variation p du rayon de la terre entre sa valeur
au pole et celle a ’équateur.

On considére désormais que la masse se situe au niveau de I’équateur.

(d — 19. En reprenant le bilan des forces sur la masse m dans ce cas, calculer la période de rotation
terrestre nécessaire pour expulser de la Terre cette masse. Comparer cette valeur avec la
période actuelle de rotation terrestre. Faire un commentaire sur la validité de la théorie
de la fission.

II.B La théorie de 'impact

La théorie de I'impact propose qu'une petite planéte ait percuté la Terre, provoquant le mélange
des deux astres et I'expulsion de débris qui se sont regroupés pour former la Lune. Cette théorie
est celle qui fait actuellement consensus dans la communauté scientifique.

Les études sismologiques sur la Lune ont montré qu’elle posséde un noyau dont une partie est
solide. On retrouve la structure interne de la Lune sur la figure 3.

Crotite (milieu 1)

............................... Manteau (milieu 2)

Noyau liquide (milieu 3)

Noyau solide : graine (milieu 4)

FIGURE 3 — Structure interne de la Lune.
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La crotite est constituée d’anorthosite, une roche magmatique. Le manteau est constitué¢ d'un
mélange d’olivine, d’orthopyroxéne et de clinopyroxéne. Le noyau liquide et la graine sont
principalement constitués de fer. On considére que chacune des couches est homogéne.

On s’intéresse dans un premier temps a 1’évolution de la température de la Lune suite a l'impact.
On note :

T, et Ty, les températures a la surface du Soleil et de la Lune;

Ry et Ry, les rayons du Soleil et de la Lune;

Dg_y, la distance entre le Soleil et la Lune;

A, I'albédo de la Lune, c’est-a-dire la fraction de I’énergie solaire recue qui est réfléchie par
la Lune.

( — 20. En utilisant la loi de Stefan-Boltzmann, fournie en fin de sujet, déterminer ’expression
de la puissance solaire absorbée par la Lune. En 'assimilant a un corps noir, déterminer
ensuite 'expression de la puissance perdue par la Lune par rayonnement. Déterminer
enfin ’expression de la puissance totale perdue par la Lune.

L’application numérique de cette grandeur donne une puissance de l'ordre de 10 W.
1 — 21. Rappeler la loi de Fourier en indiquant les noms et les unités des grandeurs introduites.

O — 22. Etablir I'équation de la chaleur. Donner I’expression du coefficient de diffusion thermique
et son unité. On notera les grandeurs avec I'indice i = 1,2,3,4 correspondant aux différents
milieux décrits sur la figure 3. On considérera les conductivités thermiques uniformes et
constantes en les prenant égales a leur moyenne sur le volume de la couche considérée.

O — 23. Etablir les quatre équations traduisant la conservation du flux thermique au niveau des
quatre interfaces que 'on doit considérer.

Différentes études permettent d’obtenir une estimation de la température de la Lune en fonction
de la profondeur. Les résultats de cette estimation sont fournis sur la figure 4.

<« Noyau —
T K] g (n) :

2000 ....................................................................................................................... .............................

1200] 1 (1) o 5

Lo
SR
: £
: Do .
700( Manteau L2 Graine ;
250f Lo
j . . : Profondeur [km]
0 50 1400 1490 1750

FIGURE 4 — Estimation de la température interne de la Lune en trait noir plein. Modéle simplifié
(affine par morceau) en trait gris pointillé.
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- 24.

Expliquer en quoi le profil de température dans le noyau n’est pas incompatible avec
I'existence de la graine.

On adopte dorénavant une vision simplifiée dans laquelle :

— la Lune n’est constituée que de deux couches : la couche rocheuse jusqu’'a 1400 km de

profondeur et le noyau de fer au centre;

la température de chacune des deux couches est modélisable par une fonction affine de la
coordonnée radiale : Ty, (r) = a, — byr pour le noyau (n) et 7, = a, — b,r pour la roche (r).
Ce modéle simplifié est représenté en trait gris pointillé sur la figure 4 ;

les capacités thermiques volumiques du noyau et de la roche peuvent étre considérées

comme constantes en les prenant égales a leur moyenne sur le volume de la couche cor-
respondante.

A — 25. Déterminer les valeurs numériques des constantes ay, by, a, et b,.

d — 26. En utilisant la modélisation affine de la température, déterminer I’expression de 1’énergie
interne de la Lune en fonction notamment des capacités thermiques volumiques de la
roche et du noyau ainsi que des rayons R,, du noyau et R, de la Lune.

L’application numérique de cette grandeur donne 4,1 - 102 J.

(d — 27. Déterminer ’expression de 1’énergie interne de la Lune lorsqu’elle sera totalement refroidie
et thermalisée a la température Ty = 250 K.

L’application numérique de cette grandeur donne 1,4 - 10% J.

(d — 28. Donner une estimation du temps nécessaire pour que la Lune soit uniformément refroidie
dans ce modéle. Commenter le résultat obtenu.

Données

Constante de gravitation universelle : G = 6,7 - 107! m3.kg=t.s72
Permittivité diélectrique du vide : ¢g = 8,9 - 1072 F-m~!
Perméabilité magnétique du vide : g = 1,3 - 107 m-kg-s=2- A2

La puissance surfacique P rayonnée par un corps noir dont la surface est a la température
T est donnée par la loi de Stefan-Boltzmann. Elle s’exprime sous la forme P = 7% ol o
est la constante de Stefan-Boltzmann.

— Gradient en coordonnées sphériques :

— ar
grad T'= — €, +
or

18_T4+_1 a_T“
r 00 0 r sinf 0¢ s

— Laplacien en coordonnées sphériques :

ar=L 0 (200, 1 0 (5,00, 1 o1
2o \" o) T2 sine 90 \"M 80 ) T 2 sin2e 042

FIN DE L’EPREUVE
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Instabilités et oscillations de relaxation

Ce sujet est consacré a certaines situations physiques instables conduisant & des oscillations de
relaxation. Ce terme désigne des oscillations non linéaires obtenues par I’augmentation continue
d’une contrainte, suivie du relachement subit de celle-ci. Le sujet est constitué de trois problémes
totalement indépendants sur cette thématique assez courante en physique.

Bien que les trois problémes traitent de phénomeénes physiques analogues, les méthodes déve-
loppées sont totalement différentes :

— le probléeme I analyse un oscillateur historique de 1’électronique linéaire. Il s’agit de I’em-
ploi de méthodes numériques pour I'intégration des équations différentielles déduites des
lois physiques, avec prise en compte d’un basculement périodique ;

— le probléme IT est consacré a I’étude des régimes stables et instables d’un montage a portes
logiques. Il s’agit de la résolution par morceaux d’'une équation différentielle linéaire, avec
raccordement par continuité d’'une grandeur physique ;

— le probléme III s’intéresse a une description analytique compléte des équations du mou-
vement d’un solide frottant sur un support fixe et du crissement qui en résulte.

Les vecteurs (w) sont surmontés d’une fleche. Les applications numeériques seront réalisées avec
un seul chiffre significatif. Lorsqu'un code informatique est demandé, il sera rédigé dans la
syntaxe de Python 3. Un petit formulaire et quelques valeurs numériques sont regroupés en
fin d’énoncé.

I Oscillateur a tube
On considére le montage de la figure 1 comportant un générateur idéal

de tension constante Ej, un résistor de résistance R, un condensateur de
capacité C' et un dipole D assimilé a un résistor de résistance Ry = aR.

I.A  Une premiére équation d’évolution

Dans un tel circuit linéaire, I’équation d’évolution de u(t) est une équation
différentielle linéaire du premier ordre a coefficients constants dont la so- Fiqure 1 — Cir-
lution comporte d’'une part une solution de I'équation homogene up(t) et .yit

d’autre part une solution particuliére up(t).

[ — 1. Laquelle de ces deux solutions correspond au régime transitoire ?

Sa forme générale dépend-elle de Ej?
Proposer un schéma simplifié et en déduire, en effectuant le moins de calculs possible,
qu’il s’agit d’une solution caractérisée par une constante de temps 7, qu’on explicitera en
fonction de 79 = RC et de «.

@ — 2. A quelle condition 'autre solution correspond-elle au régime permanent ?
Sa forme générale dépend-elle de C'? des résistances R et Ry 7

Proposer un schéma simplifié et en déduire simplement ’expression correspondante .,
de u en fonction de a et Ej. .

I.B Un dipdle a deux états

En réalité, le dipole D est une lampe contenant un gaz raréfié qui peut étre dans deux états
électriques (lampe éteinte ou allumée). Ces deux états correspondent chacun a une valeur de a.
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Le comportement électrique de D différe selon son état : c¢’est un assez bon conducteur si elle
est allumée, et un assez bon isolant si elle est éteinte.

O — 3. Que peut-on dire a priori de « si la lampe est éteinte ? si elle est allumée ?
On réalise le circuit avec R = 20k(2 et C' = 200 pF. Lors du branchement initial du circuit, on
admettra que la lampe est éteinte et le condensateur déchargé. Par la suite :

— la lampe reste éteinte tant que la tension a ses bornes vérifie |u| < U, o U, = 90V est
la tension d’allumage ; dans ce cas elle a pour résistance R, > R;

— une fois allumée, la lampe a pour résistance R, ~ 1k(); elle reste allumée sauf si la tension
a ses bornes diminue trop et elle va donc s’éteindre dés lors que |u| < U, ou U, = 70V
est la tension d’extinction.

1 — 4. Exprimer et calculer 7, dans les deux régimes, successivement lampe éteinte puis allumée.

1 — 5. Exprimer la limite lim;_,, u(t) si la lampe ne s’allume jamais ; puis si elle reste allumée.

En déduire que le systéme oscille seulement si Fy > 0 est compris dans un intervalle que
I'on déterminera. Est-ce le cas avec Ey = 120V, valeur choisie dans la suite ?

Ces oscillations seront-elles observables & 1’ceil 7

I.C Etude numérique du régime d’oscillation

On propose une étude numérique des oscillations au moyen d’un algorithme dérivé de la méthode
d’Euler explicite pour 'étude de u(t) ; le passage de t a t + dt se fait au moyen de la fonction
Next :

1 def Next(u, al, dt):

2 i = (E - u)/R

3 if al:

4 al = u >= Ue

5 else:

6 al = u > Ua

7 u += dt*(i - al*u/Ra)/C
8 return u, al

1 — 6. Quelle est la signification de la variable (logique) al?
Quel est 'objectif des lignes 3 4 67
Justifier, au moyen d’un schéma électrique, la ligne 7.

On propose enfin de tracer l'allure de la courbe représentative de u(¢) au moyen du code ci-
apres :

1 E = 120.0
2 R = 2.0E4
3 C = 200.0E-6
I Ua = 90.0
5 Ue = 70.0

6 Ra = 1.0E3
7 tmax = 20.0

8

9 def Etude(tmax, N, u0, allO):
10 h = tmax/N

11 t, u, all = 0, u0, alloO
12 LT = LU = []
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13 for k in range(N):

14 LT.append (t)

15 LU. append (u)

16 t =t +h

17 u, all = Next(u, all, h)
18 pl.figure ()

19 pl.plot (LT, LU)

20 pl.show ()

suivi de ’exécution des lignes :
| import matplotlib.pyplot as pl
2 Etude (tmax, 500, 0, False)

A — 7. Le tracé sera-t-il satisfaisant 7
Si non, quelle(s) modification(s) proposez-vous ?

Aprés rectification si nécessaire, [’allure du tracé obtenu est représenté figure 2.

cu(t)

be

Ato Atl

’

FIGURE 2 — Tracé de u(t) par la méthode numérique proposée

(1 — 8. Sur la figure 2, identifier les phases ou la lampe est allumée et celles ou elle est éteinte;
quelle est la valeur de a7

La valeur de b dépend en fait du paramétre N de la fonction Etude; avec N = 500 on
trouve par exemple b ~ 59 V. Expliquer pourquoi cette valeur reste inférieure & 70V ?

II Oscillateur a portes logiques

Dans la partie précédente, les oscillations étaient dues aux deux états du dipole D. On peut
également utiliser un circuit comportant une rétroaction pour engendrer des oscillations : c’est
le cas dans cette partie.

II.A Identification d’un circuit intégré

On récupére au laboratoire un circuit intégré comportant un certain nombre de portes logiques
identiques, dont on est sftir :

— de leur tension d’alimentation V.. = 15V associée a la technologie CMOS employée ;

— de la faible valeur (i < 0,1 pA) des courants d’entrée, qu’on négligera donc dans tout ce
qui suit.
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Les références du circuit intégré n’étant plus lisibles, on n’est plus siir de la nature des portes
en question ; on sait cependant qu’il s’agit nécessairement de portes figurant dans la liste AND,
OR, NAND, NOR (ou en frangais ET, OU, NON ET, NON OU). Pour déterminer la nature
de ces portes, on réalise deux séries de mesures de la caractéristique entrée—sortie selon les
schémas des figures 3 et 4

Lcc
!
Ue 1 ’

| o
tUs
; —L - > Ue

T— Vee

. B
I 1 I -—u,

FIGURE 4 — Montage de la seconde série de mesures (a gauche) et ses résultats (a droite).

3 — 9. Que peut-on déduire de la premiére expérience (figure 3) 7 Et de la seconde expérience
(figure 4) ?

On poursuivra I’étude, indépendamment des conclusions ci-dessus, en n’utilisant que des portes
NAND (NON ET) que I'on symbolisera a l'aide du schéma suivant :

1Dg

[ — 10. Proposer des montages n’utilisant que des portes NAND réalisant les fonctions NOT,
AND et OR. On vérifiera le comportement de chaque montage en donnant sa table de
vérité.

[ — 11. Le circuit intégré Texas Instruments CD-4011 (photographie de la figure 5) comporte qua-
torze broches (pins en anglais). Combien de portes NAND comporte-t-il au maximum ?
Justifier.

FIGURE 5 — Circuit intégré TI CD-4011
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II.B Emploi de portes logiques

De nombreux documents destinés a la réalisation de montages d’électronique musicale proposent
I'utilisation du circuit théorique présenté sur la figure 6 avec R = 1 MQ et ¢ = 100nF. La
tension d’entrée marquée v (pour « valid ») peut étre, selon le cas :

— maintenue égale & v = 0V (le circuit est alors dit invalidé) ;

— portée a la valeur constante v = +V,,. (le circuit est alors dit validé). On considérera qu’a

I'instant de la validation le condensateur est déchargé.

D Pra
4

R cC_— =

FIGURE 6 — Un circuit classique de 1’électronique musicale

On notera s(t) la tension en sortie de la porte 2 et e(t) la tension a I'autre entrée de la porte 1
(voir figure 6). Les tensions e, s et v sont toutes déterminées relativement a la masse électrique
du montage. Dans toute la suite de cette partie, on suppose que le seuil de basculement des
portes NAND utilisées est égal a V../2. On notera respectivement by et b, les valeurs binaires
associées a s et e; ainsi par exemple by = 1 si s > V,./2 et by = 0 sinon.

J - 12.

3 - 13.

Lorsqu’il est invalidé, montrer que le circuit atteint toujours un état stable pour lequel
on déterminera les valeurs de s et e, et de b, et b,.

A Dinstant ¢t = 0 le circuit est alors validé. Montrer qu’une seule des deux portes NAND
change d’état (on dit qu’elle bascule) ; laquelle ?

Que dire de la différence e(t) — s(t) en t = 0" et en t = 0~ 7 Exprimer e(t) et en déduire
que cet état dure jusqu’a un instant ¢;, que I’'on déterminera en fonction de R et C.

Un nouveau changement d’état a lieu a 'instant ¢t = ¢;

J - 14.
J - 15.
J - 16.
- 17.

Exprimer s(t) et e(¢t]) ou la notation ¢; désigne la limite ¢ — ¢; par valeur supérieure.
Déterminer alors e(t) pour ¢ > ¢; et en déduire que cet état dure jusqu’a un instant ¢,
que 'on exprimera en fonction de R et C.

Avec la méme convention, exprimer s(t]) et e(t3), puis e(t) pour ¢t > t,. En déduire

I’existence d’un nouvel instant de basculement t3 > t5 que ’on exprimera en fonction de
Ret C.

Tracer 'allure de e(t) et s(t) sur une durée au moins égale a 2t3, en positionant clairement
les instants 1, to et t3 ainsi que les valeurs de e et s correspondantes.

Commenter le comportement du circuit et calculer la valeur numérique de la durée carac-
téristique associée.

Proposer une application dans le domaine pour lequel ce circuit a été congu.
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III Le crissement

ITI.A Les lois de Coulomb

Les crissements et grincements qui caractérisent certains frottements sont des oscillations de
relaxation. La fréquence des relaxations est aussi celle de 'onde sonore émise, qui est souvent
désagréable a entendre, notamment & cause de sa position dans la gamme des sons aigus. Nous
allons en donner une description trés simplifiée, dans le cadre des lois, dites de Coulomb, qui
régissent le frottement de glissement d’un solide (3) en translation relativement a un support
fixe (F).

Nous supposerons ici I'existence (figure 7) d’une surface de contact plane entre (X) et (F).

Ry |E)|o—

A

1 (£)

FIGURE 7 — Lois de Coulomb du frottement de glissement

Ces lois décrivent la force de contact R = Ry + Rp exercée par le support (F') sur le solide
(X). 11 s’agit d’une force exercée en un point P de la surface de contact des deux solides; elle
peut étre décomposée en une partie Rr colinéaire a la surface de contact des deux solides et
une autre é]\] perpendiculaire a celle-ci.

Les lois de Coulomb distinguent deux situations :

— Lorsque (X) est en mouvement a la vitesse v, (dite vitesse de glissement), Ry est colinéaire
a v,, de sens inverse et de norme proportionnelle a celle de Ry, HJSLTH = fd||ﬁN||, ou le
coefficient f; > 0 porte le nom de coefficient de frottement dynamique ; il reste constant
pendant tout le mouvement et ne dépend que de I'état de surface des deux solides en
contact.

— Lorsque le mouvement de (X) cesse, U, = 0 et la composante tangentielle vérifie néces-

sairement la condition ||Rr|| < fi||By|| ot le coefficient f, porte le nom de coefficient de
frottement statique ; lui aussi ne dépend que de 1’état de surface des solides.

III.B Le modéle de crissement

Lorsqu’on appuie une craie sur un tableau noir avant de la déplacer, on entend parfois distinc-
tement le bruit du crissement lors du déplacement de la craie. Pour étudier cette situation, on
modélise (figure 8) la craie et son appui par un solide rectangulaire (X) de masse M attaché a
un ressort ; le tableau noir par un support fixe (F') confondu avec le plan horizontal (Oxy); le
déplacement, par le mouvement a vitesse constante vy de 'extrémité A du ressort élastique de
raideur k et de longueur a vide /.

Le ressort reste constamment paralléle a U'axe (Oz), a t = 0 il est a sa longueur naturelle .

L’autre extrémité du ressort, notée H, est liée au mobile (X)) ; c’est sa vitesse que I'on souhaite
étudier. A l'instant t =0, on a x4 (0) = —4.

On note enfin f; > f; les coefficients de frottement statique et dynamique de la craie sur le
tableau et g = ||g|| P'accélération de la pesanteur.

Page 6/8



Physique II, année 2024 — filiere MPI

- 18.
Q- 19.
Q- 20.

FIGURE 8 — Un modéle pour le crissement

Exprimer la force de traction exercée par le ressort sur le mobile en fonction de k, vg, t
et de XH(t> = IH(t) + 60.

Exprimer aussi la composante normale Ry de la force de contact exercée sur la craie.
En déduire qu’a partir de ¢ = 0 la craie reste immobile jusqu’a l'instant ¢ = ¢, que 'on

déterminera en fonction de f,, M, g, k et vy.

On pose 7 = t —ty. Préciser les valeurs de x 4, de Xy et de sa dérivée Vy = dff—TH a linstant

7 = 0 avant d’expliciter I’équation différentielle vérifiée par Xy (7) sous la forme :

d* Xy
dr?
ou 'on exprimera les constantes w et v en fonction de k, M, g, fs et fq.

+ w? Xy = wveT +

III.C Etude du mouvement de crissement

La suite du mouvement du mobile se poursuit en alternant les étapes d’'immobilité et de glisse-
ment ; le mouvement ainsi observé est périodique de pulsation €2 et il est la cause du bruit de
crissement, par exemple, de la craie sur un tableau.

On pourra se reporter au formulaire donné a la fin de cette partie.

- 21.

Déterminer les expressions de Xy (7) et V(1) en fonction de 7, vy, w et a = .

W

On note Tay le premier instant ou Vg atteint sa valeur maximale V. et 0oy = WTnax.

- 22.

Sans nécessairement exprimer Tyay, déterminer les expressions de cos(fmax) €t sin(fmax)

en fonction de a. En déduire que Viyax = vg (1 +V1+ ozz).
Tracer l'allure de la courbe donnant Vi (7) puis montrer alors que cette vitesse s’annule

a nouveau a un instant 74 > 0 correspondant a 'angle #; = wr; dont on exprimera le
cosinus et le sinus en fonction de a. On admettra dans la suite que 0 < o < 1.

La premiére mise en mouvement du mobile (X) correspond a l'intervalle 0 < 7 < 7. A Dlissue
de cette phase, il s'immobilise alors pendant un laps de temps avant de rédémarrer par la suite.
On rappelle que longueur du ressort est donnée a chaque instant par £ = x4 — ry.

- 23.

Déterminer I'expression de ¢(7) et en déduire la longueur du ressort £(0) a I'instant 7 = 0.
Montrer qu’a l'instant 7 elle est devenue £(71) = £(0) — 2/ w.

En déduire la durée 75 qui devra alors s’écouler avant que le mobile se remette en mou-
vement. Compléter alors le tracé de la question précédente en faisant apparaitre une
période T' compléte du mouvement du mobile ; préciser sur ce schéma dans quelle phase
du mouvement il y a augmentation continue d’une contrainte et dans quelle phase il y a
relachement subit de celle-ci.
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Exprimer 2 en fonction de 7, et 7 puis en fonction de w, « et 6;.

[ — 24. Pour estimer les ordres de grandeur du phénomeéne, on prend 6,,,, = 57/6 avec un frotte-
ment caractérisé par fs ~ 1 et f; ~ 0,6 pour une vitesse de traction du ressort vy = 1cm/s.
On prendra g ~ 10m/s?. En déduire les valeurs numériques de a, puis de €.

Quel lien existe-t-il entre cette pulsation et celle du son émis ?

Préciser et justifier le domaine fréquentiel du crissement.

Formulaire et données numériques

On donne In(2) = 0,7 et In(3) = 1,1.
1 t?

) o
e et sin“ 0 = e

On rappelle par ailleurs que cos(26) = cos® # — sin?§ et sin(260) = 2 cos #sin 6.

Si ¢t = tan6 alors cos® @ =

1
On pourra prendre /3 ~ 1,73, % ~ 0,58, m ~ 3,14 et 2/7 ~ 0,64 ;

FIN DE L’EPREUVE
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Physique et chimie automobiles

Ce sujet aborde les principes de base du fonctionnement de certains éléments liés a la circulation
d’une automobile, comme la batterie d’accumulateurs électriques (partie I), le moteur thermique
(cas d’un moteur a essence, partie IT) ou enfin le principe de la mesure de vitesse par les autorités
de controle (partie III).

Ces trois parties sont totalement indépendantes entre elles. Les données numériques et valeurs
des constantes physiques nécessaires sont regroupées en fin d’énoncé.

Pour les applications numériques demandées on se contentera de 2 chiffres significatifs.

Dans la partie ITI, outre i> = —1 on repére les scalaires complexes par une barre : T € C.

I Batterie d’accumulateurs au plomb

Une batterie au plomb est constituée d’un certain nombre d’éléments accumulateurs logés dans
un bac en plastique fermé par un couvercle scellé (figure 1). Chacun de ces accumulateurs est
composé d'une électrode positive et d’une électrode négative, baignant toutes deux dans la
méme solution aqueuse d’acide sulfurique H,S0, (& la concentration ¢) et de sulfate de plomb

I (Pb?", 8027) (a la concentration ). Les électrodes sont formées d'une grille (chimiquement
inerte mais conduisant 1’électricité) dont les alvéoles sont remplies d’une péte poreuse; cette
pate est formée de peroxyde de plomb Pb0, pour une des électrodes et de plomb métallique Pb
pour 'autre. Les espéces en solution dans ’eau sont donc seulement HT (qu’on pourra choisir
de noter Hs0"), Pb2t et les ions HSO, issus de l'acide sulfurique et SO ; Pb et Pb0, sont des
solides.

)=

& @ A;%mOAPb

et - o

—— www YUBSIOUrope.com

FIGURE 1 — Une batterie 12V, 65 A-h fabriquée au Royaume Uni par Yuasa©

1 — 1. Laquelle des deux électrodes est 1’électrode positive ?

Justifier et préciser, pour chacune des deux électrodes, I’équation-bilan de la réaction a
I’électrode en fonctionnement spontané (c’est-a-dire en régime de décharge de la batterie).

O — 2. Etablir 'expression de la force électro-motrice £ d'un tel accumulateur (& 25°C) en fonc-
tion des données et des seules concentrations [H] (ou bien [H;0%]) et [Pb?*].
Supposant pour une batterie la concentration de sulfate de plomb II ¢ = [Pb*"] =
1,0mol/L, calculer le pH de la solution nécessaire pour obtenir £ = 1,9V ; commenter.

En toute rigueur l'é¢tude de l'accumulateur devrait étre complétée a cause de la formation
d’un précipité solide de sulfate de plomb PbS0,4 selon le bilan Pb?" + S0;~ = PbS0,. La prise
en compte de cette réaction se traduit par une modification de la force électromotrice E des
accumulateurs au plomb par rapport au calcul précédent, qui devient de ordre de 2,0 V. A part
cette modification numérique nous ne tiendrons pas compte du précipité de sulfate de plomb
dans ce qui suit.
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Les batteries d’accumulateurs automobiles ont une force électromotrice F; de I'ordre de 12V ;
la batterie étudiée ici est caractérisée par sa capacité ), = 65 A-h (on rappelle que la capacité
électrique d’'une pile est la valeur de la charge électrique qui la traverse avant que la réaction
électrochimique de décharge s’arréte).

1 — 3. Combien d’accumulateurs faut-il associer pour réaliser une batterie automobile ?
Représenter cette association sur un schéma.
Quelle est la capacité () de chacun des accumulateurs ?
En déduire les quantités de matiere totales np, et npyo, contenues dans les grilles de

Uensemble des électrodes contenues dans la batterie au complet (on admettra que ces
espéces Pb et Pb0, sont les seuls réactifs limitants).

Obtenir une valeur imposée du pH impose de pouvoir controler la concentration molaire volu-
mique ¢ (ou, ce qui revient au méme, la concentration massique ¢,,) de I'acide sulfurique dans
I’accumulateur. On mesure en pratique cette concentration au moyen d’un pése-acide, dispositif
qui évalue la masse volumique pg, de la solution ou bien sa densité relativement a 1’eau pure
d = pso1/ po- Celle-ci dépend en effet simplement de la concentration totale ¢ en formes sulfatées,
d=a+b-cavec c = [HySO,) + [HSO, ] + [S0; |, a et b étant des constantes.

(d — 4. Déduire des données les valeurs numériques de a et b.

D’apres un site technique automobile, la densité de 1’électrolyte d’une batterie scellée en
bon état doit étre de 'ordre de 1,3. En déduire ¢ et commenter.

Dans une solution aqueuse contenant de ’acide sulfurique a la concentration molaire volumique
¢, on note 11 = [HyS04]/c, o = [HSO;|/c et x5 = [S05 |/c et les tracés de w1(pH), zo(pH) et
x3(pH) porte le nom de courbes de prédominance. Ces courbes sont tracées sur la figure 2.

zi ,i=1,2,3

— e — U
/ N o

*\

// REEAN
% 4 N\
-~ --" ~

— =

pH

FIGURE 2 — Diagramme de prédominance pour l’acide sulfurique

(A — 5. Donner les expressions des constantes d’acidité K,, et K,,.
Reproduire rapidement sur votre copie ce diagramme, complété par l'identification des
trois courbes et préciser en les justifiant les graduations des axes horizontal et vertical.

1 — 6. Déterminer les valeurs de ¢ et ¢, dans un accumulateur au plomb a usage automobile;
proposer un commentaire des valeurs numériques obtenues.

Les courbes de la figure 2 ont été tracées au moyen d’un script Python utilisant une fonction
dont I'en-téte est def Pred(pH): qui, pour une valeur donnée du pH, donne pour résultat le
triplet (z1, 2, 3).

(A — 7. Déduire des expressions de K,, et K,, celles des z; et proposer le code Python de la
fonction Pred.
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II Un moteur & essence turbocompressé

Le moteur qui équipe les automobiles thermiques peut étre décrit comme une machine ditherme
a air (on néglige la quantité de carburant et les gaz briilés devant I’air au niveau des pistons)
fonctionnant de maniére pseudo—cyclique (I'air rejeté par la ligne d’échappement n’est évidem-
ment pas le méme que celui qui est admis dans le filtre & air, mais il est en méme quantité).
On caractérise un tel moteur par les températures de la « source froide » T} (en pratique c’est
celle de l'air ambiant et on prendra Ty = 27°C) et de la « source chaude » 7T, (au moins égale
a celle du point le plus chaud du cycle, aprés la combustion du carburant).

II.A Rendement du moteur

1 — 8. Définir le rendement 1 d'un tel moteur thermique ditherme.

Enoncer et démontrer avec soin le théoréme de CARNOT.

Certains véhicules sont mus par un moteur a essence a quatre temps; le carburant utilisé est
de I'Eurosuper 95 produisant, par combustion totale, une énergie W, = 3,6-107J - L=! (joules
produits par litre de carburant consommé). En circulant a la vitesse stabilisée v = 100 km - h™!
sur route horizontale, le moteur du véhicule étudié ici développe la puissance P = 18 kW (pour
vaincre essentiellement les frottements aérodynamiques) et consomme une quantité ¢ égale a
5,4 litres de carburant pour parcourir 100 km.

A — 9. Déduire des données ci-dessus le rendement réel 7, du moteur.
Quelle inégalité concernant T, peut-on déduire du théoréme de CARNOT ?

Cette inégalité est-elle vérifiée en pratique, sachant que dans le moteur étudié la tempé-
rature est 7. ~ 2000K ?

II.B Thermodynamique des gaz

Une quantité donnée de gaz est caractérisé par ses fonctions d’état énergie interne U et enthalpie

ou o0H

H et par leurs dérivées Cy = | — | et Cp = | —= | qui sont les capacités thermiques du
or ), or ) »

gaz. On définit le rapport adiabatique v = Cp/CYy ; dans ce qui suit ce rapport v est supposé

constant.

4 — 10. De quel(s) paramétre(s) thermodynamique(s) dépendent les fonctions U et H dans le
cadre du modeéle du gaz parfait ?
En déduire les expressions de C'p et C'y, en fonction de la quantité de matiére n, du rapport
adiabatique v et d’une constante fondamentale.

On admettra 'expression de l'entropie molaire s,,(T,V) d'un gaz parfait de température T et
de volume V' :

T V
In—+ Rln— 1
e TR T @

(1 — 11. En déduire la relation de LAPLACE qui relie les variations de pression P et de volume V
d’un gaz parfait évoluant de maniére isentropique depuis un état initial (P, Vp).

Sm(T,V) = Sm(TOJ/D) +

II.C Le cycle moteur & quatre temps

Le moteur & quatre temps a été décrit pour la premiére fois en 1862 par I'ingénieur ALPHONSE
BEAU. Ce cycle est décrit par l'air (pris a 'extérieur a la pression atmosphérique py), assimilé
a un gaz parfait diatomique, qui évolue entre un volume minimal V; et un volume maximal
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/

In(P)| C

Es A

(V) vy > )

FIGURE 3 — Cycle moteur de Beau a quatre temps en échelle logarithmique

Vo = aVj avec le taux de compression o > 1. Il est représenté sur la figure 3 en échelle
doublement logarithmique dans le diagramme de CLAPEYRON.
Ce cycle comporte :

— Une phase d’admission EF A de 'air extérieur dans les cylindres du moteur;

— Une phase de compression adiabatique AB de 'air enfermé dans le piston (mélangé avec
un peu d’essence) suivie de la combustion BC' quasiment instantanée provoquée par une
étincelle produite par le systéme électrique d’allumage ;

— Une phase motrice de détente adiabatique C'D de 'air (et du combustible briilé) jusqu’a
I'ouverture en D des soupapes d’échappement avec chute brutale DA de la pression ;

— Une phase d’échappement AE évacuant les gaz brilés avant la reprise du cycle.

Dans toute la suite de ’étude les phases d’échappement AFE et d’admission E'A ne jouent aucun
role et on pourra donc les ignorer.

(d — 12. On considére d’abord que toutes les évolutions au sein du cycle ABCDAFE A sont réver-
sibles. Montrer que les transformations AB et C'D sont décrites par deux droites paralléles
et déterminer leur pente commune p,, < 0.

(d — 13. Reproduire sur votre copie le diagramme de la figure 3 en y ajoutant les isothermes de
températures T; (température minimale du cycle) et T, (température maximale du cycle).

( — 14. Exprimer les transferts thermiques sur les phases AB, BC, CD et DA en fonction des
températures Ty, Ty, Tc et Tp aux divers points du cycle.
En déduire 'expression 7,, du rendement du cycle moteur de la figure 3 en fonction des
températures puis en déduire que 7, =1 — a7,

1 — 15. Pour le moteur étudié ici &« = 9 et on prendra pour 'air v = 1,4. Calculer n,, et commenter.

En réalité I'hypothése de réversibilité des transformations adiabatiques AB et C'D n’est pas
réaliste ; pour s’approcher du rendement réel on la remplace par un modéle amélioré, toujours
adiabatique mais non réversible, dans lequel le cycle devient AB'C’D’ A, mais on suppose tou-
jours que AB’ et "D’ sont des droites de pentes (négatives) respectives pi,, et py, pour la
compression AB’ et la détente D'A.

1 — 16. En application du second principe montrer que plyp,, < Prv < Pes-
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IT1

Principe d’un cinémométre radar

La plupart des dispositifs de mesure des vitesses v des véhicules sont basés sur ’effet DOPPLER :
une onde électromagnétique est émise en direction du véhicule & controler. Le décalage de
fréquence entre 'onde incidente et 'onde réfléchie est proportionnel a v/c (ou ¢ est la célérité
de la lumiére dans le vide) et, méme si cet écart est faible, un dispositif électronique approprié
permet de le mesurer.

ITI.A Transmission et réflexion d’une onde

Dans 'air, qui sera assimilé au vide, un émetteur E fixe dans le référentiel 1ié au sol émet une
onde électromagnétique qui se propage en direction du véhicule dont on souhaite mesurer la
vitesse v (figure 4). A la surface S d’abscisse zg du véhicule (on supposera une surface plane et
un véhicule métallique) le phénomeéne de réflexion engendre une onde transmise dans le métal
et une onde réfléchie, qui sera ultérieurement mesurée par le récepteur R.

Ry U‘
ondae 205005000505070707. 4
A
R )
<€ A e
000005500000500000 TR
2 A : v 777777777777 777777.
réiléchie 700000000000000000 4=
—00705572777775505 D
$ 2 00000000222277777.
A
AR
100007070700270077.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, § 22020202020 20202 . — — —p 7
LI
AR
10000000000700077.
297500555500277007 @
20000000000000007,
A
onde A A =]
A
777777777777777777. O
> -
AR
. : 000000000550000050 S
1mncldente 100555050055900000 D
100000000000000007 4

FIGURE 4 — Onde électromagnétique dirigée vers un véhicule en mouvement

Les représentations complexes de l'onde incidente (dans le vide z < zg) et 'onde transmise
(dans le métal z > zg) seront respectivement cherchées sous les formes :

Eine = Eyexp[i (wt — kz)] €, Ey =T Eyexp [i (wt —kz)] €, (2)

ou I’émetteur fixe les valeurs (supposées réelles positives) de Fy et w.

- 17.

Dans le vide, établir I’équation de propagation puis la relation de dispersion pour le champ
Einc~

En déduire la relation liant la longueur d’onde dans le vide \g et la fréquence f de 'onde.

Le métal étudié est de l'acier caractérisé par une densité volumique de charge nulle p = 0,
le lien entre le champ électrique et la densité volumique de courant est donné par la relation

S -9
wE =7+ Ta_i ol 7o ~ 1,4-107sI et 7 = 1,010~ .

J - 18.
- 19.
3 — 20.

Préciser la dimension de la grandeur vy (on utilisera les notations L, M, T et I pour les
dimensions des longueur, masse, durée et intensité de courant) et la signification physique

de 7.

Etablir la relation de dispersion donnant k% en fonction de w, ¢, o, Yo, T €t w.
27
A

ou

STRSE

On s’intéresse a la seule solution k de partie réelle positive; elle s’écrit k =
A>0et d> 0. Quelles sont les interprétations de ces deux grandeurs ?

A quelles conditions (que 'on traduira par des inégalités faisant intervenir w, ¢, o, Yo, T
et w) correspondent les 3 régimes de fréquences que 'on peut lire sur la figure 5 ?
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FIGURE 5 — Longueurs caractéristiques pour une onde dans un métal en échelle log-log

1 — 21. Ici et dans toute la suite on se limitera au domaine radar (f ~ 25 GHz). Justifier par le

[ 2
calcul la forme limite des deux courbes ; préciser leur décalage. On notera ici d = .

Ho7Yow
Peut-on dire que le matériau étudié est un métal parfait 7 Est-il opaque ou transparent

aux ondes radar ? Justifier, quantitativement, la réponse a ces deux questions.

ITI.B Reéflexion métallique

On adopte maintenant une description simplifiée de la réflexion des ondes électromagnétiques
sur la surface du véhicule : on admet I’absence totale d’onde transmise (ce qui, dans 1’équation
(2), correspond a 7 = 0). On rappelle que dans cette situation la surface z = zg du métal porte
éventuellement des charges o(t) et des courants Zs(t) surfaciques, donnés par les relations de
passage entre des milieux I et IT :

B — B = 8_”1—>II B — B = Hots A\ N1_11 (3)
0

On se place d’abord dans le cas ou le véhicule est immobile en zg = 0 m. En plus de 'onde inci-
dente décrite par I’équation (2), une onde réfléchie de méme polarisation et de méme fréquence
se propage dans le vide en sens inverse.

(d — 22. Montrer 'absence de charge surfacique sur le métal et expliciter complétement le champ
électrique de 1'onde réfléchie.

On considére maintenant que le véhicule est en zg =0 m a ¢t = 0 s et se dirige & vitesse v vers
I’émetteur de 'onde étudiée. Le plan de réflexion est donc zg = —wvt et on cherche une onde
réfléchie de la forme i = Ejexp [i (W't + k'2)] €.
[ — 23. Quelles relations lient w et k& d’une part, w’ et k¥’ d’autre part ?
Exprimer E{ en fonction de Ej puis w’ en fonction de w, v et c.

d — 24. Montrer I'existence de courants surfaciques sur la face zg = —wvt du véhicule et préciser a
quelle pulsation w; ils oscillent.

Page 6/8



Physique II, année 2025 — filiere MPI

ITII.C Effet Doppler et mesure de vitesse

Compte tenu de la condition évidente |v| < ¢ les pulsations w de I'onde incidente et w’ de 'onde

W' = wl

réfléchie sont assez proches; toutefois leur écart relatif A = peut étre mesuré par un

w
dispositif électronique adapté, disposé au niveau de I'émetteur fixe en z = —/, qui permet
finalement de mesurer la vitesse du véhicule.

Un dispositif possible de mesure de A est ainsi constitué : un circuit multiplieur réalise en
temps réel le produit d'un signal s proportionnel au champ électrique émis au point z = —/¢
et d’un signal s’ proportionnel au champ électrique réfléchi regu au méme point. La sortie du
multiplieur est reliée & un filtre de fréquence de coupure f.; enfin, un analyseur de spectre
mesure la fréquence fondamentale f; du signal ainsi filtré (figure 6).

multiplieur] filtre analyseur |——e f}

FIGURE 6 — Circuit de mesure de vitesse

(d — 25. Exprimer A au premier ordre en v/c et proposer une application numérique raisonnable ;
commenter.

Montrer que la fréquence f; est pratiquement proportionnelle a la vitesse v & mesurer,
sous réserve d'un choix pertinent de la nature du filtre et de f., que 'on proposera.

Données numériques

L — - -
Formule d’analyse vectorielle rot rot V = graddivV — AV.
Relation trigonométrique cos cos§’ = 1 [cos(d + 6') + cos(6 — ¢')].
1013 =2,2; 10%3 = 4,6; 95 = 1,6; 9%°5 = 2.4, log,,(27) = 0,80.

Facteurs de conversion, P° = 1bar = 10°Pa; 0°C = 273K ; 1m?® = 103L. Concentration de
référence C° = 1 mol/L. Masse volumique de ’eau liquide pure py = 1,0kg/L.

Constantes physiques :

Charge élémentaire e=1,6-10"1*C

Célérité de la lumiére dans le vide ¢ = 3,0-103m-s™!
Constante d’AVOGADRO Ny = 6,0-10% mol !
Constante de FARADAY F =eNpy =9,6:10* C-mol !
Constante molaire des gaz parfaits R = 8,3.J-K~!-mol™!
Constante de NERNST & 25°C AL In10 = 0,059 ~ 0,06 V
Permittivité électrique du vide g0 =8,9-1072F-m™!

Perméabilité magnétique du vide — py = 1,3-107 H-m™*

Quelques potentiels rédox standard a 25°C

Couple oxydant /réducteur ‘ Pb®" / Pb ‘ H,0 / Hy ‘ 0, / Hy0 ‘ Pb0, / Pb?*
Potentiel standard E° (V) | —0,13 | 0 | 123 | 1,69
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L’acide sulfurique H,S04 (masse molaire M = 98 g/mol; masse volumique de I'acide sulfurique
liquide pur p = 1,8kg/L) est un diacide :

Couple acide/base ‘ H,S0, / HSO, ‘ HSO, / S03~
Constante d’acidité K§ | pK,, = —3,0 ‘ pK,, =19
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Fonctions spéciales

Ce sujet comporte trois parties indépendantes.

Bon nombre de problémes rencontrés en physique peuvent étre résolus a 1’aide de « fonctions
spéciales » . Ces fonctions définies mathématiquement sont implémentées dans de nombreuses
bibliothéques informatiques (comme scipy) et peuvent étre utilisées aussi simplement qu’une
fonction sinus ou racine carrée qui sont elles aussi d’une certaine maniére des fonctions spéciales
et tout aussi analytiques ...

On rencontre bien souvent des résolutions numériques de problémes physiques alors que 1'utili-
sation de ces fonctions spéciales permet une résolution compléte et analytique. Ce probléme se
propose d’illustrer I'intérét de ces « fonctions spéciales » .

I La fonction de W de LAMBERT

I.A Tir d’un projectile sans frottements

Un projectile assimilé & un point matériel de masse m est lancé a partir Au, gTI
du sol en O avec une vitesse initiale ¢y € (O,u,,d,) et faisant un angle
0y avec I'horizontale dans le référentiel terrestre supposé galiléen. o
1 — 1. Rappeler la définition d’un référentiel galiléen. Dans quelle me-
sure le référentiel terrestre peut-il étre supposé galiléen ? | 0, Sl
—d o
@ — 2. Etablir les équations horaires du mouvement. 0 — Uy

Uy
Montrer que le mouvement est plan.

FIGURE 1 — Tir d’'un

O — 3. Etablir I'équation de la trajectoire. Quelle est la forme de la projectile

trajectoire 7 Est-elle symétrique ?

A — 4. Déterminer les coordonnées du sommet S de la trajectoire. Définir la portée ¢ du tir et
établir son expression. Quel est 'angle ¢, assurant un tir de portée maximale ?

I.B Tir d’un projectile avec frottements

On considére maintenant que le projectile est soumis & une force de frottements proportionnelle
a la vitesse : f = —av avec a > 0.

1 — 5. Quelle est la dimension du coefficient o ? Définir & partir de o un temps caractéristique
7. Le mouvement reste-t-il plan?

O — 6. Etablir, en fonction g, 7, v = ||7o||, #o et ¢, les nouvelles équations horaires du mouvement.

1 — 7. Dans la situation ou t < 7, simplifier les équations horaires de la trajectoire et donner
I’allure du mouvement.

(d — 8. Dans la situation ou ¢ > 7, simplifier les équations horaires du mouvement en faisant
apparaitre une vitesse limite v,.
Ot retombe le projectile ?

d — 9. Déduire des résultats précédents, ’allure globale de la trajectoire dans une situation o
le temps de vol est grand devant 7, en séparant la trajectoire en trois phases.

1 — 10. Tracer l'allure de la trajectoire pour un temps de vol de l'ordre de 7.
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I.C La portée maximale d’un tir avec frottement

[ — 11. Dresser le tableau de variation de la fonction T : x — T'(x) = xeX et déterminer la valeur
£ de son minimum global.
La fonction W de LAMBERT est définie comme étant la fonction réciproque de T sur
[B, + oo[. Reproduire le graphe de T représenté sur la partie gauche de la figure 2 et
expliquer comment en déduire l'allure de W représenté sur la partie droite.

oo
(S}

X X

FIGURE 2 — Représentations graphiques de 7'(x) (a gauche) et W(x) (& droite)

A — 12. On peut montrer que : (x + exp [W(x)]) W(x) = 1. Quelle est la valeur de W(0) ?

On souhaite appliquer le schéma d’EULER explicite avec un pas h = 0.0001 pour résoudre
cette équation différentielle. Donner le code python permettant d’obtenir une représenta-
tion graphique de W () sur l'intervalle [0; 2,5][.

La fonction W(y) est implémentée dans scipy. On peut l'appeler avec : from scipy.special
import lambertw.
On montre que si ad # 0, la solution de I’équation at + b+ ce? = 0 pour I'inconnue ¢ est donnée

par l'expression
1
= —9 — —W(C—d exp (—@)) .
a d a a

1 — 13. En déduire a quel instant ¢t* > 0 le projectile touche le sol. On posera u = — (1 + %290)

d — 14. On rappelle que par définition W exp(W) = Id ou Id est la fonction identité : x — x.
En déduire que la portée est donnée par ¢ = Ty cos by (1 — W(ue")/u).

En posant v = vy/vs, on montre que l’angle initial donnant la portée maximale est :

( 2_1

arcsin ¢ P sio y#£1

7 J—
2-1-W
Qmax = v ( e )
: 1 :

arcsin ~ 35,6° si y=1

\ e—1

Q- 15. A T'aide de la figure 2, déterminer la valeur numérique de I’angle assurant la portée
maximale pour vg = 10m-s 1, g =98m-s2et 7 =04s.
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II

Dans toute cette partie on néglige les frottements de 'air.

On étudie un pendule simple constitué d’une masse ponctuelle m
et d’une tige rigide de longueur ¢ et de masse négligeable, astreint
a évoluer dans un plan vertical (O,u,,i,).

On repére sa position par I'angle 6(¢). A ¢t = 0 on lache le pendule
sans vitesse initiale avec 6(t = 0) = 6, €]0,7/2[.

J - 16.
- 17.
3 - 18.

En effectuant le changement de variable sin

L’intégrale elliptique de premiére espéce

Etablir I'équation différentielle du mouvement vérifiée par la
fonction 6(t). FIGURE 3 - Pendule
simple

On fait 'approximation des petits angles tels que sinf ~ 6.
Etablir dans ces conditions la période T}, des oscillations.

) . : . . do o L .
Déterminer 'expression générale de m sans faire I’approximation des petits angles.

En déduire que la période T des oscillations du pendule est donnée par :

2Ty (™ do

T .
T Jo /2 (cosf — cosbp)

0

— o i Go .
5 = sin¢sin 3, on montre que :

2Ty

50 2 do
T = ==K | sin? —0) avec K(x) = / _— .
™ ( 2 00 0 /1—ysin?¢

On souhaite calculer I'intégrale KC() par la méthode des rectangles médians pour un angle
90 = 7T/3

- 19.

J - 20.

Apreés avoir tracé le graphe de la fonction x — 1+ ,/x pour x € [0;9], illustrer le principe
de la méthode des rectangles médians pour calculer le réel I = fog(\/i +1)dx en utilisant
9 rectangles.

Si on double le nombre de rectangles utilisés qu’en est-il de la différence entre la valeur
exacte de I et la valeur approchée numériquement par la méthode des rectangles médians ?

Recopier et compléter le code suivant permettant de calculer () par la méthode des
rectangles médians.

import math as m
def f(x,phi):
TEEOEED c s cooooo oo o

0.
100

o w I nnu
|

WO o =W
= pl )

= m.sin(theta_0) **2

print(pas * S)
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La fonction x — K(x) est nommeée intégrale elliptique compléte de premiére espéce. La com-
mande from scipy.special import ellipk permet de I’appeler directement dans scipy.

(d — 21. En utilisant la figure 4, pour un pendule tel que Ty = 1s, 1,2
évaluer T lorsque 6y = 50°. Quel est le décalage temporel 1
induit par la prise en compte de l'approximation des T/Ty /
petits angles si 'on envisage de mesurer une heure ? /

1,1 /
Au XVII® siécle les puissances maritimes désiraient posséder //
des instruments précis pour la mesure du temps afin de facili- g
ter la navigation (notamment pour déterminer la longitude). 7 0o [°]
Les rois de FRANCE et d’ANGLETERRE avaient offert des prix 1,05 20 40 60 0
importants & qui serait capable de réaliser un chronomeétre
précis, fiable et utilisable en mer. FIGURE 4 — 6 — T'(60)/To

Christiaan HUYGENS (1629-1695) motivé par ce probléme étudia le pendule conique et le pen-
dule oscillant entre deux lames courbes. Il parvint & démontrer que des lames en forme de
cycloide assurent l'isochronisme rigoureux des oscillations.

(1 — 22. Dans quelle situation courante rencontre-t-on la cycloide ?

IIT La fonction d’erreur de GAUSS : erf(y)

III.A Introduction au probléme de STEFAN

Un certain nombre de problémes géologiques importants peuvent étre modélisés par le chauffage
ou le refroidissement instantané d’'un demi-espace semi-infini. Au milieu du X1x°¢ siécle Lord
KELVIN a ainsi utilisé cette idée pour estimer I’age de la Terre. Il supposa qu’a la surface le flux
d’énergie thermique résultait du refroidissement d’un flux initialement chaud de la Terre et a
conclu que 'age de la Terre était environ 65 millions d’années. On retrouve ces phénomeénes en
étudiant le refroidissement de la lithosphére océanique ou I’évolution d’une coulée de magma.

1 — 23. Comment explique-t-on de nos jours le résultat erroné obtenu par Lord KELVIN ?

On étudie un milieu matériel semi-infini défini par y > 0 dont la surface subit un changement
instantané de température. Initialement a ¢ = 07, le demi-espace est & la température uniforme
Ti; pour t > 0, la surface y = 0 est maintenue a une température constante Ty. Si 17 > Ty, le
milieu matériel se refroidit et sa température diminue. La situation est représentée a la figure
5 pour le cas T7 > Tj.

T o, T T, Ty

t=0" t=07% t>0

Y A Yy
T=Tat=0 poury>0 T=Tyay=0pourt >0 T — Ty quand y — 400 pourt > 0

FIGURE 5 - Evolution de la température
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Le flux thermique élémentaire, défini comme la quantité d’énergie traversant une surface élé-
mentaire dS pendant d¢, est noté d¢g.
1 — 24. Rappeler la définition du vecteur j’Q, densité de flux thermique. Quelle est sa dimension ?
Rappeler la loi de Fourier, ainsi que ses conditions d’application.
En déduire la dimension de la conductivité thermique .

On étudie une tranche mésoscopique de sol de masse m de masse volumique p et de capacité
thermique massique ¢ comprise entre y et y + dy de surface S.

[ — 25. Quelle est I’énergie thermique d() regue par cette tranche entre ¢t et t + dt?
Pourquoi étudie-t-on une tranche « mésoscopique » 7

Etablir I'expression de sa variation d’énergie interne dU en fonction de —=< 0 , S, dy et dt
Yy’
T
puis en fonction de p, ¢, S, o , dy et dt.
1 , . . . . oT 0T
En déduire I'équation de la chaleur & une dimension i DW dans laquelle on

précisera ’expression et la dimension du coefficient D de diffusion thermique.
En déduire I'expression d’une longueur caractéristique L en fonction de D et du temps ¢.

On introduit la température adimensionnée

T<y7t> B Tl

0(y.t) = T, T,

d — 26. Quelle est I'équation vérifiée par 0(y,t) 7
Déterminer les valeurs de 6(y > 0,t = 0), 6(y = 0,t > 0) et O(y — +o0,t > 0).

Y

2v' Dt

On introduit une variable de similarité sans dimension n = et on suppose que 6 n’est

une fonction que de cette seule variable 7.

(A — 27. Montrer que
d?0 do
() 4 5,200
dn? dn

d6(n)
dn

=0.

1 — 28. En utilisant la fonction ¢(n) = , montrer que #(n) =1 — —/

400
On donne / e dz = £ En déduire une expression de T'(y,t) faisant apparaitre
0

une intégrale.

2 .
La fonction y — T / e’ dz est appelée fonction d’erreur de GAUSS, elle est implémentée
m™Jo

dans scipy.
Elle est souvent notée erf(y). On peut I'appeler directement en utilisant la commande : from
scipy.special import erf.

ITII.B Formation d’une croiite de lave solide.

Dans cette derniére partie on s’intéresse a une coulée de lave en fusion et & la formation d’une
croiite solide a sa surface. On étudie alors I'augmentation de 1’épaisseur de cette crofite en
fonction du temps.
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A la surface extérieure, en y = 0, la lave est en contact avec l'air a la température constante Tj.
La lave en fusion & la température 7 est donc soudainement portée a la température Ty at = 0.
Dans ces conditions, la couche superficielle de la lave se solidifie, et on note y;(t) 1'épaisseur de
la couche de lave solide.

Nous devons donc résoudre ’équation de la chaleur dans l'espace 0 < y < y,(t) avec comme
conditions aux limites ' =T, en y = 0, et T' = Ty en y = y,(t), et comme condition initiale

ys=0at=0.
/‘/ Lave solidifiée

Aira T =Ty
interfacede [~ . _0 | >T
transition
de phase
l ”””””””””””””” 7 N
Lave en fusiona T' =T
dys (t) ! v vy
dt

FIGURE 6 — Formation d’une crotte de lave solide

La position ys(t) de l'interface de transition de phase est une fonction a priori inconnue du
temps. Comme dans la situation précédente il n’y a pas d’échelle de longueur définie dans

ce probléme. Pour cette raison, on travaillera également avec la variable de similarité sans

dimension n = Yy

2v Dt

On utilisera également la température adimensionnée

La profondeur de l'interface de solidification y(t) doit enfin s’adapter a la longueur caractéris-
tique de la diffusion thermique. Nous supposerons que celle-ci varie proportionnellement & la

Ys (t)
2v/Dt

racine carrée du temps, de telle sorte que : 1y = = cte = \. Cette constante est inconnue
et reste & déterminer.

d — 29. En reprenant ’équation de la question 27, montrer que

o0 = -

Afin d’obtenir I’expression puis la valeur de la constante A, nous allons étudier la solidification
d’une tranche de lave d’épaisseur dy, entre les instants ¢ et t 4+ dt

3 — 30. Quelle est I'énergie Q) libérée par la solidification a la température Ty d’une tranche dy;
de lave de surface S en fonction de la masse volumique p de la lave en fusion et I'enthalpie
de fusion massique : Ahgoliiq-

(d — 31. Toute 'énergie libérée par la solidification doit étre évacuée par diffusion dans la lave
solide car la lave en fusion reste a la température 7. Montrer que :

dy,(t oT
pAhsol—Hiq(Tf) Y ( ) =K (_)
Y=Ys
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1,54

exp(—X)
Aerf(\)
0,5

FIGURE 7 — Graphe de \ —

On donne les valeurs numériques suivantes :

|
|
\
|
\
|
\
\
\
\
\
\
\
\
1 2 3
exp(—\%)
Aerf(\)

- 33.

o Ahgoig(Ty) = 400kJ - kg™

ec=1kJ - kg ! - K!

o T) — Ty = 1000K

. En déduire que

exp (=A%) VT
= Ahso%i Ty).
derf(N) Ty =Ty~ ia(T7)

Quel algorithme peut on utiliser pour
obtenir la constante A numérique-
ment ?

Expliquer en quelques mots son fonc-
tionnement.

e p=2600kg - m3
e D=7x10"7SI
o /m~ 1,77

O — 34. A l'aide de la figure 7, estimer la valeur numérique de .

En déduire I’épaisseur de la crotite de lave six mois aprés ’éruption.

Comparer votre résultat a ceux de la figure 8 tirés d'une expérience .

Yy (M)

16

t (yr)
2

o Kilauea Iki

X  Akae

O Makaopuhi

= Theory

FIGURE 8 - Epaisseurs des croiites de lave solides a la surface des lacs de lave dans les trois
cratéres a fosse Kilauea lki (1959), Alae (1963) et Makaopuhi (1965) sur le volcan Kilauea,
Hawaii (Wright et al., 1976), et résultat théorique.
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