
ÉCOLE DES PONTS PARISTECH
SUPAERO (ISAE), ENSTA PARISTECH,

TELECOM PARISTECH, MINES PARISTECH,
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DE LA PHYSIQUE AUTOUR D’UN TORE
Ce sujet comporte quatre parties totalement indépendantes qui explorent les propriétés phy-
siques d’objets de forme torique. Un tore est le volume généré par la révolution autour d’un
axe d’une figure géométrique donnée (dans le problème, ce sera un rectangle ou un cercle, voir
figure 1) appelée section et inscrite dans un plan passant par l’axe. Les vecteurs sont surmontés
d’un chapeau s’ils sont unitaires (ûz) ou d’une flèche dans le cas général (~p).

Tore à section
rectangulaire

Axe

Tore à section
circulaire (bouée)

Axe

Figure 1 – Deux types de tores
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I. — Modélisation d’un hulahoop

Le hulahoop est un cerceau en plastique que l’on fait principalement tourner autour de la taille
par un déhanchement rythmé très en vogue dans les années 1960. Pour notre modélisation,
nous l’assimilerons à un tore de section rectangulaire en rotation autour d’un arbre cylindrique
fixe et vertical, d’axe (O,z) et de rayon r, dans le référentiel terrestre supposé galiléen R0. Le
tore est de masse volumique µ homogène, ses dimensions sont les suivantes : le rayon du cercle
intérieur est a, celui du cercle extérieur b et son épaisseur selon (O,z) vaut c. On note G son
centre d’inertie et ∆ son axe de symétrie, dont la direction reste parallèle à (O,z) : on peut donc
identifier ∆ = (G,z). On donne l’expression du moment d’inertie d’un cylindre de rayon R et
de masse M par rapport à un axe de révolution confondu avec l’axe du cylindre : J = 1
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Figure 2 – Rotation du hulahoop

1 — Justifier que le moment d’inertie autour d’un axe ∆ donné de l’ensemble constitué par
la superposition de deux distribution de masses S1 et S2 disjointes est la somme des moments
d’inertie de S1 et S2 par rapport à cet axe.

2 — Déterminer le moment d’inertie J du tore par rapport à l’axe (G,z) en fonction de µ,
a, b et c.

Le contact entre la paroi intérieure du tore et le cylindre vertical se répartit sur un segment
vertical dont on note I le milieu. Il y a roulement sans glissement entre les deux solides. On note
f le coefficient de frottement statique au niveau de ce contact. On note ~Ω = Ω ûz le vecteur
vitesse angulaire de rotation du tore autour de son axe ∆. La position de G est repérée par

l’angle θ =
̂

(ûx,
−→
OG).

3 — Établir la relation entre θ̇ et Ω associée à l’hypothèse de roulement sans glissement.
En déduire l’expression de l’énergie cinétique du tore dans le référentiel R0 en fonction de
J0 = µπc(b2 − a2)3a

2+b2

2
et Ω.

4 — On suppose que Ω est constante. Déterminer les composantes des forces subies par le
tore au contact avec le cylindre vertical. En déduire à quelle condition sur Ω l’hypothèse de
roulement sans glissement est justifiée. Décrire qualitativement ce qui se passe lorsque cette
condition n’est plus vérifiée.

Page 2/6



Physique I, année 2014 — filière MP

On suppose maintenant que l’hypothèse de roulement sans glissement est vérifiée mais qu’on
observe une adhérence du tore sur le cylindre qu’on modélise par la création d’une force de
liaison attractive ~A = Aûr entre le cylindre et le tore localisée en un point B représenté sur

la partie droite de la figure 2 et voisin de I tel que
−→
IB = βûθ. On donne la vitesse angulaire

initiale Ω0 du tore.

5 — En utilisant par exemple le théorème de la puissance cinétique, établir la loi d’évolution
Ω(t) et conclure quant à la pratique du hulahoop.

FIN DE LA PARTIE I

II. — Étude d’un conducteur ohmique torique
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Figure 3 – Portion d’un conducteur torique

Un conducteur ohmique est caractérisé
par une conductivité électrique γ de l’or-
dre de 108 S · m−1. Il forme un tore
tronqué de section rectangulaire de ra-
yon intérieur a, de rayon extérieur b,
d’épaisseur c.
On cherche à déterminer la résistance
orthoradiale R d’une portion de ce con-
ducteur comprise entre les angles θ = 0
où on applique un potentiel uniforme
V = U et θ = α où on applique un
potentiel V = 0.

6 — On rappelle la valeur numérique

de la constante ε0 =
1

36π
· 10−9 dans les unités du système international. Rappeler le nom et

l’unité pratique de cette constante.

7 — Établir, dans un conducteur ohmique, l’équation différentielle vérifiée par la densité
volumique de charge ρ. En déduire que ρ ≃ 0 tant que la durée T caractéristique de variation
des grandeurs électromagnétiques est très supérieure à une durée τ dont on donnera l’expression
en fonction de γ et ε0 ainsi que la valeur numérique.

8 — Montrer qu’un terme peut être négligé dans l’équation de Maxwell-Ampère si T ≫ τ .

9 — Établir l’équation vérifiée en régime permanent et dans le conducteur ohmique par le
potentiel électrique V .

10 — On suppose que V ne dépend que de l’angle θ en coordonnées cylindriques et on donne,
dans ce système de coordonnées, les expressions du gradient du potentiel ~gradV = 1

r
∂V
∂θ
ûθ et de

son laplacien ∆V = 1

r2
∂2V
∂θ2

. Déterminer les expressions de V (θ), du champ ~E et de la densité

de courant ~j.

11 — Déterminer l’expression de l’intensité totale I traversant une section rectangulaire
droite quelconque de ce tore. En déduire sa résistance orthoradiale R en fonction de a, b, c, γ
et α.

12 — Rappeler l’expression de la résistance d’un conducteur filiforme de section S et de
longueur L. Vérifier qu’elle est cohérente avec l’expression du conducteur torique quand b est
très proche de a.

FIN DE LA PARTIE II
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III. — Étude d’une pince ampèremétrique
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Figure 4 – Partie active
de la pince

Une pince ampèremétrique est un appareil dont l’extrémité possède
la forme d’un tore. En disposant ce tore autour d’un conducteur
parcouru par un certain courant le dispositif équipant la pince
permet d’en mesurer l’intensité.
Son principal intérêt est l’absence de contact physique avec le
conducteur et le fait qu’il ne soit pas nécessaire d’ouvrir le circuit
pour mesurer le courant qui le traverse contrairement à l’implan-
tation d’un ampèremètre classique.
Le dispositif de mesure de la pince ampèremétrique est formé d’un
bobinage torique comportant N spires enroulées sur un tore de
section rectangulaire de rayon intérieur a, de rayon extérieur b,
d’épaisseur c, d’axe (O,z). Le fil conducteur utilisé pour le bobi-

nage possède une résistance linéique λ.

Un point M intérieur au tore est repéré par ses coordonnées cylindriques :
−−→
OM = rûr + zûz

avec r ∈ [a,b] et z ∈ [0,c].
Un fil rectiligne infini de même axe (O,z) est parcouru par un courant d’intensité i(t). On note
i1(t) l’intensité du courant circulant dans la bobine torique. On se place dans l’approximation
des états quasi-stationnaires.

13 — Rappeler ce qu’on appelle approximation des états quasi-stationnaires. Montrer que
cette approximation permet de simplifier l’équation de Maxwell-Ampère. Énoncer dans ce cas
le théorème d’Ampère.

14 — Montrer qu’au point M intérieur au tore, le champ magnétique peut se mettre sous
la forme ~B = B(r)ûθ où l’on précisera l’expression de B (r) en fonction de µ0, i(t), i1(t), N et
r.

15 — Calculer le flux Φ de ~B à travers le bobinage et en déduire les expressions des
coefficients d’autoinductance L du bobinage et de mutuelle inductance M entre le fil et le
bobinage.

16 — Déterminer l’expression de la résistance totale Rp du bobinage en fonction de a, b, c,
N et λ.

On se place en régime sinusöıdal forcé avec i(t) = I0
√
2 cos(ωt) associée à l’intensité complexe

i = I0
√
2ejωt et i1(t) = I1

√
2 cos(ωt+ ϕ1) associée à l’intensité complexe i1 = I1

√
2ejωtejϕ1 .

17 — Le bobinage formant un circuit fermé, déterminer l’expression de la fonction de

transfert H =
i1
i
en fonction de M , ω, Rp et L.

18 — Dans quel régime de pulsation ce dispositif peut-il former une pince ampèremétrique ?

FIN DE LA PARTIE III
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IV. — Étude thermique d’un objet torique
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Figure 5 – Vue éclatée du système.
L’axe (O,z) est celui du tore

Un tore de section carrée a × a et de rayon intérieur
a (donc de rayon extérieur 2a) est fabriqué dans un
matériau de masse volumique µ, de capacité calorifique
massique c et de conductivité thermique λ.

Le profil des températures possède la symétrie cylin-
drique : T ne dépend que du rayon r et du temps t soit
T (r,t). La face intérieure (r = a, θ ∈ [0,2π[, z ∈ [0,a])
et la face extérieure (r = 2a, θ ∈ [0,2π[, z ∈ [0,a]) sont
placées dans le vide.

Sur les faces parallèles (z = 0 ou z = a), on pose
deux disques parfaitement isolants thermiquement et
de surface parfaitement réfléchissantes.

19 — En effectuant un bilan thermique sur la por-
tion torique définie par l’intervalle [r,r + dr], montrer
que le champ des températures vérifie l’équation

ξr
∂T

∂t
=

∂
(
r ∂T
∂r

)

∂r

où l’on exprimera ξ en fonction des grandeurs caractéristiques du matériau et l’on précisera son
unité.

20 — On cherche, pour cette équation, une solution stationnaire à variables séparées sous
la forme T (r,t) = ρ(r)η(t). Établir les deux équations différentielles vérifiées respectivement par
ρ(r) et η(t) en faisant apparâıtre une constante χ commune à ces deux équations.

21 — Déterminer l’expression de η(t) sans chercher à caractériser la ou les constantes
d’intégration. Quel est le signe de χ ?

22 — Pour la fonction ρ(r), on cherche une solution développable en série entière sous la

forme ρ(r) =
∞∑

n=0

αnr
n. Après avoir rapidement justifié cette recherche, déterminer les expres-

sions des α2p et des α2p+1 pour tout entier p positif ou nul.

23 — En examinant tous les transferts thermiques possibles sur la face interne, justifier le

fait que
dρ

dr

∣∣∣∣
r=a

= 0.
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Figure 6 – La fonction ρ(r)

La fonction ρ(r) qui admet le développement en série déterminé
à la question 22 et qui vérifie la condition aux limites imposée
par la question 23 s’exprime en utilisant les fonctions de Bessel
de première (J) et de deuxième (Y ) espèces. Elle s’écrit

ρ(r) = K

[
J0(r)−

J1(a)

Y1(a)
Y0(r)

]

où K est une constante d’intégration. La courbe représentative
de cette fonction sur le domaine d’étude et pourK = 1 et a = 1
fait l’objet de la figure 6.
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De la physique autour d’un tore

24 — À un instant t donné, on suppose que la face externe, assimilée à un corps noir,
est en quasi équilibre thermique. En utilisant la loi de Stefan-Boltzmann, établir la deuxième
condition aux limites vérifiée par ρ en r = 2a. Montrer que l’on arrive alors à une contradiction.
Quelle hypothèse doit-elle être remise en question ?

25 — En admettant que la solution précédente convienne malgré tout, décrire l’évolution
de la température dans le tore au cours du temps en traçant sur un même graphique les profils
des températures à diverses dates. Justifier en particulier le fait que T tend uniformément vers
zéro.

FIN DE LA PARTIE IV

FIN DE L’ÉPREUVE
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ASPECTS DE LA PROPULSION SPATIALE

Pour les applications numériques on utilisera 3 chiffres significatifs. Les vecteurs sont surmontés
d’un chapeau s’ils sont unitaires ûx ou d’une flèche dans le cas général v⃗. A l’exception de i tel
que i2 = −1, les grandeurs complexes sont soulignées : z ∈ C.

Données valables dans tout le problème

• Masse de l’électron, me = 9, 11 · 10−31 kg ;

• Charge élémentaire, e = 1, 60 · 10−19 C ;

• Constante de Newton de la gravitation universelle, G = 6, 67 · 10−11 m3 · kg−1 · s2 ;

• Permitivité diélectrique du vide, ϵ0 = 8, 85 · 10−12 F ·m−1 ;

• Constante d’Avogadro, NA = 6, 02 · 1023 mol−1 ;

• Rayon de la Terre, Rt = 6, 37 · 103 km ;

• Masse de la Terre, Mt = 5, 97 · 1024 kg ;

• Intensité du champ de pesanteur à la surface de la Terre, g = 9, 81m · s−2 ;

• Constante de Boltzmann, k = 1, 38 · 10−23 J ·K−1 ;

• Constante de Planck, h = 6, 62 · 10−34 J · s ;

• Constante des gaz parfaits, R = 8, 31 J ·K−1 ·mol−1 ;



Aspects de la propulsion spatiale

Ce problème s’intéresse à la propulsion d’engins spatiaux et plus particulièrement au moteur
ionique, dans lequel le carburant n’est pas brûlé mais ionisé. Les ions alors libérés passent
par deux grilles fortement chargées électriquement et subissent ainsi une accélération. La force
d’accélération des ions cause une force de réaction de sens opposé : c’est la force de propulsion
du moteur à ions. Les différentes parties du problème sont très largement indépendantes.

!
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Figure 1 – Fusée

I. — Généralités

I.A. — Aspect cinétique - Lois de vitesse

A l’instant t = 0 , une fusée de masse totale m0 décolle verticalement dans
le référentiel terrestre (voir figure 1). On définit le débit de masse Dm > 0
des gaz brûlés, par Dm = −dm

dt , m(t) désignant la masse de la fusée à un
instant t > 0 quelconque. On note u⃗ = −uûz avec u > 0, la vitesse d’éjection
des gaz par rapport à la fusée. On note v⃗ = v(t)ûz la vitesse de la fusée dans
le référentiel terrestre supposé galiléen. On suppose que Dm et u restent
constants et que le champ de pesanteur g reste uniforme lors du lancement.

1 — En prenant pour système la fusée à l’instant t, exprimer sa quantité
de mouvement p⃗f aux instants t et t+dt . Déterminer de même la quantité
de mouvement p⃗g à l’instant t+ dt du gaz éjecté pendant dt .

2 — On rappelle que la dérivée temporelle d’un vecteur w⃗(t) est définie

par la relation
dw⃗

dt
= lim

dt→0

w⃗(t+ dt)− w⃗(t)

dt
. En utilisant le principe fonda-

mental de la dynamique pour l’ensemble {fusée + gaz}, établir l’équation
différentielle

m
dv

dt
= Dmu−mg (1)

3 — Identifier, dans le second membre de l’équation (1), l’intensité F
de la force de poussée. A quelle condition la fusée décolle-t-elle ?

4 — On nomme impulsion spécifique Is d’un ergol (gaz propulseur) le temps pendant lequel
une masse m de cet ergol peut fournir une poussée équivalente au poids ressenti par m à la
surface de la terre. Exprimer Is en fonction de u et g.

5 — Déterminer l’expression de la vitesse v(t) de la fusée à l’instant t, en fonction de t,
m(t), g, u et de la masse de la fusée à l’instant t = 0 notée m0.

6 — On suppose le vaisseau extrait de l’attraction terrestre (mission interplanétaire), sa
masse totale est alors mi et sa vitesse v⃗ = viûz. On allume à nouveau un moteur pendant une
durée ∆t conduisant à une variation de masse ∆m = mi−mf . Adapter l’expression précédente
pour obtenir la relation de Tsiolkovski donnant l’accroissement de vitesse correspondant, noté
∆V = vf − vi, en fonction de u, mi et mf .

L’exemple qui suit a pour objet de montrer l’intérêt des fusées à plusieurs étages. Soit une fusée
de masse totale mt = 134 tonnes constituée de deux étages. La masse totale du premier étage
est mt1 = 110 tonnes dont 100 tonnes d’ergols, et celle du second est mt2 = 24, 0 tonnes dont
20,0 tonnes d’ergols.

7 — En considérant que la vitesse d’éjection des gaz u = 4, 00 km · s−1 est la même lors de
la poussée de chaque étage, calculer les accroissements de vitesse apportés successivement par
chacun des étages de la fusée. Comparer avec le cas d’une fusée ne possédant qu’un seul étage
et la même répartition de masses, c’est-à-dire 14,0 tonnes de structure et 120 tonnes d’ergols.
Les calculs seront effectués dans l’hypothèse d’une absence de pesanteur.
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Une autre manière de minimiser les dépenses en carburant est d’augmenter la vitesse d’éjection,
limitée à quelques kilomètres par seconde dans le cas d’une propulsion chimique comme nous
le verrons dans la suite de ce problème.

8 — Pour une charge utile de massemu = 500 kg, calculer les massesmc1etmc2 de carburant
(la masse initiale du vaisseau est m0 = mu+mc) à prévoir pour obtenir une variation de vitesse
∆V = 5, 00 km · s−1, dans le cas d’une propulsion chimique (u = 4, 00 km · s−1) et d’une
propulsion ionique (u = 20, 0 km · s−1).

I.B. — Aspect énergétique - Rendement propulsif du moteur fusée

9 — Le vaisseau se déplace à une vitesse de norme v dans le référentiel d’étude galiléen.
Exprimer l’énergie cinétique dans ce référentiel de la masse dm du gaz éjectée pendant dt, en
déduire la puissance cinétique Pjet contenue dans le jet de gaz issu du moteur. Exprimer de
même la puissance reçue par le vaisseau de la part de la force de poussée. On exprimera ces
deux termes en fonction de Dm, u et v.

10 — On définit le rendement propulsif comme le rapport de la puissance cinétique gagnée
par le vaisseau sur la puissance totale dépensée. En admettant une conversion parfaite de
l’énergie stockée dans le vaisseau en énergie cinétique du jet et du vaisseau, montrer que le
rendement propulsif peut se mettre sous la forme

η(x) =
2x

1 + x2

où l’on précisera l’expression de x en fonction des données du problème.

11 — Tracer la courbe η(x), pour quelle valeur de x le rendement propulsif est-il maximal ?
Pour quelles valeurs de x le rendement est il nul ? Montrer que l’on pouvait prévoir ces résultats
sans calcul.

En fait, bien que des moteurs à vitesse d’éjection variable soient étudiés et quelquefois exploités,
le rendement énergétique de la propulsion est souvent considéré comme secondaire : l’énergie
fournie par une pile nucléaire ou des panneaux solaires est presque illimitée, ce qui n’est pas le
cas des réserves de gaz propulsif.

FIN DE LA PARTIE I

II. — Limites de la propulsion chimique
Considérons l’écoulement d’une tranche de fluide, comprise entre les sections S1 et S2 à l’instant
t et entre S ′

1 et S ′

2 à l’instant t + dt . Durant le laps de temps dt cette tranche échange un
certain travail W et une certaine quantité de chaleur Q avec l’extérieur. On note par ailleurs
W ′ le travail échangé sans mettre en jeu les forces de pression.

12 — Appliquer le premier principe de la thermodynamique à cette tranche, établir, en
régime permanent, la relation entre W ′, Q et les variations d’énergie massique de la tranche
considérée.

On se place dans la tuyère d’un moteur fusée, lorsque l’écoulement est permanent et s’effectue à
altitude constante sans travail autre que celui des forces de pression. Le gaz éjecté est considéré
comme parfait, de masse molaire M , d’indice adiabatique γ = 1, 4 . Il provient d’une chambre
de combustion, où ses température et pression sont notées Tc et Pc . Le gaz est initialement au
repos, vc = 0. Par ailleurs, on considère que le transit du gaz dans la tuyère est suffisamment
rapide et les échanges suffisamment lents pour que l’on puisse négliger les transferts thermiques.

13 — Exprimer la vitesse maximale atteinte par le gaz en sortie de la tuyère en fonction
de γ, R, Tc et M . On négligera la température de sortie devant Tc.
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14 — Les ergols utilisés pour la propulsion sont du dihydrogène et du dioxygène, leur
réaction stœchiométrique permet d’obtenir une température de combustion de l’ordre de Tc =
3, 0 · 103 K. Calculer la vitesse maximale d’éjection des gaz issus de la tuyère et l’impulsion
spécifique correspondante.

FIN DE LA PARTIE II

III. — Le moteur plasma micro-ondes

III.A. — Principe de fonctionnement

Pour diminuer la consommation de gaz propulsif, il est nécessaire d’accélérer fortement le gaz
éjecté par apport extérieur d’énergie . Cette accélération est rendue possible par l’ionisation
de ce gaz (on obtient alors un plasma), les particules chargées pouvant être accélérées par un
champ électrique.
Le gaz propulsif utilisé est par exemple du Xénon, il est ionisé par trois types de mécanismes po-
tentiels, on suppose que tous les ions produits sont Xe+. Ces trois mécanismes sont représentés
sur la figure 2. La première source potentielle d’ion est la collision entre un atome et un
électron produit par un canon à électrons (défini au début de la partie III.B). Il s’agit de
la voie a. Outre l’ion produit cette voie produit deux électrons lents. L’application d’une onde
électromagnétique micro-onde permet d’accélérer ces électrons afin qu’ils puissent également
ioniser d’autres atomes de Xénon. Il s’agit de la voie b. Enfin, dans certaines conditions, les
photons micro-onde sont également susceptibles de photo-ioniser les atomes de Xénon. Il s’agit
de la voie c.
Une forte densité du plasma est assurée par la présence d’aimants permanents. Les ions Xe+ sont
finalement accélérés par une différence de potentiel dans une région appelée grille accélératrice.
Des canons à électrons assurent une neutralisation du gaz émis. L’ensemble est schématisé sur
la figure 2.
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Figure 2 – Représentation schématique du moteur ionique : les symboles "" sont des atomes
de Xénon, + des ions Xe+ et - des électrons.

On considère le plasma comme un milieu électriquement neutre, de permittivité ϵ0 et de
perméabilité magnétique µ0 , qui renferme n ions par unité de volume et autant d’électrons de
masse me et de charge −e. Au sein du plasma, les ions possèdent une vitesse caractéristique
bien plus faible que celle des électrons, ils peuvent ainsi être considérés comme immobiles.
Les électrons sont dits libres pour les distinguer de ceux qui restent attachés aux ions. Le
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plasma étudié ici est non-collisionnel, c’est-à-dire que l’on néglige l’effet des chocs entre ions
et électrons ou entre particules de même espèce. On suppose également qu’il est non relati-
viste ce qui signifie que la vitesse caractéristique des électrons libres est faible devant celle
de la lumière ∥v⃗e∥ ≪ c. Afin d’assurer une ionisation la plus complète possible, on souhaite
finalement que ce plasma soit le siège de la propagation d’un rayonnement micro-onde. L’onde
électromagnétique correspondante est associée à un champ électrique dont la représentation
complexe s’écrit E⃗ = E0ei(ωt−kx)ûy.

15 — On suppose la propagation effective. Faire l’inventaire de toutes les forces appliquées
à un électron libre et préciser lesquelles sont négligeables.

16 — Déterminer, en régime de propagation établi, la représentation complexe v⃗ e de la
vitesse des électrons libres et en déduire la conductivité complexe σ du plasma définie par
j⃗ = σ E⃗.

17 — Vérifier que dans ce régime de propagation la densité volumique de charge ρ est
bien nulle puis en revenant à la notation réelle établir l’équation de propagation du champ
E⃗(x, t). On rappelle que r⃗ot(r⃗otE⃗) = ⃗grad(divE⃗) − ∆E⃗, en déduire l’équation de dispersion
dans laquelle apparâıt la pulsation de plasma

ωp =

√
ne2

ε0me
.

18 — A quelle condition l’onde appliquée au plasma peut-elle s’y propager ? Sinon que lui
arrive-t-il ?

Un intense champ magnétique statique axial B⃗0 = B0 ûz, supposé uniforme, est appliqué à
l’intérieur du plasma par des aimants permanents.

19 — Ecrire l’équation vectorielle qui décrirait le mouvement de l’électron s’il n’était soumis
qu’à ce champ magnétique. Montrer que pour une vitesse initiale de l’électron contenue dans
le plan perpendiculaire au champ magnétique, son mouvement serait circulaire uniforme dans
ce plan, et que sa période de rotation serait indépendante de sa vitesse. Exprimer la pulsation
ωc correspondante, appelée pulsation cyclotron, et calculer sa valeur numérique pour un champ
magnétique appliqué d’intensité B0 = 0, 20T.

20 — Montrer qualitativement que l’application du champ micro-onde (E⃗, B⃗0) avec ω ≈ ωc

permet d’accélérer les électrons en augmentant la norme de leur vitesse.

21 — D’après ce qui précède, exprimer et calculer numériquement la densité particulaire
maximale que l’on peut espérer pour un champ magnétique appliqué d’intensité B0 = 0, 20T.

Un champ magnétique permanent intense permet donc d’obtenir une densité importante de
plasma et ainsi d’augmenter le courant ionique engendré par les grilles accélératrices. Il aide
par ailleurs à maintenir l’ionisation : les lignes de champ magnétique ≪ piègent ≫ les électrons
en les forçant à décrire des cercles plutôt que de diffuser librement vers les parois ; la probabilité
qu’un électron chaud ionise une molécule est accrue en raison de l’augmentation de la longueur
de son trajet.

22 — L’énergie de première ionisation du Xénon est de l’ordre de 12,0 eV. La configuration
précédente permet-elle d’envisager une réelle contribution de la photo-dissociation (voie c). On
justifiera sa réponse par un calcul.

III.B. — Poussée

On néglige la masse me des électrons devant celle des ions notée µ.

23 — Exprimer la relation entre l’intensité du courant électrique I dû aux ions traversant
le moteur, le débit Dm de masse de gaz issu du vaisseau et des caractéristiques des ions.
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24 — On suppose que les ions ont une vitesse caractéristique nulle à l’entrée de la grille
accélératrice. On note Va > 0 la tension présente entre les deux électrodes de la grille accélératrice.
Déterminer la vitesse caractéristique de sortie des ions du moteur. En déduire l’intensité F de
la force de poussée du moteur (identifiée à la question 3) en fonction de I, µ, Va et e.

25 — La densité volumique de courant dans le moteur est liée à la tension d’accélération
par la loi de Child-Langmuir que nous admettrons

j =
4ϵ0
9

√
2e

µ

Va
3/2

d2

la distance d étant celle séparant les deux électrodes de la grille accélératrice . Exprimer F en
fonction de Va, d, ϵ0 et du diamètre D du jet de gaz.
On considère un moteur ionique utilisant du Xénon, de masse molaire M = 131 g · mol−1 et
possédant les caractéristiques suivantes :

• tension accélératrice Va = 700V ;

• distance d entre les deux électrodes de la grille accélératrice : d = 2, 50mm ;

• diamètre de chaque trou dans les électrodes de grille délimitant les jets élémentaires
D = 2, 00mm ;

• nombre de trous en vis-à-vis dans chaque électrode : N = 2, 20 · 103

26 — Calculer les valeurs numériques de la poussée F de ce moteur, de la vitesse de sortie
des ions et de la masse de Xénon consommée sur une période de 90 jours de fonctionnement.
Évaluer la puissance cinétique totale transmise au jet de gaz propulsé.

27 — Justifier sans calcul la nécessité de neutraliser le jet d’ions issu du moteur en lui
fournissant des électrons.

IV. — Application du moteur ionique au maintien d’un
satellite en orbite basse
On considère un satellite terrestre de masse ms = 250 kg en orbite circulaire basse à l’altitude
h = 300 km. Cette altitude est telle que les hautes couches de l’atmosphère le freinent.

28 — Exprimer l’énergie cinétique Ec du satellite en fonction de son énergie mécanique
Em ; en déduire que, paradoxalement, le freinage entraine une augmentation de la vitesse.

29 — Lorsque le moteur est éteint, les forces de frottement font perdre au satellite une
altitude ∆h = 20 m à chaque révolution. Exprimer la variation d’énergie mécanique correspon-
dante, effectuer l’application numérique.

30 — Le moteur ionique étudié précédemment permet-il de maintenir l’altitude de ce sa-
tellite ?

FIN DE LA PARTIE IV

FIN DE L’ÉPREUVE
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signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu’il est
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Le Millennium Bridge

Le Millennium Bridge

Pour marquer le millénaire, une nouvelle passerelle a
été construite au dessus de la Tamise à Londres pour
un coût total de plus de 20 millions de Livres Ster-
ling. Quand elle fut ouverte aux piétons on remar-
qua très vite qu’elle se balançait latéralement et ver-
ticalement en cas de forte affluence. Avec un grand
nombre de piétons, son mouvement oblique était tel
que la plupart d’entre eux s’arrêtaient et s’accrochaient
aux rampes. Des images et des vidéos ont montré que
ces mouvements latéraux pouvaient avoir une ampli-
tude moyenne de 75 mm et qu’ils se produisaient avec
des fréquences de l’ordre du hertz. Le pont fut donc
fermé deux jours après son ouverture au public. Dix-
huit mois de recherches furent nécessaire pour résoudre
le problème et faire les modifications préconisées par les
ingénieurs qui furent donc finalement consultés.
L’objectif de ce problème est la modélisation de plus en
plus fine d’une passerelle piétonne et la compréhension
de certains problèmes posés par le Millennium Bridge
de Londres.
Les vecteurs sont surmontés d’un chapeau s’ils sont
unitaires ûx ou d’une flèche dans le cas général ~v.
A l’exception de i tel que i2 = −1, les grandeurs complexes sont soulignées : z ∈ C. Un point
sur une grandeur indique la dérivée par rapport au temps de cette grandeur : ẋ = dx

dt
.

~gm

®k

G

O

xu

Fig. 1 – Oscillateur

I. — Oscillateur simple
Un oscillateur est constitué d’une masse m dont le centre d’inertie G est
repéré par la position x dans le référentiel galiléen (O, ûx) – voir figure 1.
L’origine O se situe au niveau du sol. L’oscillateur est relié à un support
fixe par l’intermédiaire d’un ressort linéaire de raideur k et de longueur
à vide ℓ0 ainsi que d’un amortisseur linéaire de viscosité α, exerçant sur
m une force de frottement ~Ff = −αẋûx, avec α > 0. À tout instant t,
on assimile la distance OG à la longueur ℓ(t) du ressort. L’ensemble est
soumis à l’accélération de la pesanteur ~g = −g ûx avec g = 9,81m · s−2.

1 — En appliquant la relation fondamentale de la dynamique établir l’équation différentielle
Ẍ + 2ξω0Ẋ + ω2

0X = 0 dans laquelle on a introduit la fonction X (t) = x (t)− x̃ où x̃ est une
constante que l’on déterminera en fonction de g, ω0 et ℓ0. On précisera les expressions et
significations de ω0 et ξ.

2 — Dans le régime libre, le système est mis en vibration uniquement par des conditions
initiales non nulles X(0) = X0 6= 0 et Ẋ (0) = V0 6= 0. Déterminer les solutions du régime
libre (en fonction de ω0, ξ, X0, V0 et t) pour les cas ξ = 0 et 0 < ξ < 1 et préciser leur
comportement. Dans certains cas, le vent peut induire sur le système une force proportionnelle
au vecteur vitesse que l’on écrit ~Fv = βẋûx, avec β > 0. Quelle peut-être la conséquence de ce
phénomène ?

Différents cas peuvent être examinés pour l’excitation (ou forçage) F (t) de l’oscillateur étudié
lors des deux premières questions. Nous nous placerons dans l’optique d’une passerelle piétonne.
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L’action de la marche d’un piéton est caractérisée par un contact continu sur la surface du sol
puisque le second pied touche le sol avant que le premier ne le quitte. La force engendrée
comprend une composante verticale et une composante horizontale non prise en compte dans
cette partie.

Charge par
pied

[unités arbitraires]

Charge
combinée

[unités arbitraires]

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

0,5

1,0

1,5
Pied
droit

Pied
gauche

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

0,0

1,0

2,0

Temps [seconde]

Charge

Figure 2 – Forçage d’une passerelle par la marche d’un piéton.

Dans le cadre d’un modèle simplifié, nous représenterons cette force, appelée charge, par un

vecteur périodique ~F (t) = ~F0 + ~F1 cos (2πft).

Le vecteur ~F0 correspond à la force statique, c’est-à-dire au poids du piéton, la fréquence
f correspond à celle d’une marche normale. Nous considérerons que ~F1 = 0,4 ~F0. Ces deux
vecteurs seront supposés constants et orientés comme −ûx.

On note F0 =
∥∥∥ ~F0

∥∥∥ le module de la force statique, Y = X + F0

mω2

0

la réponse en déplacement de

l’oscillateur et Y= Yme
iωt sa représentation complexe.

3 — Que devient l’équation de l’oscillateur en Y sous le forçage piéton ? Déterminer la fonc-
tion de transfert H(ω), rapport de la représentation complexe de la réponse en déplacement Y
sur la représentation complexe de l’excitation E= 1

m
F1. On exprimera H= Y /E en fonction de

ξ, ω0 et Ω = ω
ω0

.

4 — Sous quelle condition portant sur ξ, un phénomène de résonance peut-il se produire ?
Pour quelle pulsation ωr obtient-on alors ce phénomène ? Exprimer le gain en amplitude à la
résonance |H| (ωr) dans la limite ξ2 ≪ 1 .

5 — En se plaçant dans l’hypothèse ξ2 ≪ 1 et à partir d’une analyse de la courbe 1 de
la figure 3, déterminer un ordre de grandeur de ξ ainsi que la valeur de la pulsation propre
ω0 de l’oscillateur modélisant le Millennium Bridge avant la mise en place des amortisseurs
harmoniques.

6 — Pourquoi est-il important de déterminer les fréquences de résonance d’une structure
soumise à une action périodique ?

Afin d’étudier précisément les propriétés du forçage que constitue la marche d’un piéton, on
réalise l’acquisition en laboratoire du signal correspondant à cette sollicitation.

7 — Quel(s) type(s) de capteur(s) est-il envisageable d’utiliser pour obtenir un signal
électrique issu de la marche d’un piéton ?
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®k

®aka

m G

Etage d’amortissement
harmonique

4 6 8 10 12 14 16 18 20

3 5 7 9 11 13 15 17 19
10

5
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!
2

0 £jHjj

[dB]

avec amortisseur
harmonique

Courbe 2

sans amortisseur
harmonique

Courbe 1

Figure 3 – Schéma et réponse d’un amortisseur harmonique appliqué au modèle du Millennium
Bridge.

L’acquisition est effectuée sur des durées allant de quelques secondes à quelques minutes. Les
signaux ainsi obtenus sont similaires mais pas parfaitement identiques. Chacun de ces signaux
présente les caractéristiques essentielles du signal de la charge combinée représentée sur la
figure 2. On calcule alors le spectre de ces signaux en les échantillonnant en N = 300 points
équidistants sur un intervalle [tmin,tmax]. Les différents spectres obtenus sont rassemblés sur la
figure 4.

8 — Analyser et interpréter aussi précisément que possible ces différents spectres. Sont-ils
tous exploitables ? Lequel vous parâıt le plus pertinent ? En déduire la (ou les) fréquence(s)
caractéristique(s) de la marche étudiée. Etait-ce qualitativement prévisible ?

0 2 4 6

N t= 300 ; = 1,0 s ; ,0 smin tmax = 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

N t= 300 ; = 1,0 s ; 27,0 smin tmax =

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

10
-2

10
0

N t= 300 ; = 1,0 s ; ,0 smin tmax = 90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10
-2

10
0

N t= 300 ; = 1,0 s ; ,0 smin tmax = 180

f [Hz]

f [Hz] f [Hz]

8 10 12 14

f [Hz]

1 2

3 4

Figure 4 – Spectres des signaux correspondants à la marche d’un piéton

9 — À partir d’une exploitation des données fournies dans le sujet, expliquer l’origine du
problème concernant le Millennium Bridge et justifier que l’installation d’amortisseurs harmo-
niques ait pu le résoudre.

FIN DE LA PARTIE I
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II. — Système élastique continu
Les systèmes réels sont rarement discrets. Ainsi la poutre de structure d’une passerelle est
déformable en tout point. Nous sommes donc en présence d’un problème de dynamique des
milieux continus mais d’un point de vue pratique l’étude des systèmes continus se ramène
finalement à celle liée aux systèmes discrets : c’est la discrétisation des systèmes continus.

On négligera dans la suite du problème l’action de la pesanteur.

On considère un solide homogène, de masse volumique ρ constante, qui a la forme d’un cylindre
de section S et d’axe (O,ûx) horizontal, le long duquel on étudie les petits mouvements de
déformation.

Dans le domaine d’élasticité du matériau, la norme F de la force de traction permettant à un
solide de longueur L de s’allonger de ∆L est donnée par la loi de Hooke : F = ES∆L

L
où E est

une constante appelée module d’Young du matériau.

10 — Quelle est l’unité d’un module d’Young ? On motivera sa réponse pour laquelle on
utilisera une seule unité du système international.

11 — On note X(x,t) le déplacement par rapport à la position de repos d’une section plane
d’abscisse x. Calculer la variation relative de longueur d’une tranche élémentaire du cylindre

de longueur au repos dx et en déduire la force de traction
−→
F (x,t) = F (x,t)ûx exercée par la

partie ≪ droite ≫ (du côté des x croissants) sur la partie ≪ gauche ≫ (du côté des x décroissants)
en fonction de E, S et ∂X

∂x
. Écrire l’équation du mouvement de la tranche de longueur dx et en

déduire l’équation aux dérivées partielles vérifiée par X(x,t).

Afin de prendre en compte le mouvement transverse de la passerelle on introduit un axe vertical
dirigé selon le vecteur unitaire ûy et on adopte le modèle de la corde. Dans ce modèle bidi-
mensionnel, la passerelle est représentée à l’instant t par une ligne d’équation y (x,t) de masse
linéique µ uniforme.

T t( )x dx+ ,~

x dx+

y x dx( + )

x

y( )x

¡T t( )x,

® t( )x,

bux

buy

~

Figure 5 – Tronçon de corde élastique

En un point M (x,y) de la passerelle, on définit
le vecteur unitaire tangent ûτ à la passerelle tel
que ûτ (x,t) = cos [α (x,t)] ûx + sin [α (x,t)] ûy. Les
déplacements sont contenus dans un plan verti-
cal et sont de faible amplitude. On suppose donc
qu’à chaque instant α (x,t) ≃ ∂y(x,t)

∂x
≪ 1. Sous

ces hypothèses, la longueur de la corde ne varie
pas et chaque tronçon infinitésimal de la passe-
relle n’est déplacé que selon la verticale. En chaque
point M (x,y) de la passerelle règne à chaque ins-

tant t une tension ~T (x,t) portée par ûτ . Un tronçon de corde est représenté sur la figure 5.

12 — En appliquant un théorème de mécanique à un tronçon de corde infinitésimal de
longueur dℓ =

√
dx2 + dy2, montrer que, sous les hypothèses effectuées, le module de la tension

de la corde est indépendant de x. On le notera T0.

13 — Montrer alors que l’on peut écrire
∂2y

∂t2
= c2ℓ

∂2y

∂x2
où l’on exprimera cℓ en fonction de

T0 et µ.

FIN DE LA PARTIE II
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III. — Modèle de la poutre élancée

Dans un modèle couramment utilisé, on peut assimiler une passerelle à une poutre homogène de
section rectangulaire de largeur b selon (O,ûz) et de hauteur h selon (O,ûy). Pour des contraintes
modérées, induisant un déplacement vertical petit devant les dimensions transversales de la
poutre, c’est-à-dire y(x) très petit devant h ou b, on peut alors se placer dans une extension du
modèle de la corde.

On considère une passerelle de section S, de masse volumique ρ, de module d’Young E et dont
le moment quadratique de la section droite par rapport à l’axe (O,ûz) est I = 1

12
bh3. L’écriture

des contraintes conduit alors à une équation aux dérivées partielles de la forme

ρS
∂2y

∂t2
+ IE

∂4y

∂x4
= 0

14 — On cherche des solutions sous la forme y (x,t) = f (x) g (t). De quel type d’onde
s’agit-il ? Sous quelles hypothèses de telles ondes apparaissent-elles dans ce genre de structure ?

15 — Déterminer les équations différentielles vérifiées par f (x) et g (t). En déduire que
g (t) est une fonction périodique de pulsation ω constante. Combien de constantes d’intégrations
sont nécessaires à la détermination complète de la solution y (x,t) correspondant à la situation
étudiée ?

16 — Justifier précisément que l’on puisse écrire

f(x) = A cos (βx) + B sin (βx) + C ch (βx) +D sh (βx)

où A,B,C et D sont des constantes d’intégration, on précisera l’expression de β en fonction des
données du problème.

On se place dans l’hypothèse d’une passerelle de longueur L en appui simple à ses extrémités,

les conditions aux limites s’écrivent y|x=0,t = y|x=L,t = 0 et
∂2y

∂x2

∣∣∣∣
x=0,t

=
∂2y

∂x2

∣∣∣∣
x=L,t

= 0.

17 — Déterminer les pulsations propres ωn de vibration transversale d’une poutre en appui
simple en fonction de L, E, I, ρ, S et d’un entier n caractérisant le mode.

18 — Différents modes de vibrations d’une passerelle ont été représentés sur la figure 6,
quels sont ceux correspondants à l’étude proposée dans cette section ? Identifier de façon argu-
mentée pour chacun de ces modes, l’entier n le caractérisant.

La passerelle du Millennium Bridge est globalement une poutre en aluminium de 322 m de
longueur, d’épaisseur h = 1,07m (42 pouces) et de largeur b = 4m (158 pouces). Elle repose
sur 4 appuis en créant 3 travées solidaires de L1 = 70m, L2 = 144m et L3 = 108m. On donne
la masse volumique de l’aluminium ρ = 2700 kg ·m−3 et son module d’Young E = 69× 109 SI.

19 — Dans le cadre du modèle de la poutre sur appui simple, existe-t-il des modes de
vibration transversale du Millennium Bridge susceptibles d’entrer en résonance avec un forçage
par des piétons ? Discuter également de la possibilité d’une excitation résonante de certains
modes de vibration latérale, c’est-à-dire dans le sens de la largeur b. On motivera ses réponses
par une argumentation précise.
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Physique I, année 2016 — filière MP

Mode a

Mode b

Mode c

Mode e

Mode g

Mode d

Mode f

Mode h

Figure 6 – Différents modes de vibration d’une passerelle en appui libre aux deux extrémités

FIN DE LA PARTIE III

FIN DE L’ÉPREUVE
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En 1971, le professeur Leon Chua - qui exerça à l’Université de Berkeley - prédit l’exis-
tence d’un dipôle passif nouveau capable de servir de mémoire 1, ce dipôle venant complèter la
liste des trois dipôles fondamentaux de l’électricité à savoir le résistor, la bobine et le conden-
sateur. Le terme de memristor qu’il inventa résulte de la contraction des deux termes memory
et resistor.

1 memristor

Figure 1 – Un ensemble de memristors
(échelle nanométrique) c⃝ HP Labs

En 2008, des chercheurs 2 des HP Labs ont pu-
blié un article 3 dans la revue Nature c⃝ intitulé The
missing memristor is found, dans lequel ils annoncent
avoir mis au point un memristor présentant les pro-
priétés prévues par Leon Chua en 1971. La pho-
tographie de la figure 1 montre un ensemble de ces
memristors.

En 2015, HP! et SanDisk! se sont associés
pour développer la technologie des mémoires à base
de memristors. Les atouts espérés de ce type de
mémoires peuvent laisser rêveur : 1 000 fois plus ra-
pides que les mémoires flashs actuelles, 1 000 fois
plus de cycles lecture-écriture qu’actuellement et,
pour couronner le tout, une densité inégalée au point
de pouvoir doter un smartphone d’une mémoire de
100 To en 2020 !

Le problème proposé comporte 4 parties largement indépendantes qui abordent différents
aspects des memristors. L’ensemble des données fournies sont dans le formulaire situé à la fin
du sujet.

I. — Généralités sur les memristors

!

"

#

$

?

1

2 3

4

5

Figure 2 – Le
carré fondamental
de l’électricité

I.A. — Le quatrième dipôle

Les 4 grandeurs fondamentales de l’électricité sont la charge q, le
courant i, le flux magnétique φ et la tension u. Elles sont en général
dépendantes du temps t. On considère les 3 dipôles classiques que sont
le résistor de résistance R, la bobine d’inductance L et le condensateur
de capacité C. Ces trois dipôles sont considérés comme parfaits. Il est
possible de représenter les 4 grandeurs fondamentales de l’électricité au
sommet d’un graphe – carré en l’occurrence – où les arêtes représentent
des relations fondamentales ou des relations fonctionnelles des dipôles.
Ce carré est représenté sur la figure 2. Avant 1971, on connaissait 5 relations entre les sommets
de ce graphe et une était manquante. On se placera systématiquement en convention récepteur
pour tout dipôle étudié dans la suite du problème.

1 — Rappeler l’expression de la relation fondamentale liant q, i et t ainsi que les relations
fonctionnelles des 3 dipôles parfaits classiques. Ces 4 relations seront exprimées sous la forme
différentielle suivante : dx = y dz. à chaque fois, on précisera le sens physique de y et on donnera
son unité.

1. IEEE Transactions on circuit theory, vol. CT-18, n◦5, September 1971
2. Dmitri Strukov, Gregory Snider, Duncan Stewart & Stanley Williams
3. Nature, Vol 453— 1 May 2008— doi :10.1038/nature06932
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2 — La relation fondamentale entre le flux φ et la tension u s’écrit φ(t) =

∫ t

−∞

u(t′)dt′.

Ecrire la cinquième relation dans le graphe de la figure 2 sous forme différentielle.

3 — Dans son article de 1971, Leon Chua prédit l’existence d’une relation f(φ,q) = 0
que l’on peut soit expliciter sous la forme φ = φ(q), on dit que l’on a un memristor contrôlé
par la charge ; soit sous la forme q = q(φ), on dit alors que l’on a un memristor contrôlé par
le flux. La sixième relation différentielle est posée sous la forme dφ = M(q) dq où M(q) est la
memristance. Quelle est l’unité usuelle de la memristance ? Justifier la réponse.

4 — On associe deux memristors de memristances M1 et M2 en série. Quelle est la mem-
ristance M du dipôle équivalent ? On justifiera sa réponse. Même question si on associe M1 et
M2 en parallèle.

Afin de concrétiser la notion de memristor, on propose de le modéliser par la relation
φ(q) = α q+ β

3
q3 où α et β sont des coefficients réels positifs. On impose dans le memristor une

intensité i(t) = i0 sinωt pour t ≥ 0 et on suppose que pour t < 0, i = 0. Enfin, on considère
qu’à la date t = 0, on a q(t = 0) = 0.

!

" !( )

0 # $/ 2 /# $ 3 /# $

Figure 3 – Graphe de φ(t)

5 — Déterminer l’expression de q(t) et tracer sur
un même graphique les courbes représentatives de
i(t) et q(t).

6 — On donne sur la figure 3 la courbe représen-
tative de φ(t). Reproduire cette courbe en y rajou-
tant sans calcul l’allure de la courbe représentative
de u(t).

"

$

0

Figure 4 – Courbe u(i) du mem-
ristor proposé

7 — En analysant la courbe u(i) du memristor précédent
représentée sur la figure 4, pourquoi peut-on dire, en simpli-
fiant un peu, que le memristor étudié présente deux régimes
de fonctionnement : l’un dans lequel il laisse passer le cou-
rant et l’autre dans lequel ce n’est pas le cas.

8 — La courbe u(i) de la figure 4 présente donc un
phénomène particulier. De quoi dépend la résistance du
memristor ? Expliquer la possibilité d’utiliser le memristor
pour mémoriser une information.

9 — Leon Chua qualifia le memristor de non vo-
latile memory, c’est-à-dire de mémoire permanente. Quel
élément sur le graphique de la figure 4 permet de dire que
le memristor est une telle mémoire ?

I.B. — Conductivité

On considère un milieu conducteur où les porteurs de charge possèdent chacun une charge
q et une masse m. Ils sont présents dans le milieu conducteur supposé homogène et isotrope
à raison d’une densité volumique n en m−3. Ces porteurs sont soumis à un champ électrique
qui va les mettre en mouvement pour créer un courant. Lorsqu’elles se déplacent, ces charges
interagissent avec d’autres porteurs en mouvement mais aussi avec leur environnement fixe
constitué par le réseau cristallin du conducteur. Elles subissent alors des interactions que l’on

peut assimiler à des chocs. Il résulte de l’ensemble des interactions une force de type −
m

τ
v⃗ où

v⃗ est la vitesse des porteurs mobiles et τ la durée moyenne qui sépare deux chocs successifs
subis par une charge q.
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On étudie un conducteur cylindrique de section S, de rayon a et de longueur ℓ constitué du
milieu conducteur défini ci-dessus. Ce conducteur est soumis à une différence de potentiel U0

indépendante du temps qui impose un champ électrique E⃗0 uniforme et indépendant du temps.

10 — Établir l’équation différentielle à laquelle satisfait la vitesse des porteurs de charge.
Donner la solution v⃗(t) sans se préoccuper de déterminer la constante d’intégration. Quelle est
l’expression de la vitesse en régime permanent ? Sauf précision contraire, on considère que l’on
est en régime permanent. Faire l’hypothèse du régime permanent est-il contraignant ou non ?

11 — La mobilité µ des porteurs de charge est définie de telle sorte que v⃗ = µE⃗0. Donner
l’expression de la mobilité d’une charge q. Après avoir rappelé la définition de la densité volu-
mique de courant j⃗0, établir l’expression de la conductivité électrique γ0 du conducteur définie
par la loi j⃗0 = γ0 E⃗0. Quel est le nom de la loi précédente ?

12 — Exprimer la résistance électrique R0 du cylindre conducteur en fonction de γ0, ℓ et
S.

13 — Leon Chua indiqua dans son article fondateur que la résistance était un dipôle
memory less 4 car la tension suivait instantanément les évolutions du courant. Qu’en pensez-
vous ?

14 — On impose maintenant au dipôle non plus le champ électrique E⃗0 mais un champ
électrique E⃗1 toujours uniforme mais dépendant du temps selon E⃗1 = E⃗1m cosωt. Montrer que
le dipôle peut être décrit au moyen d’une impédance complexe Z correspondant à l’association
de deux dipôles et que la tension ne suit plus instantanément les évolutions de l’intensité. On
exprimera Z en fonction, entre autres, de R0. À quelle condition retrouve-t-on la situation
où le dipôle est un résistor de résistance R0 ? Qualifier le comportement du conducteur et
l’interpréter.

On revient à la situation où le champ électrique E⃗0 imposé est indépendant du temps. On
étudie à nouveau la situation du régime permanent.

15 — Quelle est la puissance transférée à la charge q par le champ électrique E⃗0 ? Quelle
est la puissance volumique associée à ce transfert d’énergie ?

16 — En considérant l’ensemble du conducteur cylindrique, montrer que la puissance qu’il
reçoit est p = u i. Cette expression peut être généralisée aux régimes lentement variables puisque
la puissance instantanée p(t) est alors donnée par : p(t) = u(t) i(t).

17 — Dans le cas où le dipôle est un memristor, exprimer la puissance qu’il reçoit en
fonction de sa memristance et de l’intensité du courant.

II. — Le memristor des HP Labs

Le memristor mis au point aux HP Labs est constitué par un mince film de dioxyde de
titane de 5 nm d’épaisseur et de longueur ℓ = 10 nm. À chaque extrémité de ce dipôle, le
contact électrique est assuré par 2 électrodes de platine. La particularité de ce memristor est
que le dioxyde de titane présente dans une zone des lacunes en oxygène, la formule brute du
dioxyde de titane étant alors TiO2−x si x représente les lacunes. On admet que cette situation
est équivalente à celle d’un milieu dopé dans lequel les charges mobiles portent deux charges
élémentaires positives q = +2e. Dans le reste du film, on trouve du dioxyde de titane sans
lacune de formule TiO2. Si le film est totalement dopé, sa résistance électrique est faible et vaut
Ron ≃ 1 kΩ. Au contraire, si le film n’est pas dopé du tout alors sa résistance électrique est
élevée : Roff ≃ 100Ron. Supposons que la frontière entre la zone dopée et la zone non dopée
soit située à l’abscisse z, voir le schéma de la figure 5.

4. sans mémoire
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Figure 5 – Représentation schématique du memristor des HP Labs

18 — Donner l’expression de la résistance électrique du memristor lorsque la frontière entre
la zone dopée et la zone non dopée se situe à l’abscisse z0, on notera cette résistance Rmem0.

La particularité du film de dioxyde de titane est que la position de la frontière évolue au
cours du temps en fonction de l’intensité du courant qui est passée mais aussi en fonction du
sens de ce courant. C’est cela qui en fait un memristor. On peut donc passer d’un dispositif
bon conducteur à un autre presque isolant. On note dorénavant z(t) la position de la frontière
entre la zone dopée et la zone non dopée.

Pour le déplacement de la frontière, on reprend le modèle linéaire de la mobilité étudié à la
question 11 où l’on note toujours µ la mobilité des charges mobiles. On propose alors d’écrire
la relation

dz

dt
= µ

Roni(t)

ℓ

dans laquelle le courant i(t) est algébrique et son sens conventionnel précisé sur la figure 5.

19 — Quelle lecture faites-vous de la relation précédente ?

% [V]

& [mA]

+1+1

+4

+2

+4

+2

0

Pt

Pt

TiO2

0

Figure 6 – Courbe u(i) du film de TiO2

20 — On suppose que i(t < 0) = 0, puis que
i(t ≥ 0) ̸= 0 et enfin qu’à la date t = 0, la frontière
est située en z = z0. Établir l’expression de z(t) en
fonction, entre autres, de la charge q(t) qui a circulé
depuis la date t = 0. Quelle est la charge minimale
Qmin nécessaire, dans le cas le plus défavorable, pour
que le memristor soit dans l’état le plus conducteur
possible ?

21 — Établir l’expression de la memristanceM(q)
en fonction, entre autres, de Rmem0. Expliquer pour-
quoi le memristor a été réalisé pour la première fois
avec un système nanométrique.

22 — Pour simplifier les calculs, on considère que
Roff ≫ Ron, z0 = 0 et φ(t = 0) = 0. On impose dans
le memristor, à partir de la date t = 0, un courant
d’intensité i(t) = i0 sinωt. Établir les expressions de
q(t), φ(t) et u(t).

23 — Dans leur article de 2008, les chercheurs 5 des HP Labs ont obtenu expérimentalement
la courbe u(i) de la figure 6. Commenter cette courbe.

5. D. Strukov, G. Snider, D. Stewart & S. Williams The missing memristor is found Nature Vol 453— 1
May 2008— doi :10.1038/nature06932
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Figure 7 – Falaise de potentiel et
énergie du quanton

III. — Une falaise de potentiel ?
On étudie l’évolution d’un quanton de masse m qui

aborde, avec une énergie E > 0, une falaise de potentiel
de hauteur V0 constante située en x = 0, voir le schéma
de la figure 7. L’étude est undimensionnelle conduite sur
un axe Ox.

24 — À partir de l’équation de Schrödinger, établir l’équation différentielle vérifiée par
la fonction d’onde spatiale ϕ(x) associée au quanton.

25 — Dans le cas où le quanton arrive depuis x → −∞, établir les expressions de la fonction
d’onde ϕ1(x) dans le milieu 1 et ϕ2(x) dans le milieu 2. Il n’est pas nécessaire de déterminer
les constantes d’intégration.

26 — Établir l’expression du coefficient r rapport de l’amplitude de la fonction d’onde
spatiale correspondant à l’onde réfléchie et de l’amplitude de l’onde incidente. De la même
façon, établir l’expression du coefficient t rapport de l’amplitude de la fonction d’onde spatiale
correspondant à l’onde transmise et de l’amplitude de l’onde incidente.

27 — En déduire les coefficients R et T de réflexion et de transmission de la densité de
courant de probabilité. Faire l’application numérique lorsque 8E = V0.

Dans le cas du memristor des HP Labs, les charges constituant le courant i(t) traversent
le film de dioxyde de titane facilement dans un sens et beaucoup plus difficilement dans l’autre
sens. On s’interroge pour savoir si ces charges peuvent être décrites comme le quanton des
questions précédentes abordant une falaise de potentiel par un côté ou bien par l’autre pour
expliquer la différence de conductivité du memristor en fonction du sens du courant.

28 — Qu’en pensez-vous ? Que proposeriez-vous ?

Formulaire

Analyse vectorielle en coordonnées polaires

Dans le système des coordonnées cylindro–polaires (r,θ,z) de base associée (êr,êθ,êz), on rappelle
quelques formules d’analyse vectorielle.

Soit f une fonction scalaire telle que f = f(r,θ,z,t), le gradient de cette fonction est :

gradf =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

∂f

∂z
êz

Soit A⃗ un vecteur fonction des coordonnées cylindriques, l’expression la plus générale du vecteur
est :

A⃗ = Ar(r,θ,z,t)êr + Aθ(r,θ,z,t)êθ + Az(r,θ,z,t)êz

La divergence du vecteur A⃗ est :

div A⃗ =
1

r

∂(rAr)

∂r
+

1

r

∂Aθ

∂θ
+
∂Az

∂z

Le rotationnel du vecteur A⃗ est :

rot A⃗ =

(

1

r

∂Az

∂θ
−
∂Aθ

∂z

)

êr +

(

∂Ar

∂z
−
∂Az

∂r

)

êθ +
1

r

(

∂(rAθ)

∂r
−
∂Ar

∂θ

)

êz
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Quelques règles sur les opérateurs :

rot grad f = 0⃗ et div rot A⃗ = 0

rot rot A⃗ = grad div A⃗− ∆⃗A⃗ et rot (fA⃗) = frot A⃗+ grad f ∧ A⃗

div (fA⃗) = fdiv A⃗+
(

A⃗ · grad
)

f

Soit S une surface fermée entourant un volume τ . Le flux d’un vecteur sur la surface S orientée
vers l’extérieur est égal à l’intégrale de la divergence de ce vecteur sur tout le volume τ :

Théorème de Green - Ostrogradski
!

S

A⃗ · dS⃗ =
"

τ/S

div A⃗ dτ

Soit C une courbe fermée sur laquelle s’appuie une surface Σ. La circulation d’un vecteur le
long de C est égale au flux du rotationnel de ce vecteur à travers Σ orientée selon la règle du
tire-bouchon.

Théorème de Stokes

∮

C

A⃗ · dℓ⃗ =
#

Σ/C

rot A⃗ · dΣ⃗

Mécanique quantique

On note ! = h/2π avec h la constante de Planck. On rappelle l’équation de Schrödinger

pour un quanton de masse m possédant l’énergie E, évoluant en milieu unidimensionnel d’axe
Ox dans un potentiel 6 V (x) indépendant du temps. Le quanton est représenté par la fonction
d’onde ψ(x,t). On a :

i!
∂ψ(x,t)

∂t
= −

!2

2m

∂2ψ(x,t)

∂x2
+ V (x)ψ(x,t)

Dans le cas d’un potentiel V (x) indépendant du temps, les états stationnaires du quanton sont
décrits par la fonction d’onde ψes(x,t) telle que :

ψes(x,t) = ϕ(x) exp−i
E

!
t

où ϕ(x) est la fonction d’onde spatiale.

On rappelle enfin que la densité de courant de probabilité de présence est définie par :

J⃗ = ±
! k

m
|ϕ(x)|2 êx

où k est le module du vecteur d’onde associé au quanton.

FIN DE L’ÉPREUVE

6. Attention : en Mécanique quantique, on nomme potentiel V (x) en réalité une énergie potentielle.
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Physique I, année 2018 — filière MP

Interaction laser plasma à haut éclairement

Au début des années 2000, des mécanismes de génération d’impulsions électromagnétiques très
brèves et de forte intensité, jusque là théoriques, ont été concrétisés sur le plateau de Saclay
notamment par le Laboratoire d’Optique Appliquée de l’Ensta ParisTech et le Laboratoire
de Physique à Haute Intensité du Cea.

Lorsqu’un faisceau laser de forte puissance est focalisé sur de la matière (gaz ou solide), cette
dernière est ionisée quasi–instantanément et se transforme alors en un plasma globalement
neutre. L’interaction entre le champ électromagnétique du laser et le plasma ainsi formé met en
jeu une physique particulièrement riche et complexe. Sous certaines conditions, un rayonnement
laser de haute fréquence (UV ou X) peut être émis par ce plasma. Dans le domaine temporel,
ce rayonnement peut être associé à des impulsions très brèves dont la durée se situe dans la
gamme des femto-secondes (10−15 s) voire atto-secondes (10−18 s). Les applications de ce type
de laser sont maintenant largement mises en place en recherche, dans l’industrie et dans le
domaine des applications biomédicales. Nous proposons d’étudier certains de ces mécanismes
d’émission issus de l’interaction laser-plasma.

Hormis le nombre i tel que i2 = −1, les nombres complexes sont soulignés : z ∈ C. Les vecteurs
seront traditionnellement surmontés d’une flèche, par exemple E⃗ pour un champ électrique ;
sauf s’ils sont unitaires et seront alors surmontés d’un chapeau, par exemple ûx tel que ∥ûx∥ = 1.
Les résultats numériques attendus sont des ordres de grandeur comportant au plus deux chiffres
significatifs. Quatre documents d’information sont rassemblés à la fin du sujet.

I. — Génération d’harmoniques dans les gaz

I.A. — Champ laser et champ coulombien.

Cette partie s’appuie principalement sur le document i.

On adopte dans un premier temps une description semi-classique de l’atome d’hydrogène dans
le référentiel du proton supposé fixe :

— la position de l’électron est repérée par le vecteur r⃗ et sa vitesse par le vecteur v⃗ ;
— l’électron est assimilé à un point matériel de masse m ≃ 9.10−31 kg et de charge q = −e

où e = 1,6.10−19 C désigne la charge élémentaire ;
— l’électron est animé d’un mouvement circulaire, de rayon r = ∥r⃗∥ et de vitesse v = ∥v⃗∥ ;
— on néglige le poids de l’électron ;
— la norme du moment cinétique est quantifiée : mrv = n! où ! = h

2π ≃ 10−34 J · s désigne
la constante de Planck réduite et n est un entier naturel non nul.

1 — Donner l’expression de la force électrique coulombienne subie par l’électron, due au
proton. Montrer qu’il s’agit d’une force centrale qui dérive d’une énergie potentielle Wp dont
on déterminera l’expression.

2 — Déterminer l’expression de l’énergie mécanique Wm de l’électron sur son orbite circu-
laire de rayon r, en fonction de r, e et ε0 = 9.10−12 F·m−1. Montrer que le rayon de la trajectoire
s’écrit sous la forme r = a0n2 où l’on exprimera a0 en fonction de ε0, h, m, et e. Préciser la
valeur de n lorsque l’électron est dans son état fondamental. Calculer la valeur numérique en
électron-volt de l’énergie mécanique de l’état fondamental notée −W0.
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3 — On donne a0 =
1
2 .10

−10 m, calculer la valeur de la norme du champ électrique coulom-
bien Ec ressenti par l’électron dans son état fondamental. Calculer la puissance P de l’impul-
sion laser. Déterminer, notamment en fonction de P , les expressions de l’amplitude du champ
électrique laser avant son passage à travers la lentille Eℓ = E0(z = −f ′) et au niveau du foyer
Ef = E0(z = 0). En utilisant les valeurs numériques (fournies dans le tableau du document i
relatives à la cible ≪ gaz ≫), comparer Ec et Ef . Que peut-on en conclure ?

I.B. — Un mécanisme en trois étapes

Cette partie s’appuie principalement sur le document ii.

Pour simplifier le problème, on limite l’étude au mouvement de l’électron le long d’un axe (O,ûx)
perpendiculaire à (O,ûz) et x représente la coordonnée de l’électron le long de l’axe (O,ûx).
L’impulsion laser est modélisée par une onde électromagnétique plane. Le champ électrique du
laser, au niveau de l’atome d’hydrogène situé au foyer du faisceau s’écrit

E⃗(z,t) = Ef cos (ω0t− k0z) ûx

pour 0 ≤ t ≤ T , avec ω0 = 2πν0 = k0c =
2π
λ0
c. Le noyau, constitué d’un proton, est situé en O,

il est supposé fixe.

4 — Justifier que pour l’étude du mouvement de l’électron, on peut négliger le terme k0z
dans l’expression du champ électrique du laser.

5 — Donner l’expression de l’énergie potentielle d’interactionWp entre le proton et l’électron
en fonction de l’abscisse x. Vérifier qu’elle correspond bien à l’allure donnée sur la figure ii.a

6 — Donner l’expression de la force de Lorentz subie par l’électron et causée par le champ
électromagnétique du laser. Rappeler la relation de structure pour une onde électromagnétique
plane harmonique. On la supposera applicable localement. A quelle condition, supposée vérifiée
par la suite, cette force est-elle conservative ? Déterminer, en fonction de e, Ef , ω0, t et x,
l’énergie potentielleWp,las(x,t) associée à cette force ainsi que l’expression de l’énergie potentielle
totale

Wp,tot(x,t) = Wp(x) +Wp,las(x,t).

Préciser le sens du champ électrique dans la situation de la figure ii.b .

7 — Justifier qu’il y a deux instants privilégiés par cycle optique où l’ionisation, c’est-
à-dire la traversée de la barrière de potentiel, est la plus facile. Déterminer x̃0, la position
correspondant au maximum de Wp,tot selon x. Déterminer l’expression de Ef,i correspondant à
une ionisation en x = x̃0 à l’un des instants privilégiés. Cette ionisation est-elle possible dans
les conditions expérimentales précisées dans le tableau du document i, avec une cible ≪ gaz ≫ ?

On s’intéresse maintenant à la deuxième étape du mécanisme représentée sur la figure ii.c .
L’ionisation a lieu à un instant ti > 0. On considère qu’elle confère une vitesse négligeable
(v(t = ti) ≃ 0) à l’électron et qu’elle s’effectue au niveau du noyau (x(t = ti) ≃ x0 ≃ 0). Pour
t ≥ ti, l’électron n’est soumis qu’au champ électrique du laser E⃗(t) = Ef cos (ω0t) ûx .

8 — Ecrire l’équation du mouvement, puis déterminer, en fonction de e, Ef , m, ω0, t et ti,
l’expression de la vitesse ẋ(t), de la position x(t) pour t ≥ ti. A posteriori, quelle condition doit
être vérifiée pour que x0 soit bien négligeable lors de l’étude du mouvement de l’électron dans
le champ laser.
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On s’intéresse enfin à la troisième étape du mécanisme représentée sur la figure ii.d .

9 — Déterminer l’expression de l’énergie cinétiqueWc de l’électron lors de sa recombinaison
avec le noyau à un instant t > ti. Exprimer sa valeur moyenne sur une période ⟨Wc⟩ en fonction
de e, Ef , m et ω0. On admet que l’énergie cinétique maximale de l’électron est donnée par la
relation Wc,max ≃ 3,2 ⟨Wc⟩ et on donne ⟨Wc⟩ ≃ 60 eV. Lors de cette recombinaison, l’électron
≪ retombant ≫ dans son état fondamental, un photon est émis. On interprète cette émission
comme étant celle d’une impulsion brève dont l’étendue du spectre correspond à la fréquence
maximale possible d’un photon issu de la recombinaison. Estimer un ordre de grandeur de la
durée δT de cette impulsion.

!

"+(0, )!

#0

#0

2
0

"¡(0, )!

Figure 1 – Graphe
du signal s(0,t)

L’émission de ces impulsions lumineuses très brèves a lieu deux fois par
période : une fois après une ionisation du côté des x > 0 et une autre
fois après une ionisation du côté des x < 0.
On modélise le train d’impulsions émis par l’atome par un signal s(x,t) =
s+(x,t)+s−(x,t). Au niveau de l’atome, on considère que s+(0,t) = s0(t)
et s−(0,t) = −s0(t−

T0

2 ) où la fonction s0(t) est périodique de période
T0. Une allure possible de s+(0,t) et s−(0,t) est donnée par la figure 1.
On souhaite déterminer les pulsations présentes dans le spectre associé
au signal s(t).

10 — Justifier le fait qu’il suffit de raisonner sur un signal sinusöıdal : s0(t) = S0 cos (ωt).
Donner les expressions des signaux s+(x,t) et s−(x,t) reçus à une distance x de l’atome. A
quelle condition reliant ω à ω0 =

2π
T0
, le signal s(x,t) est-il d’amplitude maximale ? Préciser les

caractéristiques spectrales du train d’impulsions brèves émises lors de l’interaction d’un laser
avec un plasma peu dense.

II. — Génération d’harmoniques sur un miroir plasma

Cette partie s’appuie principalement sur le document iii.

Dans le cas où la cible est initialement un solide, l’émission d’impulsions brèves se fait par
conversion d’énergie entre les oscillations d’un plasma et une impulsion lumineuse brève.

$

% ElectronsIons

¡
&
2
¡ + &

2
¡0 ' !( )

II.A. — Pulsation propre

Dans un premier temps on souhaite déterminer la pul-
sation propre des oscillations d’un plasma dans un pro-
blème unidimensionnel. Initialement, pour t < 0, le
plasma est neutre, immobile et localisé entre les abscisses x = −L/2 et x = +L/2. Le vide
règne de part et d’autre du plasma. On note n la densité particulaire des électrons, de masse m
et de charge q = −e. On étudie le mouvement d’ensemble des électrons consécutif à une per-
turbation se produisant à l’instant t = 0. On considère que les ions restent fixes et qu’à chaque
instant t > 0 la distribution des électrons reste homogène sur une longueur L. Etudier le mou-
vement du nuage revient alors à étudier celui d’un électron situé au centre de la distribution, à
l’abscisse X(t). L’effet de la perturbation peut donc se résumer à un déplacement impulsionnel
du nuage électronique par rapport aux ions : pour t < 0 on a X(t) = 0 et X(0) = X0 > 0.

11 — Tracer l’allure de la densité volumique de charge ρ(x). Déterminer le champ électrique
qui règne à l’intérieur du plasma, où la densité volumique de charge est nulle. Déterminer
l’équation du mouvement d’un électron du plasma et en déduire que la pulsation propre du

plasma est donnée par la relation ωp =
√

ne2

mε0
.
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II.B. — Propagation dans un plasma homogène

On souhaite étudier la propagation d’une onde électromagnétique plane, de vecteur d’onde k⃗
et de pulsation ω, dans un plasma homogène au sein duquel on néglige l’agitation thermique.
On cherche les champs électrique et magnétique sous la forme E⃗ = ℜe(E⃗) et B⃗ = ℑm(B⃗), avec

E⃗ = E⃗0e
i(ωt−k⃗·r⃗) et B⃗ = B⃗0e

i(ωt−k⃗·r⃗).

12 — Rappeler les équations de Maxwell. Le plasma étant supposé peu dense, localement
neutre et le mouvement des électrons étant supposé non-relativiste, exprimer la conductivité
complexe du milieu puis déterminer l’équation de propagation d’une onde électromagnétique
dans le plasma. Montrer que la relation de dispersion s’écrit ω2 = ω2

p + k2c2. La pulsation ω
étant fixée, en déduire qu’à partir d’une certaine densité particulaire électronique critique nc,
que l’on explicitera, la propagation n’est pas possible dans le plasma. Qu’advient-il alors de
l’onde électromagnétique ?

On s’intéresse maintenant à la propagation, sous incidence normale, de l’onde électromagnétique
dans la zone hétérogène de la surface du plasma. Cette zone de transition entre le vide et
l’intérieur homogène est modélisée par une évolution exponentielle de la densité particulaire
électronique décrite sur la figure iii.b . On considère que la relation de dispersion établie à la
question précédente est encore valable, mais avec ωp = ωp(x).

13 — Déterminer l’abscisse xc correspondant à la réflexion de l’onde électromagnétique.

On reprend la situation de la question précédente à l’exception notable du fait que l’onde élec-
tromagnétique arrive désormais sur la surface avec un angle d’incidence β. On s’intéresse à la
propagation de cette onde dans le plan (xOy). La relation de dispersion précédente est toujours
supposée valable.

14 — Justifier que la composante du vecteur d’onde le long de la surface, c’est-à-dire la
composante ky, se conserve au cours de la propagation. En déduire l’abscisse xr de réflexion
de l’onde électromagnétique en fonction de xc, L et β. Comparer ce résultat avec celui obtenu
sous incidence normale.

II.C. — Excitation d’ondes plasma à la surface.

!

$

Courbes
( , )=cste( $ !g
Paquet

d’électrons

3¡ & 0

Figure 2 – Cas 1D

On modélise dans cette partie la seconde étape du mécanisme décrit
dans le document iii. Dans un premier temps, on raisonne sur une
seule dimension d’espace : x. On suppose qu’un paquet d’électron
traverse la surface vers les x > 0 avec une vitesse v⃗ = vûx constante.
On choisit l’origine des temps lorsque le paquet passe en x = −3L.
Lors de son passage, il excite localement des ondes plasma (voir
figure 2) qui se mettent à osciller comme dans la partie II.A avec
X(x,t) = X0 cosφ(x,t).

15 — Donner l’expression de l’instant t0(x) de passage du pa-
quet d’électron à l’abscisse x. Déterminer, pour t > t0(x), l’expres-
sion de la phase φ(x,t) en un point d’abscisse x. On prendra φ(x,t = t0(x)) = 0 et on exprimera
le résultat en fonction de t, t0(x) et ωp(x) puis en fonction de t, v, L, x et ωmax, où ωmax désigne
la pulsation plasma associée à la densité particulaire maximale nmax.

On définit le vecteur d’onde des oscillations plasma k⃗p = −gradφ(x,t) et on admet que les

oscillations plasma ne peuvent émettre une onde électromagnétique que lorsque k⃗p · ûx = 0.

16 — Montrer que les oscillations plasma peuvent effectivement émettre un rayonnement
mais qu’elles n’auraient pas pu le faire si elles avaient été excitées par un paquet d’électrons se
déplaçant vers les x < 0.
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On reprend l’étude de la question 16 mais en la traitant
à deux dimensions. Pour simplifier, on suppose que le
paquet d’électrons, de vitesse v⃗ = vûx, injecté en M0

sous l’effet du laser vers l’intérieur du plasma, passe par
l’abscisse x = −3L à l’instant même où le front d’onde
du laser arrive en M0 (voir ci-contre).

17 — Déterminer le décalage temporel entre les ar-
rivées du front d’onde laser aux points M0 et M . En
déduire l’expression du temps t0(x,y) du passage du pa-
quet d’électrons en un point (x,y) de la zone hétérogène.
En reprenant la condition d’émission de la question pré-
cédente, avec désormais φ = φ(x,y,t), montrer que les
points d’émission sont localisés sur un droite que l’on ca-

ractérisera. Expliquer pourquoi l’on parle d’≪ Emission Cohérente de Sillage ≫ (ECS). Conclure
cette partie en précisant les propriétés remarquables du spectre de l’ECS.

III. — Interaction d’une impulsion avec une feuille mince

Cette partie s’appuie principalement sur le document iv.

L’impulsion laser est celle décrite dans le document i dans le cas d’une cible solide.
On étudie l’effet de l’expansion du plasma dans le vide sur le spectre du rayonnement émis afin
d’estimer un ordre de grandeur de la température du plasma dans un modèle simplifié.

18 — Justifier que si la température θe du plasma est assez élevée, alors on pourra, en
première approximation, modéliser le plasma comme un gaz parfait. Montrer alors que la
température θe du plasma reste inchangée pendant l’expansion du plasma dans le vide.

19 — Déterminer l’expression de nL,max en fonction en de δ, L et de la densité particulaire
électronique n0,max avant expansion. En déduire l’expression de la pulsation plasma maximale
ωL,max en fonction de δ, L et de la pulsation plasma ω0,max associée à la densité particulaire
n0,max. Pour des éventuelles applications numériques, on prendra par la suite ω0,max ≃ 18,7ω0.

On suppose dans un premier modèle que la température θe des électrons du plasma est indé-
pendante de l’épaisseur δ de la cible choisie.

20 — Estimer dans ce modèle et à partir de la figure iv.b, un ordre de grandeur de la
température électronique θe du plasma.

On suppose dans un second modèle que l’énergie cinétique totale des électrons du plasma ne
dépend pas de l’épaisseur du plasma. On note δ0 l’épaisseur de la feuille la plus épaisse lors de
l’expérience (δ0 = 100 nm) et L0 la longueur caractéristique du gradient de ce plasma d’épaisseur
δ0.

21 — Comment varie alors la température électronique θe du plasma avec l’épaisseur δ ?
Déterminer l’expression de ωL,max en fonction de δ, ω0,max, δ0 et L0. Que penser de ces deux
modèles compte-tenu des spectres expérimentaux de la figure iv.b ?
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Document i : Modélisation du faisceau laser incident

Le faisceau laser est modélisé de la façon suivante :
.(/0 !)

.0(/)

!

#

#0

¡.0(/)

Fig. i.a – Amplitude laser

— L’amplitude du champ laser est constante durant la durée
de l’impulsion T = 50 fs (1 fs = 10−15 s) et elle est nulle
avant et après cette impulsion (Fig i.a). La période des os-
cillations du champ laser est notée T0 et correspond dans
le vide à une longueur d’onde λ0 = 800 nm. L’énergie to-
tale de l’impulsion laser est WT .

— Le faisceau présente une symétrie cylindrique d’axe (Oz).
Dans un plan transverse (z = constante), l’éclairement
I(r,z) est uniforme dans un disque de rayon R(z) et il est
nul au-delà (fig i.b). On rappelle la relation entre l’éclairement I(r,z) (en W · m−2) et
l’amplitude du champ laser E(r,z) : I(r,z) = 1

2ε0cE(r,z)2 où ε0 désigne la permittivité
du vide et c = 3.108 m · s−1 la célérité de la lumière dans le vide. On notera I0(z) et
E0(z) l’éclairement et le champ électrique sur l’axe r = 0.
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— Le faisceau est focalisé, par une lentille de dis-
tance focale f ′ et de diamètre égal à celui du
faisceau laser D, sur une cible (≪ gaz ≫ ou ≪ so-
lide ≫). L’angle α est le demi-angle au sommet
du cône sous lequel est vue la lentille depuis la
cible, placée au foyer O (fig. i.c).

— L’allure du faisceau au voisinage du foyer O est
représentée sur la figure i.d , il est caractérisé

par les relations z0 = πR2
0

λ0
, tanα ≃ λ0

πR0
et

R(z) = R0

√
1 +

(
z
z0

)2

.

Les conditions physiques expérimentales sont
rassemblées ci-contre.

Document ii : Cas où la cible est un ≪ gaz ≫

La cible étant un gaz, on peut, pour comprendre le mécanisme d’émission d’impulsions atto-
secondes, se ramener à l’interaction d’un champ électrique laser avec un atome, par exemple
l’hydrogène. Avant l’arrivée de l’impulsion laser, l’électron de l’atome d’hydrogène est ≪ au
repos ≫ dans son état fondamental caractérisé par une énergie potentielle négative −W0 . On
représente, en mécanique quantique, l’électron par un paquet d’ondes stationnaires. (Fig ii.a)
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Dans le cadre d’un modèle semi-classique qui donne des résultats satisfaisants, on peut décomposer
le mécanisme d’émission d’impulsions en trois étapes :

— Première étape (Fig ii.b) : sous l’influence du champ laser, le puits de potentiel dans
lequel se trouve l’électron de l’atome d’hydrogène est modifié et la hauteur de la barrière
de potentiel s’annule. L’électron s’extrait alors de l’attraction coulombienne due au noyau
atomique. En réalité l’ionisation peut avoir lieu par effet tunnel avant l’annulation de la
barrière de potentiel. Nous n’étudierons pas cette possibilité dans ce problème.

— Deuxième étape (Fig ii.c) : l’électron, libéré de l’attraction du noyau, est accéléré par le
champ laser. Il peut revenir vers le noyau avec une énergie cinétique Wc

— Troisième étape (Fig ii.d) : lors de son retour sur le noyau, l’électron se recombine avec
le noyau et émet un photon d’énergie hν.

Les trois étapes de ce mécanisme se déroulent au cours d’un cycle optique du laser dont la
période est notée T0.

Document iii : Cas où la cible est ≪ solide ≫

$

Cible

Laser incident

Laser réfléchi

impulsions brèves
©

*

*

Fig. iii.a – Miroir

Lorsque la cible est un ≪ solide ≫, le plasma formé dès le début de
l’arrivée de l’impulsion laser est très dense. Comme la cible est totale-
ment ionisée, la densité particulaire en électron ne vaut : ne = Z×ni

où ni est la densité particulaire atomique du solide et Z le nombre
de charge de l’élément.
Le faisceau laser peut s’y réfléchir comme sur un miroir. On parle
alors de ≪ miroir plasma ≫. Les impulsions brèves sont émises, lors
de l’interaction du faisceau laser avec ce ≪ miroir plasma ≫, dans
la direction du faisceau réfléchi. On considère que cette direction

satisfait les lois de Descartes de l’optique géométrique (fig iii.a).
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La surface du ≪ miroir plasma ≫ présente une très
forte hétérogénéité de densité particulaire entre le
vide (à l’extérieur) et une région très dense et ho-
mogène (à l’intérieur). On modélisera cette densité
particulaire en électrons par une fonction exponen-
tielle (fig iii.b).

ne(x) =

⎧
⎨

⎩

0 pour x < −3L
nmaxex/L pour −3L ≤ x < 0
nmax pour x ≥ 0

$
3¡ &

0

Vide Plasma
homogène

¡&

% $:( )

Surface
hétérogène

Fig. iii.b – Transition de ne

La densité particulaire des ions est de la même forme afin que le plasma soit localement neutre
avant arrivée de l’onde électromagnétique. On suppose que nmax, qui correspond à la densité
particulaire électronique lorsque la cible est totalement ionisée est supérieur à nc.

Le mécanisme d’émission que nous allons décrire est appelé Emission Cohérente de Sillage.
Pour être efficace ce mécanisme nécessite que le faisceau laser incident arrive de façon oblique
sur le ≪ miroir plasma ≫. On note β l’angle d’incidence sur la surface plane (x = 0) de la cible
devenue un ≪ miroir plasma ≫.

Figures extraites de la thèse de Cédric Thaury - 2008

» %:

200 %: .ciii .diii .eiii .fiii

Ce mécanisme peut être décrit en trois étapes :
— Première étape : Les électrons, de la surface du miroir plasma, sont arrachés par le champ

électrique du laser (fig iii.c), puis renvoyés par paquet vers le plasma (fig iii.d)
— Deuxième étape : Lors de la traversée de la surface hétérogène du miroir plasma, les

paquets d’électrons excitent des oscillations plasma (à la fréquence plasma locale ωp(x)).
Du fait de l’incidence oblique, la superposition des paquets d’électrons formés à différents
points de la surface résulte en un front de densité oblique qui se propage dans le plasma
(fig iii.e et fig iii.f)

— Troisième étape : Ces oscillations plasma émettent une impulsion lumineuse attoseconde
dans la direction du faisceau réfléchi lorsque le front des oscillations plasma est perpen-
diculaire à la surface du miroir plasma (fig iii.d)

Ce mécanisme se répète à chaque cycle optique du laser (de période T0).
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Document iv : Cas où la cible est une ≪ feuille mince ≫
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Fig. iv.a – Profil

On s’intéresse au cas où l’épaisseur du miroir plasma est na-
nométrique (de 10 nm à 100 nm). Dans ce cas, la totalité de
la cible est vaporisée et ionisée pour former un plasma. L’ex-
pansion de ce plasma dans le vide a pour conséquence une
diminution de la densité particulaire maximale de la cible.
L’allure du profil de densité particulaire électronique avec et
sans expansion est reportée sur la figure iv.a. On note δ l’épais-
seur de la cible, et L la longueur caractéristique de l’hétérogé-
néité de densité aux surfaces. Cette dernière longueur dépend
de la température θe du plasma et de la durée T de l’impulsion
laser incidente. On peut l’estimer par une relation de la forme

L = csT avec cs =
√

ZkBθe
mi

où kB = 1,4.10−23 J ·K−1 désigne la

constante de Boltzmann, mi la masse ionique et Z le nombre
de charge de l’atome. La cible est ici en carbone avec Z = 6 et mi = 2.10−26 kg. On peut estimer
que l’énergie cinétique moyenne d’un électron du plasma est égale à 3

2kBθe.
Nous modéliserons le profil de densité particulaire des électrons nL(x) de la façon suivante :

100

50

28

19

10

12 13 14 15 16 17 18

Epaisseur [nm]

Pulsation
(en          )<0 =

2=

#0

19

Fig. iv.b – Spectres

nL(x) =

⎧
⎨

⎩

nL,maxex/L pour x < 0
nL,max pour 0 < x < δ
nL,maxe−(x−δ)/L pour δ < x

Dans ce modèle l’épaisseur δ de l’intérieur homogène
du plasma ne varie pas pendant l’interaction.
Lorsque l’on fait varier l’épaisseur δ de la cible, on
observe que l’étendue du spectre varie. L’harmo-
nique maximale du spectre augmente avec l’épais-
seur du miroir plasma (fig iv.b).

FIN DE L’ÉPREUVE
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Physique I, année 2019 — filière MP

Physique en arctique
Ce sujet aborde différentes questions relatives aux propriétés physiques particulières aux régions
polaires. Les notations, valeurs des constantes fondamentales et les autres données numériques
nécessaires à la résolution du problème ainsi qu’un formulaire sont regroupés à la fin de l’énoncé.

Les exemples seront tous traités dans le cas des régions polaires nord (également appelées
arctiques ou boréales). Les notations géographiques usuelles sont également rappelées en fin
d’énoncé. Les applications numériques comporteront au plus 2 chiffres significatifs.
Les deux parties sont indépendantes.

I. — Pôles géographiques et magnétiques
Les pôles géographiques sont assez proches des pôles magnétiques ; dans tout ce qui suit,
on pourra confondre les deux axes reliant les pôles opposés de chaque type. La recherche
des pôles magnétiques s’est d’abord appuyée sur la mesure du champ magnétique terrestre
(ou champ géomagnétique), et en particulier de sa direction. L’intensité croissante du champ
géomagnétique à l’approche des pôles contribue enfin à expliquer un phénomène optique spec-
taculaire : les aurores polaires. Les parties I.A et I.B sont indépendantes entre elles.

La partie I.A est consacrée à la description dipolaire du champ géomagnétique (le dipôle disposé
au centre de la Terre et modélisant des courants électriques dans le noyau de la planète).
La partie I.B présente le modèle autodynamo du champ géomagnétique, susceptible de rendre
compte des inversions du champ géomagnétique qui ont eu lieu dans le passé et ont laissé une
trace dans les propriétés magnétiques de certains sédiments sous-marins.

I.A. — Boussole, champ géomagnétique et dipôle central

N S

( )¢
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EW

NE
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NW

Figure 1 – Boussole de navigation

Une boussole est formée d’un
aimant permanent, solide en
forme d’aiguille équivalente à
un petit dipôle magnétique
m⃗ de norme constante m, la
direction du vecteur m⃗ étant
supposée indiquer le nord.
Cette aiguille aimantée peut
librement tourner autour d’un
axe vertical (∆) dirigé par le
vecteur e⃗r local et formant un pivot à faible frottement (cf. fig. 1).

1 — Pourquoi la boussole à l’équilibre indique-t-elle le nord ? Cet équilibre est-il stable ?

On note I le moment d’inertie de l’aiguille aimantée relativement à son axe de rotation (∆) ;
légèrement écartée de sa position d’équilibre (cf. fig. 1), l’aiguille aimantée oscille avec une
pseudo-période τosc.

2 — Montrer que la connaissance de m, τosc et I permet de déterminer une des composantes
du champ géomagnétique. Laquelle ?

On étudie un modèle de champ géomagnétique créé par un dipôle magnétique M⃗ = M0e⃗z disposé
au centre O de la Terre (assimilée à une sphère de rayon RT ), l’axe (Oz) étant l’axe polaire
géographique dirigé du pôle sud de cet axe vers son pôle nord (cf. fig. 7). On rappelle d’une part
qu’un point de la surface est caractérisé par ses coordonnées géographiques ϕ (longitude) et
λ = π

2
−θ (latitude) et d’autre part qu’à l’équateur le champ magnétique terrestre est horizontal,

dirigé vers le pôle nord géographique et y a pour intensité BE.

3 — Exprimer, en un point de la surface de la Terre et en coordonnées sphériques, le champ
géomagnétique en fonction de µ0 (perméabilité du vide), M0 et RT .

Page 1/6 Tournez la page S.V.P.
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4 — Préciser le signe de M0 puis estimer sa valeur numérique. Quelles sont la direction et
l’intensité du champ géomagnétique aux pôles magnétiques nord et sud ?

En un point P de la surface terrestre, on appelle nord magnétique local la direction e⃗N du
champ géomagnétique B⃗, projeté dans le plan horizontal, et déclinaison magnétique l’angle D
formé par B⃗ avec le nord magnétique local ; la déclinaison magnétique est positive si B⃗ est
dirigé vers le haut (vers le ciel) et négative s’il est dirigé vers le bas (vers le sol).

5 — Dans l’hémisphère nord, quel est le signe de D ? Calculer tan(D) en fonction de la
latitude λ puis tracer l’allure de la courbe donnant D en fonction de λ pour toutes les valeurs de
λ du pôle sud au pôle nord. Pourquoi lisait-on parfois que les boussoles ≪ s’affolent à proximité
des pôles ≫ ? Peut-on déterminer, au moyen d’une boussole, si on se trouve dans l’hémisphère
nord ou dans l’hémisphère sud ?

I.B. — Modèle autodynamo et fluctuations du champ

Un modèle possible pour la circulation des courants électriques dans le noyau métallique liquide
de la Terre, couplée à la rotation de la Terre, est le modèle autodynamo (cf. fig. 2). Le système
comporte N spires (circulaires de rayon a, de centre O et d’axe (Oz), qui créent le champ
géomagnétique). Il comporte aussi un disque central de rayon b < a, qui peut tourner autour
de l’axe (Oz) avec la vitesse angulaire ω(t) et le moment d’inertie I (il modélise les interactions
mécaniques avec la rotation de la Terre). Ce disque, conducteur, est parcouru par le même
courant i(t) que les spires ; il est aussi entrâıné par la rotation de la Terre avec un couple
moteur Γ⃗ = Γ0e⃗z. Enfin, la résistance électrique totale du circuit est notée R.

" #( )

$

%
& '

(

)

*

+ #( )

Figure 2 – Le modèle autodynamo pour le champ géomagnétique

On note B⃗(P ) le champ magnétique créé par ce dispositif en un point P du disque tournant,

avec r = OP ; on supposera N ≫ 1. Si i(t) ≠ 0, on note Mrmax
= −

1

i(t)

∫ rmax

0

r e⃗z · B⃗(P ) dr ;

en particulier on pourra utiliser dans ce qui suit les intégrales Ma et Mb pour rmax = a ou b
respectivement.

6 — Quelle est la direction de B⃗(P ) ? Quels sont les signes de Ma et Mb ? Comparer Ma et
Mb. Expliciter l’inductance propre L du circuit électrique de la figure 2 en fonction notamment
d’une de ces intégrales.

7 — On suppose d’abord que le courant i(t) traverse le disque uniquement en ligne droite
du point A de sa périphérie à O. Exprimer la force de Laplace dF⃗L s’exerçant sur un élément de
longueur du segment AO. Exprimer alors le moment ΓL = Γ⃗L · e⃗z des forces de Laplace exercées
sur ce disque en fonction de i(t) et Mb. Même si le courant se répartit de manière arbitraire sur
ce disque de A à O, on peut montrer, et on admettra, que l’expression établie ici du moment
des forces de Laplace reste inchangée.
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8 — En faisant l’hypothèse de la conservation de la puissance lors de la conversion électro-
mécanique, relier la force électro-motrice e(t) induite par les mouvements de rotation du disque
à Mb, i(t) et ω(t).
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Figure 3 – Courbes de valeurs constante définies
par la fonction f(x,y) = 1

2
x2+ 1

2
y2− ln(x)−y = c.

Les valeurs de c sont indiquées sur les courbes.

9 — Établir les équations régissant les
évolutions du courant dans le noyau et de
sa vitesse de rotation sous la forme d’un
système diffèrentiel couplé

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

di

dt
= i(t) [αω(t)− β]

dω

dt
= γ − δi2(t)

On exprimera les constantes positives α, β,
γ, et δ en fonction de R, L, Mb, I et Γ0.

Soit i0 un courant constant arbitraire, on
considère la fonction

H(ω,i) =
1

2
Iω2+

1

2
Li2−

LΓ0

Mb

ln

∣

∣

∣

∣

i

i0

∣

∣

∣

∣

−
IR

Mb

ω

10 — Calculer
dH

dt
et simplifier son expression. Comment peut on interpréter la fonction

H ? Déterminer les points du plan (i,ω) pour lesquels le gradient de H s’annule. Comment
s’interprétent ces points ?

11 — Décrire la stabilité des équilibres du champ géomagnétique associés à la portion du
plan de phase représenté sur la figure 3.

II. — La glace de la banquise
L’existence de couverts de glace de grande épaisseur au-dessus des océans polaires est bien
sûr une caractéristique remarquable des régions polaires. On étudie ici deux propriétés de ces
couverts de glace :

— quelques propriétés mécaniques d’un trâıneau glissant sur sa surface (partie II.A) ;
— un modèle simple de croissance de l’épaisseur de la glace en hiver (partie II.B).

II.A. — Un trâıneau sur la glace

Un trâıneau à chiens est un dispositif de masse totale M (le pilote, ou musher, est compris
dans cette masse) qui peut glisser sur la surface de la glace avec des coefficients de glissement
statique (avant le démarrage) µs et dynamique (en mouvement) µd.

12 — Les chiens sont reliés au trâıneau par des éléments de corde tendus, de masse
négligeable et inextensibles. Montrer qu’un tel élément de corde transmet les tensions et que
celles-ci sont colinéaires à la corde.

13 — Le trajet se fait soit à l’horizontale, soit sur une faible pente ascendante caractérisée
par l’angle α avec l’horizontale. Montrer que, dans ce dernier cas, tout se passe comme dans
un mouvement horizontal sous réserve de remplacer µd par µ′

d, que l’on exprimera.
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L’intensité de la force de traction totale F exercée par l’ensemble des chiens dépend de leur
vitesse v et on adoptera le modèle F = F0 − βv où F0 et β sont des constantes positives. On
prendra les valeurs M = 5,0× 102 kg, α = 0, µd = 5,0× 10−2 et µs = 8,0× 10−2.

14 — Déterminer la valeur minimale de F0 permet-
tant le démarrage du trâıneau.

15 — La vitesse du trâıneau en régime stationnaire
est v0 = 3m ·s−1, atteinte à 5% près au bout d’un temps
t1 = 5 s. Exprimer d’une part β en fonction deM et t1 et
d’autre part F0 en fonction de β, v0, µd,M et g. Calculer
leurs valeurs respectives.

Toujours à vitesse constante v0, le trâıneau aborde une
courbe à plat qu’on assimilera à un cercle de centre O
et de rayon R (cf. fig. 4). Les chiens (modélisés ici en
un seul point C) doivent donc tirer vers l’intérieur du
cercle.

16 — Déterminer en fonction des données la tension
T⃗ de la corde et l’angle θ entre la force de traction et la
trajectoire.

.

/0

0

/

1/ !

%

Figure 4 – Trajectoire circulaire du
trâıneau

II.B. — Croissance hivernale de l’épaisseur de glace

Pour étudier la croissance de la couche de glace en hiver, on modélise l’océan sous la banquise
en formation de la manière suivante (cf. fig. 5) : en profondeur, la température de l’eau est
maintenue constante à T1 = 4◦C par les courants océaniques. Sur une hauteur constante e
sous la banquise, l’eau se refroidit progressivement jusqu’à atteindre T0 = 0◦C à l’altitude
z = 0 de formation de la glace (on néglige tout effet de salinité de l’eau). La couche de glace
a une épaisseur croissante zg(t) qu’il s’agit de déterminer ; au-dessus de celle-ci, l’air est à la
température constante T2 = −40◦C. On notera λe et λg les conductivités thermiques et ce et cg
les capacités thermiques massiques de l’eau liquide et de la glace, ρg et lf la masse volumique
et l’enthalpie massique de fusion de la glace ; toutes ces grandeurs sont des constantes.
L’épaisseur de glace zg(t) augmente régulièrement du fait de la cristallisation de l’eau refroidie
à T0 = 0◦C à la base de la couche de glace. Toutes les études pourront être faites pour un
système défini par un cylindre vertical de surface S unité (cf. fig. 5) au sein duquel les transferts
thermiques unidimensionnels sont régis par la loi de Fourier.

17 — Par une étude des échanges thermiques de l’épaisseur δz prise à l’intérieur de la
glace, établir une équation aux dérivées partielles vérifiée par la température Tg(z,t) au sein de
la glace.

18 — Déterminer une expression donnant l’ordre de grandeur de la durée ∆t de la diffusion
thermique au sein de la glace sur une hauteur ∆z. Quelle durée doit-on attendre afin de pouvoir
considérer que, pour des évolutions assez lentes, la température Tg ne dépend pratiquement plus
du temps ? Préciser ce que l’on entend par ≪ assez lentes ≫.

On se place dans ce cas dans toute la suite : dans l’eau comme dans la glace, les répartitions
de température seront supposées quasi–statiques.

19 — Définir et exprimer les résistances thermiques Rg et Re, pour une aire donnée S, des
couches de glace et d’eau refroidie sous la glace.
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Eau refroidie par la glace

Eau « chaude » à " 1
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Figure 5 – L’océan sous la banquise en formation

Les transferts thermiques à travers la surface supérieure de la banquise sont décrits par la loi
de Newton des transferts pariétaux (radiatifs et convecto–conductifs) : la puissance échangée
par unité d’aire de cette surface vérifie |Pu| = h|Ts − T2| où Ts est la température au sommet
de la couche de glace ; le coefficient h > 0 de la loi de Newton est supposé connu et constant.

20 — Exprimer la résistance thermique Ri, pour une aire S, de l’interface entre l’air et la
glace.

21 — Montrer que le régime quasi–permanent de croissance de la couche de glace peut être
décrit par le schéma électrique équivalent de la figure 6 et préciser l’expression du ≪ courant ≫ Φ
du ≪ générateur de courant ≫ en fonction notamment de lf , ρg et de la vitesse de croissance
vg =

dzg
dt

de la couche de glace.

D

'e

0
0

'g 'i

©

"0 = 0ºC

"2 = K40ºC"1 = 4ºC

Figure 6 – Circuit électrique équivalent à la croissance de la couche de glace. Le dipole D
représenté sur cette figure permet d’assurer une différence de potentiel nulle sans appel de
courant dans cette branche du circuit.

22 — Établir l’équation différentielle vérifiée par zg(t). On suppose que pour toutes les
valeurs de t considérées on a e

λe
≫ zg

λg
+ 1

h
, en déduire la loi d’évolution de l’épaisseur de la

couche de glace sous la forme τg
[

ℓgzg(t) + z2g(t)
]

= ℓ2gt où l’exprimera les grandeurs τg et ℓg en
fonction des paramètres du modèle. L’instant t = 0 correspond au début de la formation de la
banquise.

23 — Tracer et commenter l’allure de la courbe donnant zg en fonction de t. On montrera
notamment l’existence de deux régimes successifs.
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Données et formulaire utiles pour l’ensemble du sujet

Données numériques et constantes fondamentales

Champ magnétique terrestre à l’équateur BE = 3,0× 10−5 T
Charge élémentaire e = 1,6× 10−19 C
Durée du jour solaire moyen T0 = 24 h = 8,6× 104 s
Intensité du champ de pesanteur g0 = 9,8m× s−2

Perméabilité magnétique du vide µ0 = 4 π × 10−7 H ·m−1

Rayon terrestre RT = 6,4× 103 km
Logarithme népérien du nombre 20 ln(20) ≃ 3,0

Coordonnées sphériques et géographiques

On notera (Oxyz) les axes cartésiens associés à la base orthonormée et directe (e⃗x, e⃗y, e⃗z). Les
coordonnées sphériques d’un point P sont notées (r, θ,ϕ) avec la base locale associée (e⃗r, e⃗θ, e⃗ϕ),
cf. fig. 7 à gauche. On note aussi ϕ (longitude) et λ la latitude d’un point P de la surface
terrestre ; le point A est situé sur l’équateur dans le méridien origine (ϕ = 0) ; celui-ci passe par
l’observatoire de Greenwich G, cf. fig. 7 à droite.
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Figure 7 – Coordonnées sphériques et géographiques

Données et formules relatives aux dipôles magnétiques

Le champ magnétique créé par un dipôle de moment dipolaire M⃗ placé à l’origine O des
coordonnées est donné au point P par :

B⃗(P ) =
µ0

4π

3R⃗
(

M⃗ · R⃗
)

−R2 M⃗

R5
où R⃗ =

−→
OP et R = ∥R⃗∥

Les interactions d’un dipôle magnétique rigide de moment dipolaire m⃗ soumis à un champ
magnétique extérieur B⃗ sont décrites par l’énergie potentielle Ep = −m⃗ · B⃗ et par le couple des
actions électromagnétiques Γ⃗ = m⃗ ∧ B⃗.

FIN DE L’ÉPREUVE
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Au temps des Mayas

Les phénomènes naturels terrestres ou célestes ont nourri, au fil des âges, les cultures des civilisations
anciennes et contribué à forger leur vision du monde. Les exemples astronomiques sont nombreux. Il
n’est pas rare de trouver, par exemple, des bâtiments orientés selon les directions astronomiques des
levers et couchers du Soleil ou de Vénus, astres qui furent souvent associés à des divinités importantes.
Dans ce problème, on se propose d’étudier quelques phénomènes physiques auxquels les Mayas, civi-
lisation précolombienne d’Amérique centrale, ont été confrontés ou pour lesquels ils ont manifesté de
l’intérêt :

i) La couleur de la Lune totalement éclipsée,
ii) L’écho de la grande pyramide de Chichén Itzá.

Notations et valeurs numériques :

• Notations : les notations adoptées sont les notations internationales (norme ISO 80000-2).
• Vecteurs : conformément aux notations internationales, les vecteurs sont représentés en caractères
gras. Par exemple, le champ vectoriel de pesanteur terrestre, supposé uniforme, est noté g. Les vecteurs
de base, unitaires, sont désignés par un e.
• Valeurs numériques : lorsqu’une valeur numérique non nulle est demandée, l’écart relatif de la réponse
par rapport à la valeur exacte ne doit pas excéder 20%.
• Données astronomiques : les données numériques astronomiques sont regroupées à la fin de l’énoncé.
Les deux parties du problème sont indépendantes.

I. — Couleur de la Lune totalement éclipsée

Lorsqu’une éclipse de Lune se produit, cet astre, majeur pour les Mayas, change d’aspect durant
plusieurs heures. Dans une société où le mécanisme précis d’une éclipse est méconnu, l’interprétation
et la signification du phénomène se réfère souvent, sinon toujours, à une origine mythologique ou
religieuse. C’est en particulier le cas de la couleur évocatrice prise par la Lune lorsqu’elle se trouve
totalement immergée dans l’ombre de la Terre, couleur dont l’analyse fait l’objet de cette dernière
partie.

!

Terre

"

Lune

Ombre

Pénombre

Pénombre

1 Eclipse totale

Eclipse partielle

234

Ombre

Pénombre

"

14

1 : Premier contact extérieur

2 : Premier contact intérieur

3 : Dernier contact intérieur

4 : Dernier contact extérieur

a

b

#!

$

#%

%

Soleil

&

Figure 1 – Chronologie d’une éclipse de Lune : a) Phénomène général ; b) Vision depuis la Terre de
l’évolution dans une section droite du cône d’ombre terrestre au niveau de l’orbite lunaire. Les disques
blancs contenant un chi↵re représentent le disque lunaire dans l’étape repérée par ce chi↵re

Page 1/9 Tournez la page S.V.P.



Physique I, année 2020 — filière MP

Une éclipse se produit lorsque la Lune entre dans le cône d’ombre de la Terre (Fig. 1a). On note N le
point situé sur l’axe ST de symétrie de révolution du cône d’ombre terrestre (S centre du Soleil et T
centre de la Terre) à la distance rL = TL de T (L centre de la Lune) à l’opposé du Soleil (Fig. 1a) .
Dans un plan frontal Pe orthogonal à ST , et placé en N , l’éclipse suit la chronologie indiquée sur la
figure 1b. On note respectivement RS , RT et RL les rayons solaire, terrestre et lunaire.
Des considérations de géométrie élémentaire montrent que dans le plan Pe, la Lune tient plus de deux
fois dans le cône d’ombre de la Terre. Pourtant, durant la totalité (entre le premier contact intérieur
et le dernier contact intérieur), c’est-à-dire lorsque la Lune est entièrement plongée dans l’ombre de
la Terre, elle est nettement visible dans le ciel !

Eclipse de Lune du 28 septembre 2015

Direction
du zénith

Figure 2 – Éclipse de Lune

I.A. — Sources de lumière éclairant la Lune

La photographie reproduite sur la figure 2 a été prise, depuis
Toulouse, lors de l’éclipse totale de Lune du 28 septembre 2015.
La direction du zénith (sens de la verticale ascendante) est
indiquée sur la figure.

1 — Situer la photographie de la figure 2 dans la chrono-
logie de la figure 1b.

On suppose désormais que la Lune est totalement immergée
dans l’ombre de la Terre (éclipse totale) et que son centre L
occupe le point N de son orbite.

Imaginons, pour commencer l’analyse, que la Terre soit dépourvue d’atmosphère.

2 — Proposer un ordre de grandeur de l’angle ✓d caractéristique de la di↵raction de la lumière
solaire par la Terre, en admettant que cet angle est identique au phénomène de di↵raction produit
par une ouverture de même taille caractéristique que le diamètre de la Terre, éclairé par une onde
plane de direction ST . En déduire la taille caractéristique ad de la figure de di↵raction dans le plan
d’observation Pe. La di↵raction peut-elle éclairer le disque lunaire durant la phase de totalité ? Citer,
dans le contexte de l’hypothèse envisagée, d’autres sources possibles d’éclairage du disque lunaire.

On tiendra désormais compte de la présence de l’atmosphère terrestre, toutes les autres sources de
lumière envisageables étant insu�santes pour expliquer l’éclairement de la Lune durant la phase de
totalité.

I.B. — Modèle d’atmosphère isotherme

Sol Terrestre

!

g

e"

#
"

Figure 3 – Un point dans l’at-
mosphère terrestre.

On suppose que l’atmosphère terrestre est en équilibre méca-
nique à une température T ⇡ 20�C uniforme et stationnaire.
On cherche le profil altimétrique de masse volumique : c’est-
à-dire l’expression de la masse volumique ⇢a en fonction de
l’altitude Z mesurée depuis un point G de la surface terrestre
(Fig. 3). Le vecteur unitaire eZ sera dirigé dans le sens de la
verticale ascendante, et on note g ⇡ 9,80m · s�2, l’intensité
du champ de pesanteur terrestre. L’air est assimilé à un gaz
parfait de masse molaire Ma ⇡ 29 g · mol�1. On note R ⇡
8,31 J ·mol�1 ·K�1 la constante des gaz parfaits.

3 — Déterminer le profil altimétrique de masse volumique
⇢a(Z) en fonction de ⇢a(0) et d’une hauteur caractéristique Hc que l’on exprimera et dont on calculera
la valeur numérique.

4 — Évaluer numériquement la masse volumique de l’air au niveau de la mer (pression d’environ
1 bar) puis en déduire celle de l’air au sommet du mont Everest (8 848m d’altitude) : on indique que
exp(�1) ⇡ 1/3. Les valeurs moyennes annuelles de pression et de température au sommet de l’Everest
sont respectivement 321 hPa et �23 �C. Le modèle isotherme est-il réaliste ?
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I.C. — Onde électromagnétique incidente

Une onde électromagnétique plane, progressive et monochromatique, se propage dans le vide illimité
le long et dans le sens d’un axe (O,ex), l’espace étant rapporté à un repère orthonormé (O,ex, ey, ez)
dans lequel on note x, y et z les coordonnées spatiales d’un point de l’espace et t, le temps.

Le champ électrique de l’onde est polarisé rectilignement selon ey. On note µ0 ⇡ 10�6H · m�1 la
perméabilité magnétique du vide, c la constante d’Einstein (célérité dans le vide des ondes électro-
magnétiques), Em > 0 l’amplitude du champ électrique, Bm > 0 celle du champ magnétique, ! la
pulsation de l’onde, E(x, t) la composante du champ électrique et B(x, t), celle du champ magnétique.
La phase du champ électrique, à l’origine spatio-temporelle, est nulle.

5 — Donner les expressions réelles des champs de vecteur électrique E et magnétique B puis
exprimer Bm en fonction notamment de Em. Représenter sur un même graphique, à une date t donnée,
l’évolution spatiale du champ électrique ainsi que celle du champ magnétique.

6 — Exprimer le vecteur de Poynting R(x, t) en fonction notamment de Em. Calculer l’ordre de
grandeur de Em pour une onde électromagnétique véhiculant une intensité I0 = 1kW ·m�2.

I.D. — Transfert du rayonnement solaire à travers l’atmosphère terrestre

L’onde électromagnétique précédente se propage désormais dans l’atmosphère terrestre et rencontre
sur son trajet, des molécules du gaz atmosphérique, mais aussi, dans la stratosphère (entre 15 et 20 km
d’altitude), de fines poussières en suspension (aérosols).
Le gaz atmosphérique a pour e↵et de di↵user sélectivement l’onde incidente (dépendance fréquentielle),
réduisant ainsi la puissance transportée par l’onde. On modélise la di↵usion atmosphérique en suppo-
sant que chaque molécule rencontrée di↵use, en moyenne temporelle, la puissance Pa donnée par :

Pa = ka

✓
!

!0

◆4

I

où ka et !0 sont des constantes qui caractérisent la composition chimique du gaz atmosphérique et I
l’intensité de l’onde électromagnétique. On note ⌘a(x) le nombre de molécules par unité de volume du
gaz atmosphérique, x désignant toujours l’abscisse mesurée le long de la direction de propagation.
Les poussières ont pour e↵et d’absorber non sélectivement (indépendance fréquentielle) l’onde inci-
dente, réduisant aussi la puissance transportée. On modélise l’e↵et des poussières sur le rayonnement en
supposant que chaque poussière rencontrée absorbe, en moyenne temporelle, la puissance Pp donnée
par :

Pp = kpI

où kp est une constante qui caractérise la composition chimique des poussières. On note ⌘p(x) le
nombre de poussières par unité de volume.

7 — Exprimer ⌘a(x) en fonction notamment de la masse volumique du gaz atmosphérique ⇢a(x)
au point d’abscisse x.

8 — E↵ectuer un bilan unidimensionnel de puissance électromagnétique moyenne pour une tranche
d’air limitée par les plans d’abscisse x et x+ dx ; en déduire la relation liant l’intensité I(x+ dx) de
l’onde en x+dx en fonction notamment de l’intensité I(x) en x : il faudra prendre en compte les deux
phénomènes, de di↵usion et d’absorption.

9 — Montrer qu’il est possible d’écrire I(x) sous la forme suivante :

I(x) = I(0) exp [�do(x)]

où do(x) est un facteur, appelé ⌧ densité optique �, que l’on exprimera en fonction des quantités
intégrales : Z x

0
⌘a(⇠)d⇠ et

Z x

0
⌘p(⇠)d⇠
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Figure 4 – Déviation d’un rayon lumineux par l’atmosphère terrestre.

I.E. — Réfraction atmosphérique

Lorsqu’un rayon lumineux solaire traverse l’atmosphère terrestre, il subit une réfraction (Fig. 4).
On note M un point quelconque sur la trajectoire du rayon, et Z, son altitude. On note M0 le point
de la trajectoire le plus proche du sol, et Z0 son altitude. On pose :

r = TM = RT + Z et r0 = TM0 = RT + Z0

Pour une longueur d’onde donnée, l’indice de l’air n(Z) dépend de l’altitude, selon la loi de variation
suivante :

n(Z) = 1 + "�
⇢a(Z)

⇢a(0)
où "� = a+

✓
�r

�

◆2

, a = 2,8⇥ 10�4 et �r = 0,42 nm, on note n0 = n(Z0).

L’angle ✓d, de déviation totale du rayon après traversée de l’atmosphère (Fig. 4), est donné par :

✓d(Z0,�) ⇡ 2

Z n0

1

(
r(n)

r0(n0)

�2
� 1

)�1/2

dn

10 — Pourquoi l’atmosphère terrestre réfracte-t-elle les rayons lumineux qui la traversent ?

11 — En tenant compte des ordres de grandeur du problème, précisément Z ⌧ RT et Z0 ⌧ RT ,

exprimer

s
r2

r20
� 1 en fonction de u = Z � Z0. Exprimer dn en fonction de d⇢a puis d⇢a en fonction

de Hc, ⇢a(Z0), u et du.

On donne la valeur de l’intégrale suivante, qui se ramène aisément à l’intégrale de Gauss :
Z 1

0

e�v

p
v
dv =

p
⇡

12 — Déduire des expressions obtenues à la question précédente que l’angle de déviation totale,

d’un rayon monochromatique passant en M0, s’écrit :

✓d(Z0,�) ⇡ ⇥(Z0)"�

où ⇥(Z0) est une fonction de Z0 que l’on exprimera en fonction de RT et Hc et Z0. Pour quelle valeur
particulière de Z0, notée Zm, la déviation d’un rayon lumineux est-elle maximale ?

13 — Exprimer l’écart de déviation �✓d correspondant à deux rayons incidents passant au même
point M0 (et donc caractérisés par le même Z0) mais possédant des longueurs d’ondes qui di↵èrent de
��.
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La minute d’arc (10), soit le soixantième de degré, vaut environ : 10 ⇡ 3⇥ 10�4 rad.
En adoptant la valeur numérique réaliste Hc ⇡ 7,3 km du profil atmosphérique de masse volumique,
et pour la longueur d’onde �m = 504 nm du maximum d’émission spectrale solaire : ✓d(Zm,�m) ⇡ 700.
Avec les valeurs �� ⇡ 350 nm, Z0 = Zm et � = �m, sur l’étendue du domaine visible, l’application
numérique donne |�✓d| ⇡ 0,250. La dépendance chromatique de la déviation étant négligeable devant
l’angle de déviation, on supposera que les rayons sont identiquement déviés, indépendamment de leur
longueur d’onde, avec un angle pouvant varier entre 00 et ✓d,M = 700.

14 — L’angle sous lequel le rayon terrestre est vu depuis N est d’environ ✓T ⇡ 570 tandis que
celui sous lequel le rayon solaire est vu depuis la Terre vaut environ ✓S ⇡ 160. L’atmosphère terrestre
est-elle capable de dévier la lumière solaire pour éclairer le point N ? On justifiera quantitativement
la réponse en s’appuyant sur un schéma.

I.F. — Prévision du spectre de la lumière reçue par la Lune

Le spectre de la lumière solaire hors de l’atmosphère terrestre est donné sur la partie gauche de
la figure 5 (spectre de référence E-490-00). Le calcul numérique basé sur le modèle qui vient d’être
développé permet de tracer, sur la partie droite de la figure 5, l’atténuation exp(�do) en N en fonction
de la longueur d’onde � de l’onde incidente.

!! [W ¢ m¡2
¢ nm¡1]

" [nm]
1,0

1,5

2,0

2,5

400 500 600 700

exp (¡!0)

1

" [nm]400 500 600 700
0,00

0,05

0,100,10

0,15

0,20

Figure 5 – A gauche : Spectre solaire hors de l’atmosphère terrestre. À droite : facteur d’atténuation
spectrale exp(�do)

15 — À l’aide des deux schémas de la figure 5, déterminer quelques points du spectre de la lumière
reçue par la Lune en N permettant de représenter la courbe correspondante sur la feuille réponse.
Conclure sur la couleur de la Lune totalement occultée.

FIN DE LA PARTIE I

II. — Écho de la grande pyramide de Chichén Itzá

Sur le site archéologique de Chichén Itzá, situé dans le Yucatán à 200 km à l’ouest de Cancún, se
trouve le temple Maya Cuculcán, en forme de pyramide à base carrée (Fig. 6). Sur chaque face de
la pyramide, se trouve un grand escalier central comportant 91 marches qui culmine à H = 24m
au-dessus du sol (Fig. 7).
Ce monument, érigé autour du Xe siècle de notre ère, est classé au patrimoine mondial de l’UNESCO.
Une de ses particularités a fait l’objet d’études archéoacoustiques : un clap produit en frappant dans
ses mains face à l’escalier retourne un écho qui imite, de manière stupéfiante, le chant de l’oiseau sacré
endémique quetzal (pharomachrus mocinno).
La question se pose alors de savoir si ce monument a été érigé en respectant les contraintes acoustiques
de reproduction du gazouillement de l’oiseau, ou bien s’il s’agit d’une simple cöıncidence.
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Figure 6 – Vue d’une arête de la grande pyramide Maya de Chichén Itzá (Cuculcán).

Figure 7 – Vue d’une face de la grande pyramide Maya de Chichén Itzá (Cuculcán). Au centre de la
photographie, se trouve le grand escalier.

Si la question reste ouverte, l’analyse physique apporte à l’archéologie quelques éléments notamment
en permettant de comprendre l’origine de ce phénomène. Cette partie s’appuie sur les fondamentaux
des phénomènes ondulatoires. Aucune connaissance spécifique d’acoustique n’est requise.

Spectre d’amplitude [dB]

50 10 ! [kHz]

K100

K50

0
Pic 1

Pic 2

Figure 8 – Spectre d’amplitude d’un son si✏é tenu.

II.A. — Sonogramme

On enregistre, à l’aide d’un microphone, le
son d’une note de musique tenue produite
en si✏ant avec la bouche.

On note sa(t) le signal obtenu. Le spectre
d’amplitude du signal en sortie du micro-
phone est donné sur la figure 8, l’échelle
verticale étant graduée en décibels. L’am-
plitude du pic 1 vaut a1 = 100mV.

16 — Déterminer la fréquence f1 du fon-
damental (pic 1) de cette note ainsi que l’am-
plitude a2 du pic 2. On donne 100,5 ⇡ 3,16.

Les pics 1 et 2 sont assimilés à des composantes harmoniques et on néglige tout autre contenu spectral.
On note Ta la durée totale de l’enregistrement et fe la fréquence d’échantillonnage. La méthode
d’analyse spectrale employée génère un spectre dont la résolution spectrale, notée �f , est l’inverse de
la durée d’acquisition du signal.
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17 — Calculer numériquement la plus petite valeur de fe respectant la condition de Nyquist-
Shannon, et la durée d’acquisition Ta donnant une résolution spectrale de 100Hz.

Un sonogramme est une représentation graphique permettant de visualiser l’évolution des composantes
harmoniques d’un son au cours du temps. Dans sa version simplifiée, c’est un diagramme à deux
dimensions ayant en abscisse le temps et en ordonnée les fréquences. À un instant t donné, une
composante harmonique de fréquence f est représentée par un point de coordonnées (t, f).
Le sonogramme simplifié de sa(t) est représenté sur la figure 9a. Dans un sonogramme complet, on
ajoute l’information sur l’amplitude des composantes harmoniques en grisant les points du diagramme
à l’aide d’une échelle allant du blanc pour les faibles amplitudes (< �50 dB), au noir pour les fortes
(> 0 dB). Le sonogramme complet de sa(t) est donné sur la figure 9b.
Pour construire un sonogramme, on calcule les spectres successifs du signal entre les dates nTa et
(n+ 1)Ta, n étant un entier positif ou nul et Ta, la durée des intervalles temporels d’acquisition.

a! [kHz]

1

2

3

" [ms]

1000
0

200 300 400 500

b! [kHz]

1

2

3

" [ms]

1000
0

200 300 400 500

Figure 9 – Sonogramme d’un son si✏é tenu a) simplifié b) complet.

18 — On note ⌧ la durée totale de l’enregistrement sonore. La résolution spectrale �f du sono-
gramme dépend-elle de Ta ou de ⌧ ? Combien de pixels (rectangles élémentaires composant le sono-
gramme) comporte un sonogramme de fréquence maximale fM et de durée ⌧ ? E↵ectuer l’application
numérique lorsque fM = 3,5 kHz et ⌧ = 500ms.

On produit un nouveau son si✏é, sb(t), mais cette fois, de hauteur décroissante (donc vers les sons
graves). Ce son possède encore deux composantes harmoniques, mais la fréquence f 0

1 du fondamental
décrôıt au cours du temps de manière a�ne : f 0

1(t) = f1 ⇥ (1 � t/⌧d), ⌧d > 0 étant une constante
temporelle.

19 — Quelle condition doit vérifier ⌧d afin que l’on puisse suivre l’évolution temporelle de la
fréquence du fondamental sur le sonogramme ? Construire le sonogramme simplifié de sb(t) dans
l’intervalle temporel [0; 0,5 ⌧d]. On prendra soin de mentionner sur le graphique toutes les informations
connues.

Figure 10 – Sonogramme du quetzal

Le chant d’un oiseau est plus riche en harmoniques que le
si✏ement précédent.

Le sonogramme d’un quetzal jeune est représenté sur la fi-
gure 10 extraite de Lubman, D., J. Acoust. Soc. Am. 112 (5),
2008.

20 — Déterminer la durée approximative ⌧q du chant du
quetzal puis mesurer, à la date t = 140ms, la fréquence fq, 1
du fondamental du chant ainsi que celles fq, i (i entier) des
autres harmoniques visibles sur le sonogramme.

Page 7/9 Tournez la page S.V.P.



Physique I, année 2020 — filière MP

II.B. — Di↵raction du son par une marche de l’escalier
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Figure 11 – Les marches de la pyramide

Lorsque l’on frappe dans ses mains en face de l’escalier,
depuis une position S que l’on supposera voisine du
sol (Fig. 11), le clap produit se propage dans l’air en
direction des marches. Ces dernières sont modélisées
par des obstacles de petite dimension, qu’on localise
arbitrairement en Sn (les arêtes des marches), n allant
de 0 à N = 91. On note a = 20m la distance entre S
et le bas S0 des marches de la pyramide. La hauteur
b = 26,3 cm des marches est égale à leur profondeur de
sorte que les arêtes Sn soient contenues dans un plan
formant un angle de 45� par rapport au plan horizontal.
L’hypothèse testée est que l’écho entendu par l’auteur du clap, ressemblant à s’y méprendre au chant
du quetzal, résulte de la di↵raction du son sur les marches de l’escalier.

Le clap émis en S, à un instant pris comme origine temporelle, est un signal bref, noté s(t) au point
d’émission S. La distance entre S et l’arête de la n�ième marche est appelée dn = SSn. Pour modéliser
la propagation du son, on note  (M,t) la fonction qui décrit l’onde sonore en un point M de l’espace
à l’instant t : par exemple ici  (S, t) = s(t). On note cs ⇡ 340m · s�1 la célérité du son dans l’air. On
assimilera la propagation de l’onde le long de l’axe SSn à une propagation unidimensionnelle linéaire
non dispersive ; ainsi, on ignore toute variation d’amplitude au cours de la propagation. Lorsque
l’onde atteint une arête Sn, elle est ⌧ renvoyée � dans toutes les directions (par di↵raction), et en
particulier, dans la direction SnS. On suppose qu’après di↵raction, la fonction décrivant l’onde retour,
notée  0(M, t), dont la propagation est encore supposée unidimensionnelle (modélisation identique
à celle de l’onde incidente), s’écrit en Sn :  0(Sn, t) =  (Sn, t) où  est un facteur (nombre sans
dimension) indépendant de n.

21 — Exprimer  (Sn, t) puis  0(S, t) en fonction notamment de la fonction s.

Le spectre du clap s(t) dans le domaine audible est continu : toutes les fréquences y sont présentes.
On supposera par ailleurs qu’elles ont toutes la même amplitude. On considère une composante har-
monique s!(t) du clap, de pulsation !, dont on suppose la phase �(t) nulle à l’origine temporelle soit
s!(t) = sm cos[�(t)]. On prendra �(t) = !t et on considère que sm ne varie pas dans le temps.

22 — Exprimer la phase �0
n(t) à l’instant t de la composante harmonique de pulsation ! de l’onde

retour en S di↵ractée en Sn, en fonction notamment de dn.

II.C. — Superposition constructive en S

Le clap étant bref, on suppose seules deux marches consécutives di↵ractent le son incident. On note
la di↵érence de phase en S entre les deux ondes retour di↵ractées ��0

n = �0
n(t)� �0

n+1(t).

23 — Exprimer ��0
n en fonction notamment des distances dn et dn+1.

On fait l’hypothèse que les seules fréquences audibles sont celles pour lesquelles les ondes di↵ractées
se superposent constructivement.

24 — Déduire de cette hypothèse l’ensemble des fréquences {⌫m, m 2 N} entendues lors du retour
du son di↵racté par les marches Sn et Sn+1, en fonction notamment des distances dn et dn+1.

25 — Exprimer dn en fonction de a, b et n. Calculer l’expression exacte de d2n+1 � d2n. On admet
que la condition de l’expérience a � b permet d’écrire dn + dn+1 ' 2dn : en déduire l’expression

approchée suivante ⌫1 '
cs
2ab

g(n)dn où g(n) est une fonction que l’on explicitera.
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Figure 12 – g(n)dn en fonction de dn

La figure 12 donne la représentation graphique de g(n)dn
en fonction de dn pour les 91 valeurs de n. Elle permet
d’éviter des calculs fastidieux à la main...

26 — En exploitant la figure 12 déterminer la dis-
tance dN entre le sommet de l’escalier et S. On fixe
l’origine temporelle à l’instant du clap. Calculer numé-
riquement la date t1 d’arrivée du début de l’écho en S,
puis celle tN de fin de l’écho. Combien de temps l’écho
dure-t-il ?

27 — Calculer numériquement les fréquences ⌫1(t1)
et ⌫1(tN ).

28 — Sur la feuille réponse, tracer l’allure du sono-
gramme simplifié de l’écho comportant le fondamental
du son ainsi que les trois harmoniques qui le suivent.
On marquera d’une croix bien visible les points du sonogramme d’abscisses t1 et tN .

29 — Comparer le sonogramme construit à la question précédente, au sonogramme du quetzal
(Fig. 10). L’écart fréquentiel est-il négligeable ? L’écart se réduirait-il si l’enregistrement du quetzal
était celui d’un oiseau adulte ?

FIN DE LA PARTIE II

Données astronomiques

Constante d’Einstein : c ⇡ 3⇥ 108m · s�1

Distance Terre-Lune (centre à centre) : rL = TL ⇡ 3,84⇥ 108m

Rayon du Soleil : RS ⇡ 6,96⇥ 108m

Rayon de la Terre : RT ⇡ 6,37⇥ 106m

Rayon de la Lune : RL ⇡ 1,74⇥ 106m

FIN DE L’ÉPREUVE
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et l’hypothèse atomique

Les études théoriques sur le mouvement brownien, proposées par Albert Einstein en 1905 et

complétées par celles de Paul Langevin en 1908, ont été spectaculairement confirmées par une

série d’une dizaine d’expériences réalisées entre 1907 et 1909 par Jean Perrin dont nous fêtons le

150
e
anniversaire de naissance. Ces études sont les piliers de l’acceptation de l’existence des atomes

par la communauté scientifique. Elles ont clos la ⌧ controverse atomiste � ouverte par les Grecs 6

siècles avant notre ère !

Après avoir pris connaissance des résultats de Perrin, en 1908, l’un des derniers farouches anti-

atomistes, Wilhelm Ostwald, déclare ⌧ Je suis désormais convaincu que nous sommes entrés en

possession de preuves expérimentales du caractère discret ou granulaire de la nature, que l’hypothèse

atomique avait cherchées en vain depuis des millénaires �.

Les expériences de Perrin et le modèle de Langevin reposent entièrement sur les modèles micro-

scopiques de Ludwig Boltzmann, fondateur dans la seconde moitié du xix
e
siècle de la physique

statistique. Les travaux expérimentaux de Perrin lui permirent notamment de mesurer la constante

de Boltzmann kB. En 1906, donc peu de temps avant la publication de ces travaux, Boltzmann se

suicida, las des critiques et des attaques des disciples d’Ostwald...

En 1926, Perrin obtint le prix Nobel pour ses expériences !

Dans ce sujet, nous proposons de revenir sur

quelques points de ce moment fameux de l’his-

toire de la physique en étudiant quelques as-

pects de la théorie de Langevin et de cer-

taines des expériences réalisées par Perrin.

Sur la photo ci-contre, prise lors du Congrès

Solvay de 1911, on retrouve les trois acteurs

de cette histoire, entourés de prestigieux collè-

gues. Pour réaliser ses expériences, Jean Per-

rin utilise des grains de gomme-gutte. Ecou-

tons le décrire son procédé d’obtention de ses grains : ⌧ La gomme-gutte, qu’on utilise pour l’aquarelle,

provient de la dessiccation du latex. Un morceau de cette substance, frotté avec la main sous un mince

filet d’eau distillée se dissout peu à peu en donnant une belle émulsion opaque d’un jaune vif, où le mi-

croscope révèle un fourmillement de grains jaunes de diverses tailles parfaitement sphériques. On peut

calibrer ces grains jaunes et les séparer du liquide où ils baignent par une centrifugation énergique. �

Dans tout ce problème, ces grains seront donc supposés identiques, de forme sphérique, de rayon

Rb = 0,2 µm, de volume Vb = 3,4⇥ 10
�20

m
3
et de masse volumique µb = 1,2⇥ 10

3
kg ·m�3

. On note

mb = 4,1⇥ 10
�17

kg la masse d’un grain. Dans ses expériences, Jean Perrin fabrique une émulsion

en introduisant ces grains dans de l’eau légèrement sucrée. Ce liquide possède une masse volumique

assimilable à celle de l’eau pure µe = 1,0⇥ 10
3
kg ·m�3

. Le peu de sucre dissous dans l’eau lui confère

tout de même un caractère visqueux. De ce fait, l’eau exerce sur les grains en mouvement lent deux

forces :

— la résultante des forces de pression, peu modifiée par rapport à une situation d’équilibre, est

donnée par la loi d’Archimède : cette force ~⇧ = �µeVb ~g est exactement opposée au poids du

liquide déplacé par chaque grain ;

— la résultante des forces de frottement visqueux se traduit par une force ~f = �↵~v où ↵ > 0 et

~v désigne la vitesse des grains. La formule de Stokes précise que, pour un grain sphérique,

↵ = 6⇡⌘Rb dans laquelle ⌘ = 1,2⇥10
�3

Pa · s représente le coe�cient de viscosité dynamique

de l’eau légèrement sucrée. Avec ces valeurs numériques, on trouve ici ↵ = 4,5⇥10
�9

kg · s�1
.

En dehors de ces données, aucune connaissance relative à la viscosité n’est nécessaire à cette étude.

Ce problème est décomposé en 4 parties relativement indépendantes : la partie I est consacrée au

modèle du gaz parfait ; la partie II est dédiée aux expériences de sédimentation pratiquées sur les

émulsions ; la partie III présente le modèle théorique du mouvement brownien de Langevin complété

par les expériences de di↵usion de Perrin ; la partie IV étudie les moyens optiques mis en œuvre par

Jean Perrin pour réaliser ses mesures.
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Dans ce qui suit on utilisera la fonction A(z) = exp (�z/H). Les vecteurs sont surmontés d’une flèche ~f ,
sauf s’ils sont unitaires et sont alors repérés par un chapeau (kbexk = 1). Les applications numériques

seront données avec un chi↵re significatif. La valeur moyenne temporelle d’une fonction '(t) sera notée

h'i. Toute réponse, même qualitative, se doit d’être justifiée. Les a�rmations, même justes, mais
non justifiées ne seront pas prises en compte.

I Équilibre vertical d’un gaz à la température ambiante

On considère un gaz parfait constitué de molécules identiques, de masse molaire M = 30 g · mol
�1

,

en équilibre thermique à la température ambiante T0. Le gaz, soumis à la pesanteur, est au repos

dans un récipient de volume V , de hauteur h de l’ordre de quelques mètres, et de section S = 1 m
2
.

L’encombrement caractéristique d’une molécule constituant ce gaz est une sphère de rayon Rm de

l’ordre de la centaine de picomètres.

On rappelle les valeurs de l’accélération de la pesanteur g = 9,8m·s�2
, de la constante de Boltzmann,

kB = 1,4⇥ 10
�23

J ·K�1
, de la constante d’Avogadro, NA = 6,0⇥ 10

23
mol

�1
et éventuellement de

leur produit R = kBNA = 8,3 J ·K�1 ·mol
�1

.

o – 1. En précisant les valeurs choisies de température T0 et de pression (supposée provisoirement

uniforme) P0, estimer le volume molaire du gaz. En déduire une estimation du rapport entre le

volume occupé par l’ensemble des sphères associé aux molécules et le volume du récipient.

o – 2. Rappeler la définition d’un gaz parfait. Les ordres de grandeur établis à la question précédente

justifient-ils d’adopter ce modèle dans la suite ?

o – 3. Donner l’expression de l’énergie cinétique Ecm et de l’énergie potentielle Epm d’une particule

de masse mm de ce gaz. Pourquoi observe-t-on qu’à température ambiante ces molécules ne se

regroupent pas au fond du récipient ?

La loi de la statique des fluides montre que, sous l’action de la pesanteur, la pression P (z) n’est pas
uniforme verticalement et dépend de l’altitude z.

o – 4. En déduire que la masse volumique ⇢ du gaz dépend aussi de z et l’exprimer en fonction de

P (z). Ecrire la condition d’équilibre mécanique pour une tranche de gaz comprise entre les

altitudes z et z + dz pour laquelle on supposera l’équilibre thermodynamique local réalisé. En

déduire une équation di↵érentielle vérifiée par P (z).

o – 5. En notant P0 = P (z = 0), montrer que
P (z)

P0
s’exprime simplement grâce à la fonction A(z).

Exprimer la distance caractéristique H en fonction de kB, g, T0 et mm. Calculer la valeur

numérique de H. La variation de pression est-elle détectable, avec un manomètre usuel, dans

le récipient considéré ? En serait-il de même si le récipient était rempli d’eau liquide ?

o – 6. Préciser la fonction E(z) telle que A(z) = exp


� E(z)

kBT0

�
. Que représente la fonction E(z) ?

Interpréter physiquement cette expression dont la généralisation est due à Boltzmann.

o – 7. Montrer que la concentration cg (z) du gaz, rapport du nombre de moles sur le volume, suit

une loi du même type, et qu’on peut écrire cg(z) = cg0A(z), où cg0 représente la concentration

au niveau du sol (z = 0) dont on précisera l’expression.

II Étude d’un équilibre de sédimentation

Dans une première expérience, Jean Perrin lâche, sans vitesse initiale, à la surface d’un récipient,

un grand nombre (N = 13 000) de grains dans de l’eau légèrement sucrée. Le récipient a une section

S et une hauteur h1 su�sante pour être considérée comme infinie.

o – 8. Faire le bilan des forces exercées sur un des grains lors de sa chute dans l’eau sucrée.
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o – 9. On note ~v(t) = �v(t)bez la vitesse de chute du grain, êz étant l’axe vertical ascendant, et

v(t) > 0. Établir l’équation di↵érentielle vérifiée par v(t) puis donner sa solution.

Montrer qu’une fois le régime permanent établi, les grains possèdent une vitesse limite v` =

m⇤g/↵.

Exprimer le paramètre m⇤
en fonction de Vb et des masses volumiques µb et µe. Justifier qu’on

nomme cette quantité ⌧ masse apparente �.

Exprimer la durée caractéristique ⌧ du régime transitoire en fonction de mb et ↵. Evaluer un

ordre de grandeur de v` et de ⌧ .

Même au bout d’une longue durée, les grains ne se tassent pas au fond du récipient. On observe un

phénomène de sédimentation : les grains se répartissent sur l’ensemble de la hauteur et la densité de

grains, notée c(z) et exprimée en m
�3

, n’est pas uniforme.

Afin d’interpréter ce phénomène, on introduit deux vecteurs, appelés ⌧ densité de flux de particules �

et qui s’expriment dans les mêmes unités mais par des lois distinctes :

• Un premier vecteur densité de flux, ~jc, est associé au mouvement de chute des grains. Il est à

l’origine d’un phénomène de convection et défini par la relation ~jc(z) = �c(z) v`bez ;
• Un deuxième vecteur densité de flux est associé au gradient de densité, ici sur l’axe z. L’inho-

mogénéité crée un courant de particules dont l’expression est donnée par la loi de Fick qui

s’écrit ici ~jn(z) = �dc

dz
Dbez. Le coe�cient D se nomme coe�cient de di↵usion. Il dépend de la

nature du milieu et des particules étudiées. Aucune connaissance relative à la loi de Fick n’est

nécessaire à l’étude du problème.

o – 10. Donner les unités (ou dimensions) communes aux vecteurs ~jc et ~jn, ainsi que l’unité de D. À

l’état d’équilibre macroscopique, caractérisé par une température uniforme T0 et une répartition

de concentration c(z) indépendante du temps, quelle est la relation entre ~jc et ~jn ? En déduire

une équation di↵érentielle du premier ordre vérifiée par c(z).

En posant c(z = 0) = c0, exprimer c(z) en fonction de A(z), on déterminera la distance

caractéristique Hb apparaissant dans A(z) en fonction de Rb, D, ⌘, m⇤
, et g.

o – 11. Compte tenu des forces conservatives s’exerçant sur un grain, quelle est l’expression de l’énergie

potentielle E⇤
p(z) correspondant au poids de la masse apparente m⇤

du grain à l’altitude z ?
En déduire l’expression de D en fonction de kB, T0, ⌘ et Rb permettant d’écrire A(z) =

exp


�
E⇤

p(z)

kBT0

�
.

o – 12. Sachant que le nombre N de grains est conservé sur la hauteur h1 du récipient, su�samment

grande pour être supposée infinie, exprimer la concentration c0 en fonction deN , de la section S,
et de la distance caractéristique Hb.

Une fois la température de l’émulsion stabilisée à une valeur

uniforme T0 = 20
�
C, Jean Perrin a compté le nombre

moyen n(z) de grains dans des petites tranches régulièrement

réparties en hauteur et d’épaisseur e constante. Il publie les

résultats que nous avons synthétisés sur la figure 1 (Annales

de Chimie et de Physique, Mouvement brownien et réalité

moléculaire, 8
e
série, sept. 1909).

o – 13. En exprimant c(z) en fonction de n(z), déduire de ces
données une estimation de la hauteur caractéristique

Hb associée ici au phénomène. La hauteur du récipient

utilisé par Jean Perrin, h1 = 100 µm, était-elle suf-

fisante au regard des hypothèses faites ici ?

Figure 1 – Sédimentation de grains

o – 14. Estimer la valeur de kB qu’a pu déduire Jean Perrin de cette expérience. Identifier des causes

d’erreurs expérimentales.
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III Le modèle de

En 1828, le botaniste Robert Brown publie un article dans lequel il décrit le mouvement erratique

de grains de pollen dans l’eau observés au microscope. Ce type de mouvement était apparemment

connu depuis l’invention du microscope (fin xvi
e
– début xvii

e
siècle). Le mérite de Brown est d’en

faire une étude systématique avec des grains de pollen, de suie, de poussière, de roches pulvérisées

et même d’un fragment du Sphinx. Ce dernier cas était destiné à éliminer l’hypothèse vitaliste qui

prévalait et attribuait ce mouvement à des propriétés organiques propres aux particules. En 1888, le
physicien français Louis-Georges Gouy résume les observations sur ce mouvement, appelé depuis

brownien :

• le mouvement est extrêmement irrégulier et ne semble pas avoir de tangente ;

• deux particules browniennes, même proches, ont des mouvements indépendants ;

• le mouvement est d’autant plus actif que la particule est petite, que le fluide est moins visqueux

ou la température est élevée ;

• la nature et la densité des particules n’ont pas d’influence sur le mouvement qui de plus ne

s’arrête jamais !

Pour interpréter les expériences de Brown, on étudie le mouvement unidimensionnel – le long d’un

axe (O, bex) – des mêmes grains sphériques que ceux étudiés dans la partie II (masse mb, rayon Rb).

Ces grains sont plongés dans le même liquide sucré que celui utilisé dans l’expérience de Jean Perrin,

en équilibre thermique à la température T0, mobiles sous l’e↵et de l’agitation thermique. Ce modèle

unidimensionnel peut éventuellement se généraliser à trois dimensions.

On note ~x = x(t)bex la position et ~v = v(t)bex la vitesse d’un grain. A t = 0, le grain étudié est en O.

Le mouvement ne s’arrêtant jamais, en 1908, Paul Langevin propose l’idée qu’il existe des chocs

à l’échelle microscopique qui entretiennent cette agitation. Il introduit une force qui synthétise la

résultante des chocs aléatoires des molécules de fluide sur les grains. Cette force ⌧ indi↵éremment

positive ou négative, dont le but est de maintenir l’agitation microscopique � est notée ~Fc = Fc bex. En
des termes moins prosäıques, cela revient à faire l’hypothèse que la moyenne temporelle du produit

~x · ~Fc est nulle, soit hxFci = 0. Dans son modèle, Langevin néglige tous les e↵ets de la pesanteur

mais tient compte de la résultante des forces de frottement visqueux.

o – 15. Ecrire l’équation, notée (EL), vérifiée par ~v en tenant compte de la force ~Fc. Montrer qu’en

l’absence de la force ~Fc, le mouvement s’atténue très vite.

o – 16. Ecrire le produit x
dv

dt
en fonction de

d(xv)

dt
et v2.

o – 17. Donner la définition de la vitesse quadratique moyenne, notée u. En appliquant le théorème

d’équipartition de l’énergie au cas particulier étudié, exprimer u en fonction de mb, T0 et kB.

Le point délicat de la théorie de Langevin revient à considérer que la fonction ' = hxvi, qu’il calcule
comme une moyenne temporelle, peut néanmoins être considérée comme une fonction du temps ' =

'(t), nous ferons cette hypothèse, dite ergodique, qui permet d’écrire ici hd(xv)
dt

i =
d'

dt
ou même

hd(x
2
)

dt
i = dhx2i

dt
. L’étude de l’hypothèse ergodique alimente depuis de nombreux travaux théoriques

tant physiques que mathématiques.

o – 18. En partant de l’équation (EL), obtenir une équation di↵érentielle du premier ordre linéaire

à coe�cients constants vérifiée par la fonction '(t). En supposant que '(0) = 0, en déduire

l’expression de '(t) en fonction de t, kB, T0, mb et ↵.

o – 19. En utilisant l’hypothèse ergodique, déterminer la relation entre '(t) et  (t) = hx2i. Après

avoir obtenu l’expression générale de  (t), montrer que les ordres de grandeur de ce problème

permettent d’écrire  (t) ' Dxt où l’on précisera l’expression de la constante Dx en fonction de

T0, kB et ↵.
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Figure 2 – Di↵usion de grains

La constante Dx est appelée coe�cient de di↵usion d’un grain

selon (Ox) dans le milieu. En prenant en compte le modèle de

Langevin, Jean Perrin réalise toute une série d’expériences

de di↵usion de grains au cours du temps. Avec une extrême

minutie, il repère la position de l’un d’entre eux toutes les

30 secondes pendant deux minutes, puis recommence avec un

autre grain. En itérant cette procédure un grand nombre de

fois, il se place sans le savoir sous l’hypothèse ergodique et

obtient les résultats expérimentaux donnant hx2i en fonction

du temps que l’on a synthétisés sur la figure 2 ci-contre (source

identique à celle des données de la figure 1).

o – 20. En déduire la valeur de kB qu’a obtenue Jean Perrin avec ses expériences de di↵usion toujours

e↵ectuées à T0 = 20
�
C. Comparer cette valeur avec celle obtenue grâce aux résultats des

expériences de sédimentation de la partie II. Commenter.

IV Observations optiques

Lors de ses expériences Jean Perrin doit compter ou suivre le mouvement de très petits grains : il

doit donc utiliser un microscope.

Un microscope est constitué de deux lentilles minces convergentes utilisées dans les conditions de

Gauss : un objectif, L1, de focale f 0
1 et un oculaire, L2, de focale f 0

2. La distance F 0
1F2, entre le foyer

image de l’objectif et le foyer objet de l’oculaire, est l’intervalle optique �. Les ordres de grandeur

usuels sont tels que : f 0
1 = 1mm, f 0

2 = 2 cm et � = 15 cm par exemple. L’oculaire L2 fournit une

image à l’infini. On observe un objet AB situé à proximité de F1 et perpendiculaire à l’axe optique.

L’image intermédiaire A1B1 est telle que AB
objectif L1������! A1B1. L’image finale A2B2 est telle que

A1B1
oculaire L2�������! A2B2. L’ensemble est représenté sur la figure 3.

Figure 3 – Schéma d’un microscope (à gauche) – Jean Perrin observant les grains (à droite)

o – 21. Rappeler ce que sont les conditions de Gauss et les deux propriétés qu’elles impliquent pour

une lentille mince.

o – 22. Sur un schéma clair, sans forcément respecter d’échelle, tracer les rayons issus d’un objet AB
tel que |AO1| & f 0

1 et ressortant de L2 afin de former une image à l’infini. On pourra reproduire

et compléter le schéma de la partie gauche de la figure 3.
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o – 23. Justifier, grâce à une évaluation d’ordres de grandeur, que l’objet AB se trouve quasiment

sur le foyer F1 de l’objectif, tout en restant en amont (AF1 > 0). Quel est l’intérêt pour un

observateur dont la vision n’a pas de défaut, d’observer une image à l’infini ? Où se forme alors

l’image intermédiaire A1B1 ? Où se formerait-elle si AF1 < 0 ?

On définit la puissance intrinsèque d’un microscope par : Pi =
↵0

AB
. Son unité est la dioptrie �, égale

à 1m
�1

. L’angle ↵0
est l’angle sous lequel l’objet AB est vu en sortie de l’instrument, comme indiqué

sur la figure 4.

o – 24. Compte tenu des données numériques précédentes, exprimer Pi en

fonction de �, f 0
1 et f 0

2.

Evaluer la puissance d’un microscope permettant d’observer les

grains de gomme-gutte étudiés par Jean Perrin. Un microscope

usuel peut-il permettre d’observer les grains avec un œil supposé

emmétrope ?

Figure 4 – Angle ↵0

Formulaire d’optique géométrique pour une lentille mince

Dans les conditions de Gauss, si A est un point objet sur l’axe optique et A0
le point image conjugué

par une lentille mince située en O, dont le foyer objet est en F et le foyer image en F 0
, on a :

Formules d’optique géométrique de Newton (origines aux foyers)

Formule de conjugaison :

FA⇥ F 0A0 = FO ⇥ F 0O

Formule du grandissement :

� =
A0B0

AB
=

FO

FA
=

F 0A0

F 0O

où A0B0
est l’image de l’objet AB perpendiculaire à l’axe optique.

Formules d’optique géométrique de Descartes (origines au centre optique)

Formule de conjugaison :

1

OA0 =
1

OA
+

1

OF 0

Formule du grandissement :

� =
A0B0

AB
=

OA0

OA

FIN DE L’ÉPREUVE
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Fonctions spéciales
Ce sujet comporte trois parties indépendantes.
Bon nombre de problèmes rencontrés en physique peuvent être résolus à l’aide de « fonctions
spéciales » . Ces fonctions définies mathématiquement sont implémentées dans de nombreuses
bibliothèques informatiques (comme scipy) et peuvent être utilisées aussi simplement qu’une
fonction sinus ou racine carrée qui sont elles aussi d’une certaine manière des fonctions spéciales
et tout aussi analytiques . . .
On rencontre bien souvent des résolutions numériques de problèmes physiques alors que l’utili-
sation de ces fonctions spéciales permet une résolution complète et analytique. Ce problème se
propose d’illustrer l’intérêt de ces « fonctions spéciales » .

I La fonction de W de Lambert

I.A Tir d’un projectile sans frottements
Un projectile assimilé à un point matériel de masse m est lancé à partir
du sol en O avec une vitesse initiale ~v0 2 (O,~uy,~uz) et faisant un angle
✓0 avec l’horizontale dans le référentiel terrestre supposé galiléen.

o – 1. Rappeler la définition d’un référentiel galiléen. Dans quelle me-
sure le référentiel terrestre peut-il être supposé galiléen ?

o – 2. Établir les équations horaires du mouvement.
Montrer que le mouvement est plan.

o – 3. Établir l’équation de la trajectoire. Quelle est la forme de la
trajectoire ? Est-elle symétrique ?

Figure 1 – Tir d’un
projectile

o – 4. Déterminer les coordonnées du sommet S de la trajectoire. Définir la portée ` du tir et
établir son expression. Quel est l’angle ✓0 assurant un tir de portée maximale ?

I.B Tir d’un projectile avec frottements
On considère maintenant que le projectile est soumis à une force de frottements proportionnelle
à la vitesse : ~f = �↵~v avec ↵ > 0.

o – 5. Quelle est la dimension du coefficient ↵ ? Définir à partir de ↵ un temps caractéristique
⌧ . Le mouvement reste-t-il plan ?

o – 6. Établir, en fonction g, ⌧ , v0 = k~v0k, ✓0 et t, les nouvelles équations horaires du mouvement.

o – 7. Dans la situation où t ⌧ ⌧ , simplifier les équations horaires de la trajectoire et donner
l’allure du mouvement.

o – 8. Dans la situation où t � ⌧ , simplifier les équations horaires du mouvement en faisant
apparaitre une vitesse limite v1.
Où retombe le projectile ?

o – 9. Déduire des résultats précédents, l’allure globale de la trajectoire dans une situation où
le temps de vol est grand devant ⌧ , en séparant la trajectoire en trois phases.

o – 10. Tracer l’allure de la trajectoire pour un temps de vol de l’ordre de ⌧ .
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I.C La portée maximale d’un tir avec frottement
o – 11. Dresser le tableau de variation de la fonction T : � 7! T (�) = �e

� et déterminer la valeur
� de son minimum global.
La fonction W de Lambert est définie comme étant la fonction réciproque de T sur
[�,+1[. Reproduire le graphe de T représenté sur la partie gauche de la figure 2 et
expliquer comment en déduire l’allure de W représenté sur la partie droite.

Figure 2 – Représentations graphiques de T (�) (à gauche) et W(�) (à droite)

o – 12. On peut montrer que : (�+ exp [W(�)])W0(�) = 1. Quelle est la valeur de W(0) ?
On souhaite appliquer le schéma d’Euler explicite avec un pas h = 0.0001 pour résoudre
cette équation différentielle. Donner le code python permettant d’obtenir une représenta-
tion graphique de W(�) sur l’intervalle [0 ; 2,5[.

La fonction W(�) est implémentée dans scipy. On peut l’appeler avec : from scipy.special
import lambertw.
On montre que si ad 6= 0, la solution de l’équation at+b+ce

dt = 0 pour l’inconnue t est donnée
par l’expression

t = � b

a
� 1

d
W

✓
cd

a
exp

✓
�bd

a

◆◆
.

o – 13. En déduire à quel instant t⇤ > 0 le projectile touche le sol. On posera u = �
⇣
1 + v0 sin ✓0

g⌧

⌘
.

o – 14. On rappelle que par définition W exp(W) = Id où Id est la fonction identité : � 7! �.
En déduire que la portée est donnée par ` = ⌧v0 cos ✓0 (1�W(ueu)/u).

En posant � = v0/v1, on montre que l’angle initial donnant la portée maximale est :

✓max =

8
>>>>>>>><

>>>>>>>>:

arcsin

0

BB@

�W

✓
�
2 � 1

e

◆

�2 � 1�W

✓
�
2 � 1

e

◆

1

CCA si � 6= 1

arcsin

✓
1

e� 1

◆
' 35,6� si � = 1

o – 15. À l’aide de la figure 2, déterminer la valeur numérique de l’angle assurant la portée
maximale pour v0 = 10m · s�1

, g = 9,8m · s�2 et ⌧ = 0,4 s.
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II L’intégrale elliptique de première espèce

Dans toute cette partie on néglige les frottements de l’air.
On étudie un pendule simple constitué d’une masse ponctuelle m

et d’une tige rigide de longueur ` et de masse négligeable, astreint
à évoluer dans un plan vertical (O,~ux,~uy).
On repère sa position par l’angle ✓(t). À t = 0 on lâche le pendule
sans vitesse initiale avec ✓(t = 0) = ✓0 2]0,⇡/2[.

o – 16. Établir l’équation différentielle du mouvement vérifiée par la
fonction ✓(t). Figure 3 – Pendule

simple
o – 17. On fait l’approximation des petits angles tels que sin ✓ ⇠ ✓.

Établir dans ces conditions la période T0 des oscillations.
Quelle est la propriété remarquable de la période dans le cadre de cette approximation ?

o – 18. Déterminer l’expression générale de
d✓

dt
sans faire l’approximation des petits angles.

En déduire que la période T des oscillations du pendule est donnée par :

T =
2T0

⇡

Z ✓0

0

d✓p
2 (cos ✓ � cos ✓0)

.

La propriété remarquable de la question précédente est-elle conservée ?
En effectuant le changement de variable sin ✓

2 = sin� sin ✓0
2 , on montre que :

T =
2T0

⇡
K
✓
sin2 ✓0

2

◆
avec K(�) =

Z ⇡
2

0

d�p
1� � sin2

�

.

On souhaite calculer l’intégrale K(�) par la méthode des rectangles médians pour un angle
✓0 = ⇡/3.

o – 19. Après avoir tracé le graphe de la fonction � 7! 1+
p
� pour � 2 [0; 9], illustrer le principe

de la méthode des rectangles médians pour calculer le réel I =
R 9

0 (
p
�+1)d� en utilisant

9 rectangles.
Si on double le nombre de rectangles utilisés qu’en est-il de la différence entre la valeur
exacte de I et la valeur approchée numériquement par la méthode des rectangles médians ?

o – 20. Recopier et compléter le code suivant permettant de calculer K(�) par la méthode des
rectangles médians.
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La fonction � 7! K(�) est nommée intégrale elliptique complète de première espèce. Elle est
implémentée dans scipy. On peut l’appeler directement avec : from scipy.special import
ellipk.

o – 21. En utilisant la figure 4, pour un pendule tel que T0 = 1 s,
évaluer T lorsque ✓0 = 50�. Quel est le décalage temporel
induit par la prise en compte de l’approximation des
petits angles si l’on envisage de mesurer une heure ?

Au xvii
e siècle les puissances maritimes désiraient posséder

des instruments précis pour la mesure du temps afin de facili-
ter la navigation (notamment pour déterminer la longitude).
Les rois de France et d’Angleterre avaient offert des prix
importants à qui serait capable de réaliser un chronomètre
précis, fiable et utilisable en mer. Figure 4 – ✓0 7! T (✓0)/T0

Christiaan Huygens (1629-1695) motivé par ce problème étudia le pendule conique et le pen-
dule oscillant entre deux lames courbes. Il parvint à démontrer que des lames en forme de
cycloïde assurent l’isochronisme rigoureux des oscillations.

o – 22. Dans quelle situation courante rencontre-t-on la cycloïde ?

III La fonction d’erreur de Gauss : erf(�)

III.A Introduction au problème de Stefan
Un certain nombre de problèmes géologiques importants peuvent être modélisés par le chauffage
ou le refroidissement instantané d’un demi-espace semi-infini. Au milieu du xix

e siècle Lord
Kelvin a ainsi utilisé cette idée pour estimer l’âge de la Terre. Il supposa qu’à la surface le flux
d’énergie thermique résultait du refroidissement d’un flux initialement chaud de la Terre et a
conclu que l’âge de la Terre était environ 65 millions d’années. On retrouve ces phénomènes en
étudiant le refroidissement de la lithosphère océanique ou l’évolution d’une coulée de magma.

o – 23. Comment explique-t-on de nos jours le résultat erroné obtenu par Lord Kelvin ?
On étudie un milieu matériel semi-infini défini par y > 0 dont la surface subit un changement
instantané de température. Initialement à t = 0�, le demi-espace est à la température uniforme
T1 ; pour t > 0 , la surface y = 0 est maintenue à une température constante T0. Si T1 > T0, le
milieu matériel se refroidit et sa température diminue. La situation est représentée à la figure
5 pour le cas T1 > T0.

Figure 5 – Évolution de la température
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Le flux thermique élémentaire, défini comme la quantité d’énergie traversant une surface élé-
mentaire dS pendant dt, est noté ��Q.

o – 24. Rappeler la définition du vecteur ~jQ, densité de flux thermique. Quelle est sa dimension ?
Rappeler la loi de Fourier, ainsi que ses conditions d’application.
En déduire la dimension de la conductivité thermique .

On étudie une tranche mésoscopique de sol de masse m de masse volumique ⇢ et de capacité
thermique massique c comprise entre y et y + dy de surface S.

o – 25. Quelle est l’énergie thermique �Q reçue par cette tranche entre t et t+ dt ?
Pourquoi étudie-t-on une tranche « mésoscopique » ?

Établir l’expression de sa variation d’énergie interne dU en fonction de
@jQ

@y
, S, dy et dt

puis en fonction de ⇢, c, S,
@T

@t
, dy et dt.

En déduire l’équation de la chaleur à une dimension
@T

@t
= D

@
2
T

@y2
dans laquelle on

précisera l’expression et la dimension du coefficient D de diffusion thermique.
En déduire l’expression d’une longueur caractéristique L en fonction de D et du temps t.

On introduit la température adimensionnée

✓(y,t) =
T (y,t)� T1

T0 � T1
.

o – 26. Quelle est l’équation vérifiée par ✓(y,t) ?
Déterminer les valeurs de ✓(y > 0,t = 0), ✓(y = 0,t > 0) et ✓(y ! +1,t > 0).

On introduit une variable de similarité sans dimension ⌘ =
y

2
p
Dt

et on suppose que ✓ n’est

une fonction que de cette seule variable ⌘.
o – 27. Montrer que

d
2
✓(⌘)

d⌘2
+ 2⌘

d✓(⌘)

d⌘
= 0 .

o – 28. En utilisant la fonction '(⌘) =
d✓(⌘)

d⌘
, montrer que ✓(⌘) = 1� 2p

⇡

Z ⌘

0

e
�z2dz.

On donne
Z +1

0

e
�z2dz =

p
⇡

2
. En déduire une expression de T (y,t) faisant apparaître

une intégrale.

La fonction � 7! 2p
⇡

Z �

0

e
�z2dz est appelée fonction d’erreur de Gauss, elle est implémentée

dans scipy.
Elle est souvent notée erf(�). On peut l’appeler directement en utilisant la commande : from
scipy.special import erf.

III.B Formation d’une croûte de lave solide.
Dans cette dernière partie on s’intéresse à une coulée de lave en fusion et à la formation d’une
croûte solide à sa surface. On étudie alors l’augmentation de l’épaisseur de cette croûte en
fonction du temps.
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À la surface extérieure, en y = 0, la lave est en contact avec l’air à la température constante T0.
La lave en fusion à la température Tf est donc soudainement portée à la température T0 à t = 0.
Dans ces conditions, la couche superficielle de la lave se solidifie, et on note ys(t) l’épaisseur de
la couche de lave solide.

Nous devons donc résoudre l’équation de la chaleur dans l’espace 0 6 y 6 ys(t) avec comme
conditions aux limites T = T0 en y = 0, et T = Tf en y = ys(t), et comme condition initiale
ys = 0 à t = 0.

Figure 6 – Formation d’une croûte de lave solide

La position ys(t) de l’interface de transition de phase est une fonction a priori inconnue du
temps. Comme dans la situation précédente il n’y a pas d’échelle de longueur définie dans
ce problème. Pour cette raison, on travaillera également avec la variable de similarité sans
dimension ⌘ =

y

2
p
Dt

.

On utilisera également la température adimensionnée

✓(y,t) =
T (y,t)� T0

Tf � T0

.
La profondeur de l’interface de solidification ys(t) doit enfin s’adapter à la longueur caractéris-
tique de la diffusion thermique. Nous supposerons que celle-ci varie proportionnellement à la

racine carrée du temps, de telle sorte que : ⌘s =
ys(t)

2
p
Dt

= cte = �. Cette constante est inconnue

et reste à déterminer.

o – 29. En reprenant l’équation de la question 27, montrer que

✓(⌘) =
erf(⌘)

erf(�)
.

Afin d’obtenir l’expression puis la valeur de la constante �, nous allons étudier la solidification
d’une tranche de lave d’épaisseur dys entre les instants t et t+ dt

o – 30. Quelle est l’énergie �Q libérée par la solidification à la température Tf d’une tranche dys
de lave de surface S en fonction de la masse volumique ⇢ de la lave en fusion et l’enthalpie
de fusion massique : �hsol!liq.

o – 31. Toute l’énergie libérée par la solidification doit être évacuée par diffusion dans la lave
solide car la lave en fusion reste à la température Tf . Montrer que :

⇢�hsol!liq(Tf )
dys(t)

dt
= 

✓
@T

@y

◆

y=ys
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Figure 7 – Graphe de � 7! exp(��
2)

� erf(�)

o – 32. En déduire que

exp (��
2)

�erf(�)
=

p
⇡

c(Tf � T0)
�hsol!liq(Tf ) .

o – 33. Quel algorithme peut on utiliser pour
obtenir la constante � numérique-
ment ?
Expliquer en quelques mots son fonc-
tionnement.

On donne les valeurs numériques suivantes :

• �hsol!liq(Tf ) = 400 kJ · kg�1 • ⇢ = 2600 kg ·m�3

• c = 1kJ · kg�1 ·K�1 • D = 7⇥ 10�7 SI
• Tf � T0 = 1000K •

p
⇡ ⇠ 1,77

o – 34. À l’aide de la figure 7, estimer la valeur numérique de �.
En déduire l’épaisseur de la croûte de lave six mois après l’éruption.
Comparer votre résultat à ceux de la figure 8 tirés d’une expérience 1.

Figure 8 – Épaisseurs des croûtes de lave solides à la surface des lacs de lave dans les trois
cratères à fosse Kilauea lki (1959), Alae (1963) et Makaopuhi (1965) sur le volcan Kilauea,
Hawaii (Wright et al., 1976), et résultat théorique.

FIN DE L’ÉPREUVE

1. Wright, T. L., Peck, D. L., and Shaw, H. R. (1976). Kilauea lava lakes : Natural laboratories for study
of cooling, crystallization, and differentiation of basaltic magma. In The Geophysics of the Pacific Ocean Basin
and its Margin, eds. G. H. Sutton, M. H. Manghnani, R. Moberly, and E. U. McAfee, vol. 19 of Geophysical
Monograph Series, Washington, D.C. : American Geophysical Union, pp. 375–90
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Des objets astronomiques, de Mars à Sirius
Ce sujet comporte deux problèmes totalement indépendants étudiant différents aspects de l’as-
tronomie (la science des planètes et des étoiles) et en particulier de l’astrophysique (l’étude
des modèles physiques des astres). Le problème I décrit des notions connues depuis le xviie

siècle (la mécanique céleste des trajectoires des planètes et les lois de Kepler et Newton).
Le problème II propose une étude de quelques propriétés énergétiques des étoiles en comparant
leur énergie gravitationnelle avec des termes comparables liés aux autres interactions au sein
de l’étoile.
Pour toutes les applications numériques, on se contentera de deux chiffres significatifs. Les
notations des constantes fondamentales utiles, des données numériques et des rappels de syntaxe

Python sont regroupés en fin d’énoncé. On pourra noter ûx, ûy, ûz la base cartésienne associée
au repère (Oxyz) et ûr, û✓ la base locale associée aux coordonnées polaires r, ✓ du point M

situé dans le plan (Oxy), cf. figure 1.

y

O
x

r

•M

✓

ûr

û✓

ûx

ûy

z

Figure 1 – Base locale associée aux coordonnées polaires

On posera j
2
= �1. On notera par un point les dérivées temporelles, ḟ =

df

dt
. Les vecteurs ~w

sont surmontés d’une flèche, sauf les vecteurs unitaires notés û.

I Les lois de Kepler et l’unité astronomique
Ce problème est consacré aux lois de Kepler (���� et ����) et à une mesure historique de
l’unité astronomique par Cassini (����). On notera que ces travaux sont toux deux nettement
antérieurs à la publication de la loi de la gravitation universelle par Newton (����).
On s’intéressera en particulier aux orbites de la Terre et de Mars, la planète la plus proche de la

Terre avec une trajectoire extérieure. Le plan de sa trajectoire est presque confondu (à moins de

2
�

près) avec le plan de l’écliptique (la trajectoire terrestre). Ces deux trajectoires sont proches

de cercles autour du Soleil.

I.A Mouvements d’une planète sous l’action d’un astre attracteur
On étudie ici, relativement à un référentiel galiléen (R0), le mouvement d’un astre P assimilé
à un point P de masse mP sous l’action du seul champ de gravitation exercé par un autre astre
attracteur A de masse mA et de centre fixe A. On notera ~r =

�!
AP , r = k~rk et ~r = rûr.

o – 1. Quelle condition (inégalité forte) permet de considérer A comme fixe ?
Quelle est l’expression de la force gravitationnelle ~F exercée par A sur P si les deux
astres sont assimilés à des points ?
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o – 2. Que devient l’expression de ~F si P reste ponctuel tandis que l’astre A , de rayon RA < r,
possède une répartition de masse à symétrie sphérique ? On justifiera sa réponse.

o – 3. Cette expression reste-t-elle encore applicable si P et A sont tous deux à symétrie sphé-
rique ? On pourra, dans tout ce qui suit, considérer A et P comme des points matériels

A et P .

o – 4. Montrer que le mouvement de P est plan ; on notera (Axy) le plan de ce mouvement.
Définir la constante C issue de la loi des aires pour ce mouvement et relier cette constante
aux coordonnées polaires (r, ✓) du mouvement de P dans (Axy).

On note ~v la vitesse de P et ûr, û✓ les vecteurs de la base polaire associée au mouvement de P .
~v est fonction du temps et donc aussi de l’angle polaire ✓.

o – 5. Exprimer
d~v

d✓
et en déduire que ~v(✓) = C

û✓ + ~e

p
où ~e est une constante d’intégration et

p un paramètre du mouvement qu’on exprimera en fonction de C, mA et de la constante
universelle de gravitation G.
Montrer que le vecteur ~e est sans dimension et situé dans le plan (Axy) du mouvement.

Sans perte de généralité, on peut supposer que ~e = eûy avec e = k~ek > 0.
o – 6. Exprimer ṙ et r✓̇ en fonction de C, p, e et ✓.

En déduire r en fonction de p, e et ✓ et montrer que e < 1 pour un mouvement borné.
Quelle est, dans ce cas et sans démonstration, la nature de la trajectoire ? On admettra
que le mouvement est périodique de période T .

I.B Période du mouvement
o – 7. En utilisant par exemple la question précédente, montrer que T = Ip3/2/

p
GmA où la

constante I s’obtient par le calcul de l’intégrale I =

Z 2⇡

0

d✓

(1 + e cos ✓)2
.

o – 8. Dans le cas particulier où e = 0, préciser la nature de la trajectoire et l’expression de T ;
en déduire une des lois de Kepler, préciser laquelle et proposer son énoncé « historique »
sous forme d’une phrase en français.

Le calcul de l’intégrale I en fonc-
tion de e peut être mené de ma-
nière numérique (au moyen d’un
script Python) ; les résultats sont
illustrés figure 2.

o – 9. Proposer l’écriture des
lignes de code Python
permettant le tracé de la
figure 2 : courbe en trait
plein puis mise en exergue
d’une dizaine de valeurs
régulièrement réparties
pour 0 6 e 6 1

2 .
Note : on pourrait mener le cal-

cul exact de l’intégrale qui fournit

I(e) = (1� e
2
)
�3/2Ie=0. Ce calcul

n’est pas demandé ! Figure 2 – Calcul numérique de l’intégrale I
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I.C Mesure de l’unité astronomique

Figure 3 – La Terre et la Lune vues
depuis Mars par la sonde Mars Global

Surveyor, photo NASA

Nous admettrons pour la Terre et Mars des orbites
circulaires centrées au centre S du référentiel de Co-

pernic, de rayons respectifs a0 (c’est l’unité astrono-
mique) et a1, de périodes T0 et T1.
Le principe de la mesure de a0 proposée par Cassini,
à la fin du xvii

e siècle, consistait à observer simulta-
nément, depuis deux observatoires bien séparés (Paris
et Cayenne, distants en ligne droite de ` = 7070 km)
la planète Mars lorsqu’elle est à sa distance minimale

de la Terre, puis d’évaluer l’angle ↵ entre les deux
directions de visée (Paris �! Mars et Cayenne �!
Mars).

o – 10. Sans soucis d’échelle, représenter sur un schéma unique l’ensemble des paramètres géo-
métriques a0, a1, `, ↵ ci-dessus au moment de la mesure, lors d’une conjonction inférieure
(le Soleil, la Terre et Mars sont alignés dans cet ordre).

o – 11. En déduire la relation permettant de déterminer a0 en fonction de T0, T1, ` et ↵.
o – 12. La valeur annoncée par Cassini était ↵ = 14

00 (secondes d’angle). Est-elle compatible
avec la relation ci–dessus ?

II Structure et énergie des étoiles
Les parties II.A, II.B et II.C sont très largement indépendantes. Les étoiles à l’équilibre seront
ici décrites comme des boules homogènes de masse M et de rayon R en équilibre sous l’action
de leur propre gravitation et de diverses forces antagonistes qui s’opposent à l’effondrement
de l’étoile : il s’agira de la pression thermodynamique associée à l’agitation thermique dans la
partie II.B et d’une propriété strictement quantique, la pression de confinement, dans la partie
II.C.

•
O

État initial (pas de masse)

R

•
O

État intermédiaire

r

dr

•
O

État final (étoile constituée)

R

masse M

Figure 4 – Constitution progressive de l’étoile

II.A L’énergie gravitationnelle
Du fait de la symétrie sphérique de l’étoile, on va définir son énergie gravitationnelle Wg comme
l’énergie mécanique qu’un opérateur fournit à l’étoile pour la constituer, à partir de gaz sans
interaction car pris à grande distance, en couches concentriques de rayon croissant (figure 4).
Ce calcul sera effectué pour une évolution quasi–statique, l’opérateur agissant à tout instant
pour compenser exactement les forces gravitationnelles.
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o – 13. Donner et justifier physiquement le signe de Wg. Expliquer pourquoi on nomme parfois
E` = �Wg l’énergie de liaison de l’étoile.

o – 14. Exprimer la masse volumique ⇢, supposée uniforme et constante, de l’étoile en fonction
de M et R.
En déduire, en fonction de M , R et r, les expressions de m (masse déjà constituée dans
une sphère de rayon r) et de dm (masse à apporter pour faire passer ce rayon de r à
r + dr).

o – 15. Justifier que la contribution dWg à l’énergie gravitationnelle de cet accroissement (passage

de r à r + dr) s’écrit dWg = �Gmdm

r
.

Calculer l’énergie gravitationnelle totale Wg de l’étoile en fonction de G, M et R.

II.B Pression cinétique
Certaines étoiles sont en équilibre sous l’action de la pression cinétique liée à l’agitation ther-
mique qui résiste seule à l’effondrement gravitationnel. On va tout d’abord décrire cet équilibre
dans une géométrie cartésienne, l’axe (Oz) étant dirigé selon le champ de gravitation local
~G(z) = G(z)ûz (figure 5) avec G(z) < 0. On note aussi ⇢(z) la masse volumique du fluide au
repos et P (z) la pression dans le fluide.

z

Fluide
•z1

•z2
S

~G

Figure 5 – Géométrie du champ de gravitation local

o – 16. On s’intéresse à l’équilibre de la colonne de fluide d’aire S et comprise entre les altitudes z1
et z2. Expliciter, éventuellement sous forme intégrale, les forces exercées sur cette colonne.
En déduire l’équation différentielle reliant P (z), ⇢(z) et G(z).

La pression équilibrant la force gravitationnelle, les ordres de grandeur des énergies thermique
et gravitationnelle doivent être comparables ; nous allons ici le vérifier en évaluant l’énergie
cinétique de l’étoile dans le cadre d’un modèle très simplifié dans lequel la masse volumique
⇢ est constante mais qui prend maintenant en compte la géométrie sphérique du système. On
suppose ainsi que l’équation d’équilibre local obtenue en géométrie cartésienne à la question 16

se généralise grâce à la symétrie sphérique en faisant z ! r avec ⇢(r) = cste.
o – 17. Un volume V de fluide est soumis à la pression P , supposée uniforme. Dans quel modèle

l’énergie cinétique d’agitation thermique associée peut-elle s’écrire Ec =
3
2PV ? Dans la

suite de cette partie II.B on supposera que c’est bien le cas en chaque point intérieur à

l’étoile.

o – 18. Expliciter le champ gravitationnel ~G(~r ) ressenti au sein de l’étoile en équilibre à la dis-
tance r du centre, en fonction de G, M , R et r.

En déduire l’expression de la pression P (r) =
3GM2

8⇡R6
(R

2 � r
2
).

o – 19. Calculer l’énergie cinétique totale de l’étoile Ec en fonction de G, M et R ; commenter.
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II.C Pression de confinement quantique
Nous ne ferons plus ici l’hypothèse d’un équilibre de la gravitation par la pression cinétique ;
au contraire, nous négligerons tout effet thermique pour les étoiles décrites dans cette partie
II.C.
L’étoile sphérique étudiée ici, de rayon R, de masse M et de volume V est essentiellement
constituée de N atomes hydrogène, donc de N protons de masse mp et d’autant d’électrons de
masse me ⌧ mp, chacune de ces particules étant confinée dans un volume # = V/N . On va
montrer que le principe d’incertitude impose à chacun des atomes une énergie cinétique dite
de confinement quantique. Celle-ci sera évaluée dans un modèle très simplifié, chaque particule
restant libre de toute interaction mais confinée dans un volume cubique de côté a tel que a3 = #.

o – 20. Exprimer a en fonction de M , R et mp seulement.
On rappelle pour un état stationnaire d’une particule de masse m, libre et à une dimension

(Ox), l’équation de Schrödinger avec ~ = h/2⇡ : � ~2
2m

@
2
 

@x2
= j~@ 

@t
pour la fonction d’onde

 (x,t) =  (x)e
�j!t.

o – 21. La particule étudiée étant confinée à l’intervalle x 2 [0 , a], exprimer la fonction d’onde
spatiale  1(x) et l’énergie e1 de l’état fondamental en fonction de h, m et a.
Justifier que cette relation illustre le principe d’indétermination de Heisenberg.

o – 22. Que deviennent ces expressions de la fonction d’onde et de l’énergie de l’état fondamental
dans un modèle confiné à trois dimensions, x 2 [0 , a], y 2 [0 , a] et z 2 [0 , a] ?

o – 23. En déduire que l’énergie cinétique totale due au confinement de l’étoile se met sous la
forme Ec = �M

5/3
/R

2 dans laquelle on exprimera � en fonction de h, mp et me.

II.D Le cas des naines blanches
On s’intéresse ici aux naines blanches, étoiles dans lesquelles la pression due au confinement
quantique (avec l’énergie cinétique exprimée en fonction de M et R dans la partie II.C) est net-
tement supérieure aux effets de l’agitation thermique (que l’on négligera donc ici) et compense
seule les effets de la gravitation (avec l’énergie de gravitation exprimée également en fonction
de M et R dans la partie II.A).
La particularité de ces étoiles (essentiellement composées de carbone) et la prise en compte
des dégénerescences des états d’énergie des électrons introduisent des facteurs numériques dans
l’expression de � obtenu dans un cas simple à la question 23. Ces spécificités ne modifient
toutefois pas l’expression de l’énergie cinétique totale due au confinement de l’étoile. En ����,
Fowler

1 propose la valeur � = 1,6 · 106 SI pour les naines blanches. On utilisera cette valeur
dans le reste du problème.

o – 24. Pour une étoile de ce type, déterminer le rayon Req qui assure un minimum de l’énergie
totale.

o – 25. Calculer numériquement Rwd dans le cas d’une masse égale à celle du Soleil et conclure.
En ����, Chandrasekhar

2 explique qu’il faut prendre en compte le caractère relativiste des
électrons confinés dans les naines blanches. Il en deduira un modèle plus correct pour ces étoiles.

o – 26. En estimant la vitesse des électrons dans le modèle de Fowler justifier l’argument de
Chandrasekhar.

FIN DE L’ÉPREUVE

1. R. H. Fowler, On dense matter, Monthly Notices of the Royal Astronomical Society, 87, 114, 1926

2. S. Chandrasekhar, The maximal mass of ideal white dwarfs, Astrophysical Journal, 74, 81, 1931
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Formulaire en coordonnées sphériques

��!
grad

⇥
F (r)

⇤
=

dF

dr
ûr div [F (r)ûr] =

1

r2

d

dr

⇥
r
2
F (r)

⇤

Données numériques
Grandeur Symbole, valeur et unité

Constante de Planck h = 6,63·10�34
J·Hz�1

Constante de la gravitation universelle G = 6,67·10�11
m

3·kg�1·s�2

Distance Terre–Soleil (unité astronomique) a0 = 1UA = 1,50·1011 m
Masse de l’électron me = 9,11·10�31

kg

Masse du proton mp = 1,67·10�27
kg

Masse du Soleil M� = 1,99·1030 kg
Rayon du Soleil R� = 6,96·108 m
Rayon de la Terre RT = 6,37·106 m
Période du mouvement de la Terre (année) T0 = 365 j = 3,16·107 s
Période du mouvement de Mars T1 = 687 j

Seconde d’arc 1
00
= 4,85µrad

On donne
✓
5

4

◆2

' 1,6 et

687

365

�1/3
' 5

4
.

Syntaxes Python
Syntaxe d’appel Résultats ou commentaires

? Générer un tableau de n valeurs régulièrement sur [a , b] :

r = numpy.linspace(a, b, n) r est un tableau de type numpy.array

? Évalue l’intégrale y =

Z b

a

f(x)dx et estime l’erreur numérique

r = scipy.integrate.quad(f, a, b) r = (y, err)
? Créer ou activer une fenêtre de tracé :

r = matplotlib.pyplot.figure() exécuter avant de générer des tracés
? Tracer la courbe représentative de y = f(x)

matplotlib.pyplot.plot(x, y) x et y, énumérables de même dimension
? Afficher la ou les fenêtres de tracé :

matplotlib.pyplot.show() exécuter après avoir généré des tracés

Page 6/6



A2025 – PHYSIQUE I MP

ÉCOLE NATIONALE DES PONTS et CHAUSSÉES,
ISAE-SUPAERO, ENSTA PARIS,

TÉLÉCOM PARIS, MINES PARIS,
MINES SAINT-ÉTIENNE, MINES NANCY,

IMT ATLANTIQUE, ENSAE PARIS,
CHIMIE PARISTECH - PSL.

Concours Mines-Télécom,
Concours Centrale-Supélec (Cycle International).

CONCOURS 2025

PREMIÈRE ÉPREUVE DE PHYSIQUE

Durée de l’épreuve : 3 heures

L’usage de la calculatrice ou de tout dispositif électronique est interdit.

Les candidats sont priés de mentionner de façon apparente

sur la première page de la copie :

PHYSIQUE I - MP

L’énoncé de cette épreuve comporte 7 pages de texte.

Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il le

signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu’il est

amené à prendre.

.

Les sujets sont la propriété du GIP CCMP. Ils sont publiés sous les termes de la licence
Creative Commons Attribution - Pas d’Utilisation Commerciale - Pas de Modification 3.0 France.

Tout autre usage est soumis à une autorisation préalable du Concours commun Mines Ponts.



Physique I, année 2025 — filière MP

Impulsion mécanique et mesures optiques
Le sujet comporte quatre parties I, II, III et IV qui, bien que liées les unes aux autres,
peuvent être abordées de manière totalement indépendante sous réserve d’admettre éventuel-
lement les résultats affirmés par l’énoncé. Dans les questions posées, exprimer signifie donner
une expression littérale et calculer signifie donner une valeur numérique ; toutes les applica-
tions numériques seront réalisées avec seulement deux chiffres significatifs. Les vecteurs seront
surmontés d’une flèche, ~p ou ~v. Les grandeurs complexes seront soulignées,  ou z, sauf i, tel
que i

2
= �1.

Dans le langage général, le sens usuel du mot impulsion désigne l’élan initial qu’on peut donner à
une particule élémentaire ou à un projectile macroscopique qui poursuit ensuite son mouvement.
Le même mot a un sens plus spécifique en physique ; l’impulsion, d’abord définie en mécanique
classique comme la quantité de mouvement dans de très nombreux cas, se retrouve en mécanique
quantique comme en mécanique relativiste avec un sens étendu.
Nous admettrons dans tout ce qui suit que l’impulsion ~p d’une particule ponctuelle libre (non
engagée dans une liaison), de masse m et d’énergie E est, dans le cadre général de la théorie
d’Einstein (����), donnée par la relation dite du triangle relativiste :

E2
= p2c2 +m2c4 (1)

où p = k~p k et c = 3,0⇥10
8
m · s�1 est la célérité de la lumière dans le vide ; par ailleurs, cette

même impulsion ~p est, dans la description ondulatoire des particules, associée à la longueur
d’onde � de l’onde associée à la particule par la relation de De Broglie (����) :

� =
h

p
(2)

où h = 6,6⇥10
�34

J · Hz�1 est la constante de Planck (����).

I Impulsion de particules élémentaires
o – 1. Quel est, à votre avis, la nature du « triangle relativiste » évoqué par la relation (1) ?

Représenter celui-ci.
Quelle est l’unité usuelle, dans le système international, de l’impulsion p ? du produit pc ?

L’énergie des systèmes macroscopiques s’exprime usuellement en joule (J) ou en kilowatt-heure
(1 kW · h = 3,6MJ). Dans toute la suite de la partie I, l’énergie des particules élémentaires sera
donnée en MeV (méga-électron volt) où 1MeV = 10

6
eV et 1 eV = 1,6⇥10

�19
J. Les masses des

particules seront données en MeV/c2 et leurs impulsions en MeV/c. Par exemple la masse de
l’électron vaut me = 0,51MeV/c2 et celle du proton vaut mp = 940MeV/c2 (ou, si on préfère,
mec2 = 0,51MeV et mpc2 = 940MeV).

o – 2. On appelle énergie de repos d’une particule la valeur E0 de l’énergie de celle-ci lorsque
son impulsion est nulle. Exprimer E0 pour un proton et calculer sa valeur numérique.

Pour une particule en mouvement, le supplément d’énergie Ec = E�E0 porte le nom d’énergie

cinétique.
o – 3. On s’intéresse d’abord aux particules vérifiant la relation (1) dans le cas de la limite

classique, lorsque Ec ⌧ E0. En vous limitant au premier ordre non nul, donner dans ce
cas une expression de Ec en fonction de l’impulsion p et de la masse m de la particule.
Quelle est alors la relation entre l’impulsion ~p et la vitesse ~v d’une particule ?
Quelle vitesse maximale peut-on donner à un proton pour rester dans la limite classique
telle que Ec/E0 < 1% ? Même question pour un électron.
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Si on ne se limite pas aux faibles vitesses, on peut montrer, et on l’admettra, la relation générale
entre la masse m, la vitesse ~v de norme v = k~vk, l’impulsion ~p de la particule et la célérité c de
la lumière :

~p =
m~vp

1� v2/c2
(3)

o – 4. En déduire l’expression générale de l’énergie totale E = f(E0, v, c) d’une particule de
masse m.

o – 5. Un photon est une particule associée à une onde électromagnétique dans le vide et dont
la vitesse est donc égale à c. Que peut-on en déduire, pour sa masse, de la relation
E = f(E0, v, c) établie à la question précédente ?
Déduire de (2) l’expression de l’énergie E d’un photon en fonction de la longueur d’onde
� puis de la fréquence ⌫ de l’onde. Faire l’application numérique dans les cas des ondes
lumineuses des domaines bleu (� ⇠ 400 nm) puis rouge (� ⇠ 600 nm). On pourra exploiter
le fait que hc ' 1,2 eV⇥µm et on exprimera E en eV.

II Le spectre d’émission des atomes d’hydrogène
On s’intéresse ici à l’émission d’un photon, d’énergie E et d’impulsion p = E/c, par un atome
initialement au repos, de masse m. Au cours de cette émission, l’atome passe de l’énergie initiale
Ei à l’énergie finale Ef = Ei � �E < Ei et il recule avec, dans le cadre d’une description
classique, l’impulsion m~v et l’énergie cinétique 1

2mv2 (figure 1) de sorte que l’impulsion totale

du système complet reste nulle après l’émission, comme elle l’était avant émission. La direction
de l’impulsion ~p du photon est donc opposée à la vitesse ~v de l’atome qui recule.

Ei

atome au repos av
an

t

ap
rè

s Ef

atome qui recule
•~v

photon

E
~p

Figure 1 – Émission d’un photon par un atome au repos

o – 6. On admet que l’énergie totale du système après émission est identique à celle de l’atome
au repos avant l’émission. En déduire la relation E = mc2

⇣p
1 + 2⌘ � 1

⌘
et exprimer ⌘

en fonction de �E, m et c.
o – 7. Dans le cas de l’atome d’hydrogène, �E est de l’ordre de quelques électrons–volts. En

déduire qu’on peut négliger l’énergie de recul de l’atome et conclure quant à la relation
entre �E = Ei � Ef et l’énergie E du photon émis.

La résolution de l’équation de Schrödinger (����) dans le cas de l’atome d’hydrogène montre
que les valeurs de l’énergie En de l’atome sont quantifiées en fonction du nombre quantique
principal n 2 N⇤ et de la grandeur H = 27,2 eV selon la relation : En = �H/(2n2

). Cette
expression est confirmée par l’étude des ondes lumineuses, de longueur d’onde �, émises par un
ensemble d’atomes d’hydrogène qui rayonnent par désexcitation depuis un état initial quantifié
par ni vers l’état final quantifié par nf < ni.

o – 8. Lorsque l’état final est nf = 1, montrer qu’il existe une �max telle que � 6 �max et donner
une estimation de �max. Quel est le domaine spectral correspondant à ces raies d’émission ?
Lorsque l’état final est nf > 2, montrer qu’il existe une �min que l’on estimera, telle que
� > �min . Quel est le domaine spectral correspondant à ces raies d’émission ?
Les raies d’émission de l’hydrogène dans le domaine visible (les raies de Balmer) ont été
étudiées à partir de ���� par Ångstrøm ; à quelles valeurs de nf correspondent-elles ?
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C’est la connaissance précise de ce spectre qui a permis l’étude de la quantification de l’éner-
gie des atomes donc l’introduction de la mécanique quantique au début de XXe siècle. Cette
connaissance a été par la suite améliorée au moyen de la spectrométrie interférentielle.

III Mesures interférométriques de longueurs d’onde
En ����, Michelson est le premier américain à recevoir le prix Nobel de physique pour
ses instruments optiques de précision et les mesures spectroscopiques et métrologiques réalisées

au moyen de ceux-ci. En particulier, il publiera en ���� des mesures relatives aux spectres
d’émission de plusieurs sources, obtenues par spectroscopie interférentielle, et notamment pour
les raies H↵ (rouge) et H� (bleue) d’émission par les atomes d’hydrogène.

III.A L’interféromètre de Michelson
Le schéma du montage utilisé par Michelson est proposé figure 2. Le dispositif monochroma-
teur, formé d’un prisme de verre dispersif et d’une fente étroite, éclaire l’appareil en sélection-
nant une raie quasi-monochromatique de longueur d’onde �0, appartenant au domaine visible.
L’observation est réalisée au moyen d’un oculaire afocal, réglé à l’infini : il donne d’un objet
situé à grande distance une image également à grande distance, mais agrandie.

source

N

O

~ey

~ex

~ez

L1

L2
monochromateur

prismefente
miroir fixe

V1

V2

miroir mobile

vi
s

de

ch
ar

io
ta

ge

oculaire

x

z

Figure 2 – Dispositif de mesure en spectroscopie interférentielle

o – 9. L’interféromètre comporte deux lames de verre L1 et L2, parallèles, de même épaisseur e
et de même indice optique n, inclinées d’un angle ⇡/4 relativement à l’axe (O,~ex) normal
au miroir fixe. La lame L1 est munie d’une couche semi-réfléchissante sur une seule de ses
faces ; laquelle ? Justifier, en vous appuyant sur un schéma.
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o – 10. Après réglage des vis V1 et V2 les miroirs fixe et mobile sont rendus rigoureusement
perpendiculaires ; l’axe optique (O,~ez) de l’oculaire est alors confondu avec la normale au
miroir mobile et l’opérateur observe, au moyen de cet oculaire réglé à l’infini, des franges
d’interférence. Quelle est la forme de ces franges ?
Peut-on encore les observer si l’oculaire est déréglé ?

o – 11. Tout en observant les franges, l’observateur peut actionner la vis micrométrique et dépla-
cer le miroir mobile dans le plan (O,~ex,~ey), le long de l’axe (O,~ez). Relier le nombre �N
de franges sombres qui défilent au centre du champ et le décalage �z du miroir mobile.

o – 12. Exprimer, au moyen d’un schéma approprié, la différence de marche observée à l’infini
dans une direction donnée, en fonction de l’écart séparant les deux miroirs.
Le déplacement maximal de la vis micrométrique à partir du contact optique est noté
�zmax. Déterminer, après ce déplacement, l’angle �✓ qui sépare le centre de la figure de
la première frange de même nature.

o – 13. Dans le cas d’une des raies de l’hydrogène atomique, on observe le défilement de N = 3156

franges pour un décalage �z = 1035± 2µm. S’agit-il de la raie H↵ ou H� ?
Avec quelle précision relative mesure-t-on sa longueur d’onde �0 ?
Que vaut alors �✓ ? Commenter.

III.B Cohérence spectrale d’une source
Une source de lumière éclaire avec la même intensité I0 les deux voies d’un interféromètre ;
l’observation est réalisée en un point où la différence de marche est �.

o – 14. Dans le cas où la source est rigoureusement monochromatique, de longueur d’onde �0,
exprimer l’intensité I(�) en fonction de I0, �0 et �. Définir et calculer le facteur de contraste
C des franges.

Certaines sources lumineuses sont en fait bichromatiques : elles émettent deux radiations de
longueurs d’onde très proches �1 et �2 et on pose alors �0 = 1

2 (�1 + �2) et �� = |�2 � �1| en
admettant toujours ��⌧ �0.

o – 15. Pour certaines sources bichromatiques les deux radiations émises sont de même intensité ;
c’est le cas des lampes à vapeur de sodium, étudiées notamment par Michelson dans
les conditions décrites en III.A. Expliciter l’intensité I observée en fonction de I0, de la
différence de marche �, de �0 et de ��.
Exprimer le facteur de contraste C des franges et montrer comment il permet la mesure
de �0/��.

o – 16. D’autres sources, comme celles émettant la raie H↵ de l’hydrogène, peuvent être écrites
comme bichromatiques mais les intensités I1 et I2 < I1 émises aux longueurs d’onde �1 et
�2 sont différentes. Pour quelle(s) valeur(s) de � le facteur de contraste des franges est-il
minimal ? Quelle est cette valeur minimale ?
Dans le cas de la raie double H↵, l’écart �� est de l’ordre de 1,4⇥10

�11
m. Est-il possible

de le mettre en évidence avec le montage proposé ci-dessus ?

III.C Les tubes à hydrogène
Pour l’étude du spectre d’émission de l’atome d’hydrogène, une première technique 1, initiée
dans les années ����, a consisté à utiliser un tube AB contenant de l’hydrogène moléculaire
(dihydrogène, formule H2) sous faible pression (150mbar) soumis à des décharges électriques de

1. D. Chalonge et Ny Tsi Zé, J. Phys. Radium, ����
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haute tension entre deux électrodes E1 et E2 ; l’observation se fait au travers d’une fenêtre de
quartz F (cf. figure 3). Le spectre d’émission obtenu présente la superposition d’un fond quasi-
continu et de raies bien identifiées, comme le montre la figure 4 tirée de l’article présentant la
technique originelle.

Figure 3 – Illustration du dispositif : reproduction de la figure 1 de l’article originel

o – 17. Quel est le rôle du circuit à circulation d’eau qui entoure le tube central ?
Sur le spectre proposé en figure 4, quelle est l’unité de la graduation donnée en abscisse ?
Quelle est, à votre avis, l’origine du fond continu (essentiellement dans le proche ultra-
violet) marqué en trait pointillé gris ?

Figure 4 – Spectre d’émission du tube à hydrogène en échelle logarithmique

On préfère actuellement utiliser des lampes à décharge d’une constitution différente : il s’agit
de tubes à décharge remplis de vapeur d’eau permettant l’obtention d’un spectre atomique sans
bande continue. En présence des décharges à haute tension, ce type de lampe est le siège des
réactions H2O = HO+ H.

o – 18. Quelle propriété du spectre d’émission de la molécule hydroxyle HO est ici mise à profit ?

Ces lampes contiennent une certaine proportion d’eau lourde, molécules HDO dans laquelle un
des deux atomes d’hydrogène 1

1H est remplacé par un atome de deutérium 2
1D, dont le noyau est

formé d’un proton et d’un neutron. Si on tient compte de la masse mN du noyau atomique,
on peut montrer que la longueur d’onde d’émission d’une des raies spectrales de l’hydrogène
atomique vérifie la relation :

� = �1
me +mN

mN

où me est la masse de l’électron et �1 la longueur d’onde idéale si mN ! 1.
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o – 19. Les raies d’émission du deutérium sont-elles, par rapport à celle de l’hydrogène ordinaire,
décalées vers le bleu ou vers le rouge ?
De quelle résolution spectrale (en nanomètre) faut-il disposer pour séparer les raies de
l’hydrogène et celles du deutérium?
À partir d’une lecture de la courbe de la figure 4, faire l’application numérique dans le
cas de la raie H�.

IV L’équation de Klein–Gordon
Lors du développement de la mécanique quantique (ou mécanique ondulatoire), l’onde de ma-
tière  (~r,t) a d’abord été considérée comme solution de l’équation de Schrödinger (4) :

� ~2
2m
� + V (~r) (~r,t) = i~@ 

@t
où ~ =

h

2⇡
et i2 = �1 (4)

pour une particule de masse m repérée par sa positon ~r et soumise à l’interaction décrite par
la fonction potentiel scalaire V (~r). En ����, Klein et Gordon en ont proposé une version
modifiée qu’on écrira :

~2c2� +

✓
i~ @
@t

� V (~r)

◆2

 (~r,t) = m2c4 (~r,t) (5)

Dans la suite on s’intéressera exclusivement aux solutions de l’une ou l’autre équation, de la
forme :

 (~r,t) =  
0
exp


� i

~ (Et� p(E)x)

�

où  
0

est une certaine constante complexe, x est l’une des coordonnées cartésiennes de ~r, E > 0

est l’énergie de la particule et p(E) > 0 son impulsion.

o – 20. L’état associé à cette fonction d’onde est-il stationnaire ?
Dans quel sens le mouvement de la particule décrite par cette onde a-t-il lieu ?
Exprimer les vitesses de phase v' et de groupe vg en fonction de E, de p(E) et de sa
dérivée.

o – 21. Exprimer p(E) et vg(E) dans le cas d’une particule vérifiant l’équation de Schrödinger
dans un domaine où V est constant. En déduire le caractère relativiste ou non du modèle
associé à l’équation de Schrödinger.

o – 22. Répondre aux mêmes questions dans le cas d’une particule vérifiant l’équation de Klein–
Gordon (5).

On s’intéresse enfin à la résolution du problème physique suivant : la particule étudiée est
libre (V = 0) pour x < 0 et x > a et pourvue d’une énergie E, tandis que, dans l’intervalle
x 2 [0,a], elle est soumise à une interaction caractérisée par V = V0 > E (figure 5) et même
V0 � E > mc2. Les solutions de l’équation (de Schrödinger ou de Klein–Gordon) seront
donc écrites, pour x < 0 et x > a, sous les formes respectives :

 (x < 0,t) =  
0
exp


� i

~ (Et� px)

�
+R 

0
exp


� i

~ (Et+ px)

�

 (x > a,t) = T  
0
exp


� i

~ (Et� px)

�

où T et R sont deux constantes complexes.
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x

V (x)

a0

V0

 =  
0
e
�iEt�px

~ +R 
0
e
�iEt+px

~  = T  
0
e
�iEt�px

~

E
" = V0 � E > mc2

Figure 5 – Barrière de potentiel

On se place d’abord dans le cas de l’équation de Schrödinger.
o – 23. Quelle est la nature de l’onde dans le domaine x 2 [0,a] ?

Quelles relations permettent de calculer R et T ? On ne demande pas de les exprimer ici !

Quel phénomène physique peut-on mettre ainsi en évidence ?
Quelle est l’interprétation physique de |T |2 ?

On se place maintenant dans le cas de l’équation de Klein–Gordon.
o – 24. Quelle est la nature de l’onde dans le domaine x 2 [0,a] ? On notera qu’en introduisant

" = E � V0, on a q2 =
("�mc2)("+mc2)

c2
> 0.

Les mêmes relations que dans l’étude de la barrière de potentiel dans le cadre de l’équation de
Schrödinger conduisent, pour l’onde de Klein–Gordon, à la relation (que l’on admettra) :

|T |2 = 1

|cos'� i↵ sin'|2
avec ↵ =

1

2

✓
p

q
+

q

p

◆
et ' =

qa

~

o – 25. Déterminer la valeur maximale de |T |2. Commenter.

FIN DE L’ÉPREUVE
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Sujet mis à disposition des concours : Cycle international, ENSTIM, TELECOM INT, TPE–EIVP
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LASERS ET DISTANCES
Les vecteurs sont surmontés d’un chapeau s’ils sont unitaires (êx) ou d’une flèche dans le cas
général (~v). Sauf contre-indication locale, on utilisera 3 chiffres significatifs pour les applications
numériques. Les trois parties de ce problème sont totalement indépendantes.

I. — Un peu d’astrométrie

I.A. — Triangulation

La triangulation est une méthode optique de la mesure de
la distance entre les points A et C d’un triangle ABC quel-
conque basée sur la détermination de deux angles de ce tri-
angle et la connaissance de la longueur AB. C’est en utilisant
cette méthode de proche en proche en mesurant des centaines
de triangles entre Dunkerque et Barcelone de 1792 à 1799 que
les astronomes Delambre et Méchain furent chargés de me-
surer la longueur du méridien terrestre. Le mètre fut alors
défini comme la 40 millionième partie de cette distance.

1 — On considère le triangle de la figure 1. Montrer que
la mesure des angles α et β et de la distante AB = a permet
la détermination de AC. On donnera l’expression de AC en
fonction de a, α et β comptés positivement.

Figure 1 – Triangulation
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I.B. — Le génial Aristarque

Au IIe siècle av. J.C., l’astronome grec
Aristarque de Samos imagina une façon de
comparer la distance de la terre à la lune
TL et la distance de la terre au soleil TS.
Lors d’une éclipse de lune, il se convainc
que la lune possède un diamètre environ
trois fois plus petit que celui la terre. Plus
tard, il mesure l’angle θ1/2 correspondant
au moment où la lune est placée de telle
sorte qu’elle apparâıt à demi-pleine vue
depuis la terre (premier ou dernier quar-
tier). Les divers angles sont représentés sur
la figure 2.

Terre

Lune

Soleil¸

Figure 2 – terre, lune et soleil.

2 — Que vaut l’angle λ1/2 correspondant à θ1/2 ? On justifiera sa réponse.

Après de nombreuses mesures, délicates pour l’époque, Aristarque indique que l’angle θ1/2 est
compris entre 87◦ et l’angle droit et il utilise la valeur θ1/2 = 87◦ pour ses calculs.

3 — Déterminer la valeur numérique du rapport
TS

TL
qu’il en déduit. Que pensez-vous de

cette valeur ? La valeur réelle est-elle 10 fois ou 100 fois plus importante ? Donner une ou
plusieurs raisons de cet écart.

4 — Lors d’une éclipse de soleil, on peut observer que, depuis la terre, la lune et le soleil
possèdent le même diamètre apparent. Évaluer la valeur minimale du rapport entre le rayon
du soleil et celui de la terre qu’a obtenu Aristarque. Interprétez sa conclusion stupéfiante pour
l’époque : « Pourquoi faire tourner la torche autour de la mouche ? » En réalité, le diamètre
du soleil est-il approximativement 100 fois ou 1000 fois plus grand que celui de la terre ?

I.C. — Détermination des distances soleil - planètes

La période sidérale d’une planète, considérée comme ponctuelle, est le temps mis par celle-
ci pour faire un tour complet autour du soleil dans un référentiel héliocentrique. La période
sidérale tt de la terre est de 365 jours. Toutefois la période sidérale tp d’une planète n’est pas
directement mesurable sur la terre car elle est aussi en mouvement. En revanche, il est aisé
de mesurer, depuis la terre, la période synodique τp d’une planète définie comme la période
de réapparition d’une conjonction, c’est-à-dire un alignement entre le soleil, la terre et cette
planète. On supposera que le mouvement des planètes autour du soleil est circulaire uniforme
et que tous ces cercles sont dans le même plan.

5 — Dans le cas d’une planète supérieure, c’est-à-dire plus éloignée du soleil que la terre,
exprimer la période sidérale tp de la planète en fonction de sa période synodique τp et de la
période de la terre tt. On pourra s’aider d’un dessin en remarquant qu’entre deux conjonctions,
la terre a fait autour du soleil, plus qu’un tour alors que la planète s’est déplacée d’un angle
inférieur à 360◦.

6 — En observant la planète mars depuis la terre, Copernic trouve pour cette planète une
période synodique τm = 780 jours. Calculer la période sidérale tm de la planète mars.

7 — En notant rp le rayon de l’orbite de la planète autour du soleil, énoncer puis retrouver
rapidement par le calcul, la troisième loi de Kepler reliant rp, tp, la masse du soleil Ms et la
constante de gravitation G. On précisera les hypothèses envisagées pour ce calcul. En prenant
comme unité de temps la période sidérale tt de la terre et comme unité de distance la distance
terre-soleil (l’unité astronomique notée ua), donner la relation simple existant entre rp et tp et
calculer la distance de la planète mars au soleil.
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I.D. — Télémétrie laser-lune

Les mesures modernes de la distance terre-lune sont effectuées en utilisant un laser vert de
longueur d’onde Λ = 523 nm. Cinq rétroréflecteurs catadioptriques (assemblages de coins de
cubes de surface collectrice totale Σ1 = 0, 3 m2) ont été placés en différents points de la lune par
les missions humaines américaines Apollo 11, 14 et 15 ainsi que par les sondes robots soviétiques
Lunokhod. Pendant une série de mesures, on envoie en direction de l’un de ces réflecteurs et à
la fréquence de 10 Hz des impulsions laser possédant une énergie ε = 300 mJ. La divergence
du faisceau laser confère à celui-ci la forme d’un cône de demi-angle au sommet σ0 = 4′′. La
réflexion sur les rétroréflecteurs est elle aussi divergente de demi-angle σ1 = 12′′. La réception
est assurée par un détecteur situé au foyer du télescope servant à l’émission du laser, la surface
collectrice équivalente du télescope est Σ0 = 1, 8 m2.

8 — Pourquoi utilise-t-on des rétroréflecteurs catadioptriques en coins de cubes ? On justi-
fiera sa réponse par un schéma bidimensionnel.

Le rendement total ρt pour une impulsion est le produit du rendement aller ρa par le rendement
retour ρr. Chacun d’eux étant défini comme le rapport de la surface collectrice sur la surface
éclairée. On néglige l’effet de l’atmosphère terrestre et toute lumière parasite.

9 — Déterminer l’expression de ρt en fonction de σ0, σ1, Σ0, Σ1 et de la distance dℓ entre
le point d’émission du laser et le rétroréflecteur visé. En prenant dℓ = 360 000 km, déterminer
l’énergie maximale théoriquement reçue par le détecteur en retour de chaque impulsion. Illustrer
ce résultat en termes de photons et proposer une méthode pour mesurer effectivement la distance
dℓ.

FIN DE LA PARTIE I

II. — Utilisation d’un proximètre laser

II.A. — Mesure de petites distances

L

P

O
O1

O2

P 0

Surface diffusante

Laser

base

d

'
µ

Barrette
photoréceptrice

H

¢

h

Figure 3 – Schéma de principe du proximètre laser

Le schéma de principe d’un proxi-
mètre à laser est représenté sur la
figure 3. La lentille L est conver-
gente de distance focale f et d’axe
optique ∆. Les cellules photorécep-
trices de largeur d sont situées dans
le plan focal image de la lentille. Le
segment O1O de longeur h est ap-
pelée base du système. L’angle θ
entre la base et l’axe optique ∆ est
fixe, pour simplifier les calculs on
prendra ici θ = 45◦. On note ϕ

l’angle entre la base et la droite
O1P . Le pointO2 correspond à l’in-
tersection entre l’axe optique de la
lentille ∆ et la surface de la barrette photoréceptrice. La diffusion en P est suposée isotrope.

10 — Quelles sont les hypothèses pour que d’une part la lentille travaille dans les conditions
de Gauss et d’autre part que l’image P ′ de P soit localisée sur la barrette photoréceptrice ?

11 — Déterminer l’expression de H en fonction de h, f et y = O2P
′. Calculer sa valeur

numérique si h = 1, 00m, f = 2, 50 cm et y = 1, 00mm.
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12 — La largeur d d’une cellule de la barrette photoréceptrice induit une résolution angu-
laire δϕ qui entraine une imprécision δH sur la mesure de H. Dans le cas y ≃ 0, estimer δϕ en
fonction de f et d puis δH en fonction de d, f , H et h. En déduire qu’à d et f fixés, lorsque
h varie, l’erreur relative minimale est obtenue si h = H ; calculer sa valeur numérique dans ce
cas pour f = 2, 50 cm et d = 10, 0 µm.

A la sortie du laser, on note dλ = 2r le diamètre du faisceau de longueur d’onde λ.

13 — Pourquoi le faisceau laser diverge-t-il d’un angle αd ? Donner un ordre de grandeur
de cet angle de divergence en fonction de λ et r.

14 — Déterminer un ordre de grandeur d′ du diamètre de la tache qui en résulte sur la
cellule. On exprimera d′ en fonction de λ, f et r. Justifier la valeur numérique de f si λ = 630 nm
et r = 1mm.

II.B. — Mesure de grandes distances

L
O

O1

Surface diffusante

Laser

Détecteur

H

bn

M

O

P

h
®

Ã t( )

Ã t( )

t

Ã
m

0 p 2p 3p 4p

bk

+

Figure 4 – Mesure de distance à miroir pivotant

Pour déterminer de plus grandes distances,
on utilise un dispositif du même type que
dans la partie II.A : le laser éclaire la sur-
face en se réfléchissant sur un miroir plan
que l’on fait osciller autour d’un axe di-
rigé selon le vecteur k̂ et passant par O.
L’ensemble est représenté sur la figure 4,

on prendra (M̂OO1) = 45◦. Le détecteur
est une cellule photoréceptrice située dans
le plan focal de la lentille L de distance
focale f . Cette cellule est de très petite
dimension devant f . On note finalement
H = O1P la distance à mesurer. On fera
l’hypothèse que H ≫ f et que la distance

OO1 = h est connue. Les oscillations du miroir permettent à l’angle ψ, dit de balayage, de varier
comme une fonction affine par morceaux de période 2p représentée sur la figure 4. Le détecteur
est désactivé pendant les intervalles de temps [(2m+ 1) p, (2m+ 2) p] pour tout entier m ∈ N.
La diffusion est toujours isotrope et identique en chaque point P de la surface. Le temps de vol
des photons est négligeable devant la période 2p.

15 — Déterminer la relation entre ψ et l’angle α de la normale au miroir avec la base.

16 — Montrer que la mesure de H se ramène à une mesure de temps.

17 — Représenter l’allure de la variation de l’intensité lumineuse reçue par le photodétec-
teur en fonction du temps sur une période.

18 — Cette intensité est en fait récupérée sous la forme d’un signal électrique. Expliquer
pourquoi l’opération qui consiste à dériver ce signal par rapport au temps permet d’améliorer
la précision de la mesure de H. Proposer un montage électronique utilisant un amplificateur
opérationnel, une résistance R et un condensateur de capacité C qui permet effectivement
d’effectuer cette dérivée. On justifiera ce montage par le calcul.

FIN DE LA PARTIE II
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III. — Diffusion thermique. Interaction Laser-Matière

matériau
Faisceau

laser

Zone de fusion

O x

2r

be

, ,

x

Figure 5 – Interaction laser-matière

Un rayonnement laser arrivant sur la surface
d’un matériau donne lieu à différents effets :
thermiques, électromécaniques, etc. Pour sim-
plifier on supposera que la totalité de l’énergie
du faisceau laser est absorbée par le matériau.
Ceci se traduit par une élévation de la tempé-
rature, et donc par un accroissement des vibra-
tions de la structure moléculaire ou cristalline
du matériau. Cette transformation se fait à la
surface de la zone d’interaction dans une épais-
seur caractéristique moyenne δ appelée profondeur de pénétration moyenne de la lumière. Cette
zone d’interaction devient une source de chaleur intense qui échauffe la matière par conduction
thermique. Lorsque δ est faible devant le diamètre 2r du faisceau laser, on peut utiliser un
modèle unidimensionnel de conduction de la chaleur. On néglige tout écoulement de chaleur en
dehors de la direction Ox de propagation. Pendant le début de l’échauffement, le matériau est
soumis à un flux thermique constant. Lorsque celui-ci se met à fondre, il apparait une interface
liquide-solide, dont la température est supposée constante et égale à la température de fusion Tf
du matériau. Cette interface se propage alors dans le matériau. On notera Lf la chaleur latente
de fusion du matériau. On considère que la partie fondue du matériau transmet intégralement
la lumière du laser.

III.A. — Équation de diffusion

Le matériau de masse volumique ρ, de chaleur massique c, de conductivité thermique λ occupe le
demi espace défini par x > 0. Il est initialement en équilibre à la température T0. La conduction
de la chaleur se fait suivant l’axe Ox. On note ~jQ(x, t) = jQ(x, t) êx, le vecteur densité de flux
thermique et T (x, t) la température du milieu que constitue le matériau. On néglige toute perte
de chaleur dans la région x < 0.

19 — Établir l’équation aux dérivées partielles vérifiée à la fois par T (x, t) et par jQ(x, t).

On introduira le paramètre µ =
λ

ρc
. On vérifiera que cette équation admet une famille de

solutions de la forme :

θ(x, t) = θ0 +
b e−u2

√
µt

avec u =
κx
√
µt

Les quantités θ0 et b sont des constantes d’intégration et κ un rapport de deux nombres entiers
positifs que l’on déterminera.

III.B. — Flux thermique constant

On suppose que la surface du matériau (située en x = 0) reçoit à partir de l’instant t = 0 une
densité de flux constant ~jQo

dirigée selon êx.

20 — Montrer que la solution proposée à la question 19 ne convient pas dans ce cas.

On admet que la solution correspondant à cette situation s’écrit pour la température sous la
forme

T (x, t) = A1 +
2B1

√
µt

λ
F (u) avec F (u) =

e−u2

√
π

− u erfc(u) et erfc(u) = 1−
2
√
π

∫ u

0

e−t2dt

21 — Déterminer l’expression de jQ(x, t) en fonction de B1 et erfc(u).
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22 — Étudier toutes les conditions aux limites du problème en x et en t. On commentera
toutes ces conditions aux limites et on admettra que si u→ +∞ alors

erfc(u) ∼
e−u2

√
π

[
u−1 −

1

2
u−3 + o(u−3)

]
.

En déduire les expressions de A1 et B1 en fonction de T0 et ~jQo
.

III.C. — Température constante

On suppose à présent que la surface située en x = 0 est maintenue à la température constante
T1. On montre que la solution correspondante s’écrit T (x, t) = A2 + B2 erfc(u) où la fonction
erfc(u) est la même que celle définie dans la partie précédente, A2 et B2 étant deux températures
constantes.

23 — Étudier toutes les conditions aux limites en x et t de T (x, t). On déterminera no-
tamment les expressions de A2 et B2 en fonction de T1 et T0.

24 — Déterminer l’expression de jQ(x, t) ; ce résultat vous parâıt-il plausible ?

III.D. — Modélisation d’une opération de perçage

On perce une plaque d’aluminium ; les valeurs numériques correspondant à cette opération
sont les suivantes : λ = 210 W.m−1.K−1, ρc = 2, 40 · 106J.m−3.K−1, ρ = 2, 70 · 103 kg.m−3,
Lf = 3, 88 · 105 J.kg−1, la température initiale de la surface considérée est T0 = 30◦C et la
température de fusion de l’aluminium est Tf = 660 ◦C. La surface est chauffée dans un premier
temps jusqu’à la température de fusion puis l’avancée du perçage se fait alors par liquéfaction
progressive de la matière. On admettra que le front liquide-solide se propage sans déformation
avec une vitesse constante ~v et que l’aluminium se comporte comme un corps noir. La densité
de flux thermique ~jQo

du faisceau laser de section σ = 0, 20 cm2 et de puissance Pℓ = 1, 00 kW
est supposée constante.

25 — En utilisant les résultats de la partie III.B, déterminer l’expression du temps tf
au bout duquel la surface du matériau atteint la température de fusion Tf . Calculer sa valeur
numérique.

À partir de l’instant tf , on suppose que le front liquide-solide se propage dans le matériau à la
vitesse ~v = vêx, où v est une constante positive dans le référentiel du laboratoire. On parle de
front de fusion. On se place dorénavant dans le référentiel lié à ce front, dans lequel l’abscisse
du point O devient x = −vt.

26 — En écrivant la conservation de l’énergie pendant la durée dt et sur une tranche que

l’on précisera, établir une relation donnant ~v en fonction de ~jQo
, ρ, λ, Lf et

∂T

∂x

∣∣∣∣
x=0

.

27 — La distribution de température dans le repère lié au front de fusion est supposée
stationnaire. Montrer que la distribution de la température à droite du front de fusion vérifie
l’équation différentielle :

dT

dx
= −γ

d2T

dx2

où l’on exprimera γ en fonction de µ et v.

28 — Déterminer l’expression de T (x) en fonction de T0, Tf , v et µ.
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29 — En déduire l’expression de v en fonction de Pℓ, σ, ρ, Lf , c, Tf et T0. Calculer la
valeur numérique de v pour le perçage considéré.

FIN DE LA PARTIE III

FIN DE L’ÉPREUVE
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NATURE DE LA GRAVITATION

Un aspect fondamental de la gravitation est le principe d’équivalence. Introduit par Galilée au
début du xviie siècle alors qu’il étudiait la chute des corps, il fut le point de départ du développement
de la théorie de la gravitation. Un peu moins d’un siècle plus tard, Newton fut le premier à décrire
l’interaction gravitationnelle par une formule. Il en déduisit la version la plus élémentaire du ≪ principe
d’équivalence faible ≫ : la trajectoire d’un corps tombant en chute libre ne dépend ni de sa structure,
ni de sa composition.

Si l’on sait aujourd’hui que la gravitation régit la dynamique des composantes de l’Univers (planètes,
étoiles, galaxies, ...), l’observation récente de l’expansion de l’Univers a conduit à se poser des questions
fondamentales sur les théories de la gravitation classique. L’introduction dans la théorie cosmologique
de l’énergie noire, qui serait la contribution énergétique majoritaire de l’Univers, permet d’expliquer
certaines observations mais sa nature et ses propriétés restent principalement théoriques. Certaines
extensions de la théorie de la gravitation suggèrent même l’existence d’une répulsion gravitationnelle
entre matière et antimatière, nommée antigravité.

La première partie propose une description de l’expérience d’Eötvös ayant permis, dès la fin du
xixe siècle, de valider une version réduite du principe d’équivalence avec une grande précision pour
l’époque. La seconde partie remet en cause le principe d’équivalence et propose une retouche des lois
de Newton sur la gravitation universelle. La dernière partie s’intéresse au projet Gbar proposant de
peser l’antimatière.

Les parties I, II et III sont indépendantes entre elles. On notera i le nombre complexe tel que i2 = −1.
Les données numériques et un formulaire sont rassemblés en fin d’épreuve. Les vecteurs sont repérés
par une flèche (~v) ou par un chapeau s’ils sont unitaires (‖ûx‖ = 1).

I. — L’expérience d’Eötvös

1 — Qu’appelle-t-on ≪ principe d’inertie ≫ en mécanique ? Énoncer le principe fondamental de
la mécanique dans un référentiel galiléen. La grandeur caractéristique du mobile étudié dans cette
expression porte, ici et dans la suite, le nom de masse inerte mi.



Nature de la gravitation

2 — Expliciter la force de gravitation entre deux points matériels. On introduira le paramétrage
nécessaire sur un schéma. La grandeur caractéristique du mobile intervenant dans cette expression
porte le nom de masse grave ou masse pesante.

Quantifier les déviations possibles au principe d’équivalence faible suppose que l’on puisse considérer les
masses inertielle mi et grave (ou pesante) m comme pouvant être différentes. Les premières mesures
précises des écarts relatifs entre masses inertielle et grave, ont été obtenues par comparaison des
périodes de deux pendules simples de masse et de composition différentes ; cette méthode, d’abord
décrite par Galilée, a été menée par Newton (1686) ou encore Bessel (1826) et a conduit à des
valeurs d’écarts relatifs compris entre 10−3 et 10−5. L’invention du pendule de torsion par Eötvös

autour de 1888, permit d’augmenter fortement la sensibilité.

I.A. — Mesure du coefficient de torsion du pendule

L’expérience d’Eötvös utilise un pendule de torsion. Dans le dispositif simplifié, représenté sur la
figure 1, deux sphères appelées S1 et S2, homogènes de nature différente et de même masse pesante
m ont leurs centres d’inertie placés aux extrémités d’une barre rigide, de masse M et de longueur
2L, suspendue en son centre à un fil de quartz très fin, de constante de torsion C. On note mi1et
mi2 les masses inertielles respectives de S1 et de S2. La barre est libre de tourner autour de l’axe
Oz en tordant plus ou moins le ruban de suspension. On suppose que la barre reste tout le temps de
l’expérience dans le plan orthogonal à l’axe Oz.

Source
lumineuse

Détecteur

Fil de torsion

Miroir

m

m

m i1

m i2

L

L~g

z

µ

S1

S2O

M
éridien

terrestre

buz

Ouest

Est

Fig. 1 – Dispositif d’Eötvös

Le dispositif est placé de sorte qu’à l’équilibre, la
barre soit normale au plan méridien à la latitude
λ. Sa position est alors repérée par réflexion d’un
faisceau lumineux sur un miroir plan, fixé au milieu
de la barre, à l’aide d’une lunette.

On note R le référentiel du laboratoire centré surO
et supposé galiléen dans cette sous-partie où l’ob-
jectif est la détermination de la constante de tor-
sion C du pendule.

On note J0 le moment d’inertie de la barre par rap-
port à l’axe vertical (Oz) et J le moment d’iner-
tie du système S = {barre + sphères} par rapport
à (Oz). On repère la position de la barre à l’ins-
tant t par l’angle de torsion θ(t). On fait tourner le
système d’un angle θm puis on le lâche sans vitesse

initiale. Le fil exerce alors sur la barre un couple de rappel dont le moment en O a pour intensité
M0 = −C(θ(t)− θ0) , l’angle θ0 repère la position de la barre en l’absence de torsion.

3 — Montrer que ce couple dérive d’une énergie potentielle que l’on déterminera. En déduire
l’énergie potentielle Ep,S de S en fonction de C et θ− θ0, on choisira Ep (θ0) = 0. Déterminer l’énergie
cinétique Ec,S du solide S. En déduire l’expression de l’énergie mécanique de S en fonction de C, J ,
θ, θ0 et θ̇ = dθ

dt .

4 — On fait l’hypothèse que la puissance totale des forces de frottement peut se mettre sous la
forme Pfrot = −αθ̇2 où α est une constante positive. Etablir l’équation différentielle vérifiée par θ(t).

5 — On observe des oscillations très faiblement amorties. Quelle est la condition satisfaite par les
constantes J , C et α ? Préciser la forme de la solution sans déterminer l’expression exacte des deux
constantes d’intégration. Quelle est la valeur θ∞ de θ(t) lorsque t → ∞. Exprimer la pseudo-période
T du mouvement en fonction de la période propre T 0 et de la constante ε = α

2
√
JC

≪ 1. A quelle

condition sur ε, l’erreur relative introduite par l’approximation T ≃ T 0 est-elle inférieure à 1% ?
Cette condition sera supposée vérifiée par la suite.
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On note J1 les moments d’inertie, considérés égaux, de chacune des deux sphères par rapport à l’axe 
vertical passant par leurs centres respectifs. On admettra que si le principe d’équivalence faible 
s’applique alors J = J0 + 2J1 + 2mL2. On mesure la période T des oscillations pour différentes valeurs 
de la longueur L avec des sphères de masse pesante m = 0, 2 kg. Les résultats sont consignés dans le 
tableau ci-dessous :

L [m] 6, 0 · 10−2 7, 0 · 10−2 8, 0 · 10−2

T [s] 436 509 581

6 — En utilisant les résultats précédents, écrire la relation entre T 2, L2, J0, J1, m et C. À partir
des résultats de mesure donner une estimation de la valeur de la constante de torsion C. Compte-tenu
des ordres de grandeurs des différents termes intervenant dans l’expression de T montrer que l’on peut
écrire

m ≈ C

8π2

T 2

L2
.

I.B. — Résultats et précision de l’expérience

Dans cette sous-partie le référentiel R du laboratoire centré sur O n’est plus supposé galiléen et l’on
prend en compte les éventuels effets de la rotation de la terre sur les masses inertes mi1 et mi2 a priori

différentes des deux sphères. On se place donc dans le référentiel Rt attaché au centre de gravité G

de la terre supposé galiléen.

ax
e terrestre

¸

O

Méridien
terrestre

buz

~!t

RtG

bu¸

bu½

Fig. 2 – Vue en coupe

La terre est supposée en rotation uniforme à la vitesse ~ωt (de norme ωt)
autour de l’axe terrestre et le point O se trouve à la latitude λ. Une vue
en coupe de la situation est représentée sur la figure 2.

L’ensemble constitué du pendule et du système optique est solidaire
d’une plateforme. Lors d’une première mesure dans la configuration de
la figure 1, on relève une valeur θ∞1

pour l’équilibre du pendule. On fait
alors tourner la plateforme d’un angle π afin d’inverser les positions des
deux sphères, et l’on répète la mesure. On relève une valeur θ∞2

pour
l’équilibre du pendule dans cette nouvelle configuration.

7 — Déterminer les composantes des forces d’inertie d’entrâınement
subies par mi1 et mi2 dans la base (ûz, ûρ, ûλ) en fonction de λ, L, ωt,
Rt, mi1 ou mi2 .

8 — En exploitant le théorème du moment cinétique à l’équilibre, déterminer l’écart angulaire
∆θ = θ∞1

− θ∞2
entre les deux expériences en fonction de λ, C, L, ωt, Rt, mi1 et mi2 .

9 — La lunette utilisée pour la mesure permet de détecter une déviation du faisceau lumineux
de l’ordre de 1, 0mm à 2, 0m de distance. En utilisant l’expression de m trouvée à la question 6,

déterminer la précision de la méthode en estimant le rapport δm =
|mi1

−mi2 |
m . On donne λ = 45◦ et

L = 6, 0 cm.

10 — La déviation observée est nulle. Que déduire de ce résultat ?

FIN DE LA PARTIE I

II. — Corriger la gravitation universelle classique ?

Leurs observations ne concordant pas avec les modèles classiques de la physique, les astronomes ont 
deux solutions : soit ils rajoutent arbitrairement au cosmos un ingrédient, une matière invisible qui 
permet de justifier les anomalies détectées, soit ils modifient les lois.

Si dans leur très grande majorité, les physiciens ont, depuis 1930, privilégié la première voie, il apparâıt
aujourd’hui que l’imperceptibilité persistante de cette matière noire devient gênante.

Après avoir mis en évidence certaines des observations qui ont conduit plusieurs astronomes à s’inter-
roger sur l’existence d’une matière noire invisible, nous aborderons quelques aspects de la théorie de
la gravitation modifiée par M. Milgrom.
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II.A. — Gravitation newtonienne, matière noire

Depuis plus de 50 ans les astrophysiciens comparent la quantité de matière visible dans les galaxies
spirales, comme notre Voie Lactée, à celle qui est nécessaire pour expliquer la vitesse de rotation des
étoiles dans ces mêmes galaxies.
Une galaxie est assimilable à une distribution spatiale D de matière de masse volumique ρ créant un
champ gravitationnel supposé statique ~Γ qui satisfait aux équations locales suivantes :

div~Γ = −4πGρ et ~rot~Γ = ~0 (1)

La force de gravitation exercée par cette galaxie sur un point matériel M de masse m s’exprime alors
selon la relation ~F = m~Γ.

11 — Citer deux équations analogues aux équations (1) en électrostatique. Peut-on, de la même
façon, proposer une analogie avec la magnétostatique ? On définit le potentiel gravitationnel φ(M)
au point M , analogue du potentiel V (M) en électrostatique. Démontrer avec soin que le potentiel
gravitationnel φ(M) satisfait à une équation de Poisson relative à la gravitation.

On considère un système G à répartition sphérique de masse centré sur un point O fixe : l’ensemble
(O,G ) permet de définir un référentiel galiléen. En un point M de ce système, la densité volumique
de masse ρ = ρ(M) et le potentiel gravitationnel φ = φ(M) ne sont des fonctions que de la seule

variable r = ‖~r‖ =
∥∥∥−−→OM

∥∥∥. On suppose qu’un point M de masse m contenue dans G n’évolue que sous

l’action du champ de gravitation créé par G . Pour des raisons physiques évidentes la fonction ρ(r) est
décroissante et la fonction φ(r) croissante.

12 — Exprimer la force de gravitation ~F subie par M en fonction de m, dφ
dr et d’un vecteur

unitaire que l’on précisera. Montrer que le mouvement de M s’effectue dans un plan. On considère les
coordonnées polaires (r, θ) dans ce plan. Que représente la quantité r2θ̇ ?

13 — On appelle vitesse circulaire ~vc(r) dans G , la vitesse qu’aurait le point M s’il était en orbite
circulaire de rayon r dans G . Exprimer ~vc(r) en fonction de r, dφ

dr et ûθ.

Du point de vue dynamique, on peut a priori considérer que notre galaxie, la voie lactée de masse visible
Mg, est un système dont la masse est répartie de façon sphérique et constitué de trois composantes
principales : un bulbe massif, un disque et un halo stellaire. Dans ce modèle, dit keplerien, le bulbe
est assimilable à un point de masse Mb ≈ Mg et chaque étoile de masse m du disque évolue dans le
potentiel gravitationnel φ(r) = −GMb

r crée par le bulbe uniquement.

14 — Déterminer, dans ce modèle, l’expression de la vitesse circulaire dans la voie lactée en
fonction de G, Mb, r et ûθ. Pourquoi ce modèle est-il qualifié de keplerien ?

2 4 6 8 10 12 14 16

r [kpc]
150

200

250

300

0

v r( ) [km s  ]c
. -1

220

8,5

Soleil
Bulbe

?@A

Fig. 3 – Vitesse circulaire dans la voie lactée

En réalité, la répartition des vitesses circulaires
présente la même allure dans toutes les galaxies spi-
rales comme la Voie Lactée. Les observations dans le
cas de la Voie Lactée sont reportées sur la figure 3.

15 — Que peut-on dire de l’évolution de vc = ‖~vc‖
en dehors du bulbe ? Le modèle keplerien est-il va-
lable ?

En plus de la matière visible, on considère une
répartition de masse invisible (noire) selon la densité
volumique de masse suivante :

ρ(r) =
C0

r2
0
+ r2
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16 — En utilisant l’équation de Poisson relative à la gravitation (obtenue à la question 11) en
symétrie sphérique, montrer que la prise en compte de cette matière noire permet de rendre compte
de la courbe de vitesse observée. On fixera la valeur C0 en unités de masse solaire (M⊙) et de parsec
(pc) pour une bonne adéquation avec la valeur de vitesse observée et on interprètera la constante r0.
On rappelle que ∫ r

0

x2

r2
0
+ x2

dx = r − r0 arctan

(
r

r0

)
.

17 — Estimer la masse minimale de ce halo de matière noire en considérant que ce dernier s’étend
sur l’ensemble de la galaxie dont le rayon est de l’ordre de Rd = 30 kpc. Commenter ce résultat sachant
que la masse visible de notre galaxie est de l’ordre de 1010M⊙.

II.B. — Gravitation modifiée

Face à la situation décrite dans la section II.A, M. Milgrom propose, en 1983, de modifier les
lois de Newton de la gravitation afin d’expliquer pourquoi, en périphérie des galaxies, les étoiles
tournent plus vite que la loi classique ne le laisse supposer. Dans cette théorie phénoménologique,
baptisée Mond (acronyme anglais de dynamique newtonienne modifiée), la gravitation se mettrait à
décrôıtre beaucoup moins rapidement que prévu par la théorie newtonienne dans le régime des faibles
accélérations en deçà d’un certain seuil que l’on se propose d’évaluer.
Dans cette théorie de la gravitation modifiée le potentiel de gravitation vérifie une équation de Poisson
modifiée qui s’écrit

div
(
µ (u) ~gradφm

)
= 4πGρ (2)

où µ est un champ scalaire de la variable réduite sans dimension u = 1

a2
0

(
~gradφm

)2

caractérisant la

théorie et dont le comportement est le suivant

µ(u) ≃
{ √

u si u ≪ 1
K sinon

18 — Quelle est la dimension du paramètre positif a0 ? Quelle valeur doit-on donner à la constante
K si l’on souhaite que la théorie Mond soit équivalente à la gravitation newtoniene si u n’est pas
négligeable devant 1.

19 — En combinant l’expression (2) avec l’équation de Poisson de la question 11 relative à
la gravitation non modifiée et au potentiel newtonien φ, montrer qu’il existe un vecteur ~h tel que
µ(u) ~gradφm = ~gradφ+ ~rot~h. On fera par la suite l’hypothèse que ~rot~h est toujours négligeable devant
le gradient du potentiel newtonien φ.

Pour modéliser notre galaxie avec la théorie Mond il n’est plus nécessaire d’introduire de la matière
noire, on prend donc simplement φ(r) = −GMb

r . Pour cette modélisation on suppose également que
φm = φm(r) et l’on admettra que la vitesse circulaire est toujours donnée par la relation obtenue à la
question 13 généralisée à φm.

20 — Montrer que dans le régime u ≪ 1, la vitesse circulaire prévue par la théorie Mond pour
notre galaxie est donnée par la relation vc ≃ (GMba0)

1/n où l’on déterminera l’entier n.

21 — Estimer la valeur numérique de a0 afin que la théorie Mond permette de rendre compte
de la vitesse circulaire observée dans notre galaxie. Commenter ce résultat en évaluant un ordre de
grandeur de l’accélération subie par le Soleil dans la voie lactée (voir Fig. 3).

Même si Mond possède de nombreux avantages sur la gravitation de Newton à l’échelle galactique,
la théorie relativiste associée, Teves proposée en 2004 par J. Bekenstein, pose de graves problèmes.

FIN DE LA PARTIE II
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III. — Expérience Gbar – Peser l’antimatière ?

Plusieurs tentatives de tests directs du principe d’équivalence pour l’antimatière ont été menées sans
succès. Des mesures de chute libre avec de l’antimatière chargée ont été envisagées, mais l’appareillage
visant à réduire les effets parasites du champ électromagnétique par blindage n’a pu atteindre un
niveau suffisant. La mesure de chute libre d’antimatière ne peut donc se faire qu’avec de l’antimatière
neutre. Il est cependant très difficile de produire efficacement des antineutrons lents ou encore de
mener des expériences de chute libre avec un positronium Ps (état lié neutre composé d’un électron
e− et de son antiparticule, le positon e+). L’idée est donc venue d’utiliser l’atome d’antihydrogène H,
association d’un positon e+ avec un antiproton p̄.

L’expérience Gbar (acronyme de Gravitationnel Behaviour of Antihydrogen at Rest) a pour objectif
la mesure de l’accélération (notée ḡ) d’un atome d’antihydrogène H en chute libre dans le champ gravi-
tationnel de la Terre. Pour étudier sa chute avec un appareillage de taille raisonnable, l’antihydrogène
H doit être produit à très basse vitesse. Cette expérience représente un vrai défi !

On produit tout d’abord des positons rapides à partir d’un faisceau pulsé d’électrons de plusieurs MeV
dirigé sur une cible de Tungstène. Les positons sont ensuites ralentis et stockés dans un piège dit de
Penning-Malmberg sous forme de plasma non neutre. Une fois la quantité stockée suffisante, les
positons sont injectés dans un convertisseur pour y subir les transformations décrites par les équations
ci-dessous :

p̄+ Ps → H + e− (3)

H + Ps → H
+
+ e− (4)

Les ions H
+

sont composés d’un antiproton p̄ et de deux positons e+. Le fait qu’ils soient chargés
permet de les stocker dans un piège de Paul en vue de leur refroidissement jusqu’à une température
de quelques dizaines de µK.

Une fois refroidis, ils sont injectés dans une enceinte à vide dans laquelle un laser peut assurer le photo-
détachement du positon excédentaire, produisant ainsi des atomes d’antihydrogène. Ultra-froids, ces
derniers tombent alors dans le champ de pesanteur terrestre sur une hauteur de l’ordre de quelques
dizaines de centimètres.

Autour de cette enceinte, des TPC (chambres à projection temporelle) et des scintillateurs assurent
une détection efficace des particules issues de l’annihilation de l’antihydrogène H à la fin de sa chute,
quelle qu’en soit la direction. Si l’antimatière ne gravite pas exactement comme la matière (sens, durée
de chute, etc.), l’expérience devrait pouvoir le détecter !

Nous nous proposons dans cette partie d’étudier de façon simplifiée les techniques de stockage des
particules chargées, développées dans le projet Gbar et d’étudier la calibration de la mesure.

2r
0

z

x y,

V0

E1

E2

E0

z0

Fig. 4 – Vue en coupe du piège

III.A. — Piéger une particule

L’objectif est de piéger une particule chargée en vue de la refroidir
et la garder ainsi stockée le plus longtemps possible. L’idée la plus
simple consiste à piéger cette particule dans un puits de potentiel.
Le dispositif de piégeage est représenté sur la figure 4, il compte
trois électrodes présentant une symétrie de révolution autour d’un
axe (Oz). La première, notée E0, est en forme d’anneau de rayon
interne r0 et d’équation x2 + y2 − 2z2 = r20, elle est portée à un
potentiel V 0 positif. Les deux autres, notées E1 et E2, sont en forme
de coupelles et correspondent aux deux nappes de l’hyperbolöıde
d’équation x2 + y2 − 2z2 = −2z20, elles sont reliées à la masse. La
distance minimale entre les deux coupelles est telle que 2z0 =

√
2r0.

On note V (x, y, z) le potentiel régnant dans le piège initialement vide de charge. Ce potentiel est donc
tel que V (0, 0, z0) = 0 d’une part et d’autre part si x2 + y2 = r20 alors V (x, y, 0) = V0.

On admet qu’une particule de charge q placée dans le piège est soumise à une force conservative de la
forme ~F = a (x ûx + y ûy) + bz ûz où a et b sont deux paramètres réels.
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22 — En écrivant l’équation aux dérivées partielles vérifiée par le potentiel V (x, y, z) obtenir une
relation entre a et b. Montrer que le potentiel s’écrit sous la forme V (x, y, z) = α+ β(x2 + y2 − 2z2),
puis, exprimer α en fonction de V0 et β en fonction de r0 et V0.

23 — Tracer les équipotentielles dans les plans xOz et xOy, en déduire les lignes de champ
orientées dans ces mêmes plans.

24 — En écrivant le principe fondamental de la dynamique montrer que le point O (0, 0, 0) est un
équilibre. Montrer que cet équilibre est globalement instable quel que soit le signe de la charge placée
dans ce potentiel.

III.B. — La trappe de Penning

Afin d’éliminer l’instabilité démontrée à la question 24, une première solution est d’ajouter un champ
magnétique uniforme ~B0 = B0ûz avec B0 = 1, 0 T autour du dispositif électrostatique. Le piège
devient ainsi ≪ une trappe de Penning ≫, le mérite de sa mise en œuvre concrète est du à H. G.

Dehmelt qui reçut le prix Nobel de physique en 1989 pour cette réalisation, l’idée originale, de F.

M. Penning, datant de 1936.

25 — La particule piégée dans la trappe de Penning est un antiproton p̄ de masse mp et de charge
q = −e. Etablir les équations différentielles vérifiées par les fonctions z (t) et ζ (t) = x (t) + iy (t).

On introduira les constantes ωc =
eB0

mp
et ω0 =

√
eV0

mpr20
. Montrer qu’il existe un champ Bmin, tel que

l’ajout d’un champ B0 ≥ Bmin conduit au confinement de l’antiproton. Calculer la valeur de Bmin

pour un piège tel que V 0 = 5, 0V et r0 = 5, 7mm.

26 — Calculer la valeur numérique de ω0 et ωc pour la trappe de Penning considérée. En déduire
que le mouvement confiné de l’antiproton dans cette trappe est la composition d’un mouvement
rapide et de deux mouvements plus lents. On donnera une estimation simple des pulsations de ces
trois mouvements en fonction de ω0 et ωc.

Dans l’expérience Gbar, la trappe de Penning permet de confiner les antiprotons, dont l’énergie
cinétique d’entrée est estimée à 5MeV. Pour les applications suivantes il est nécessaire de les refroidir
jusqu’à une énergie de l’ordre de 150 eV. On se pose donc la question de savoir si le mouvement
oscillant des antiprotons dans la trappe permet ce refroidissement.
On admet que le mouvement oscillant de l’antiproton est la source d’un rayonnement qui va contribuer
à diminuer son énergie mécanique. La source principale de ce rayonnement est assurée par l’accélération
selon l’axe Oz. La puissance moyenne 〈Pray〉T0

rayonnée par l’antiproton sur une période T0 = 2π
ω0

√
2

caractéristique de son mouvement sinusöıdal paramétré par z(t) est donnée par la relation

〈Pray〉T0
=

µ0e
2

6πc

〈
z̈2
〉
T0

27 — Déterminer l’ordre de grandeur de la température absolue des antiprotons à l’entrée de la
trappe. Montrer que le rayonnement qu’il émet conduit à une décroissance exponentielle de l’énergie
mécanique de l’antiproton caractérisée par une constante de temps τ que l’on exprimera en fonction de
mp, µ0, e, c et ω0. En déduire la nécessité de recourir à une méthode de refroidissement complémentaire.
Cette méthode non étudiée ici est une thermalisation par chocs élastiques sur un nuage d’électrons
confinés dans la trappe.

III.C. — Principe de la mesure

La mesure du temps de chute tc est donnée par la différence de temps entre la détection de l’annihilation
de l’antiatome H et celui du tir du laser de photo-détachement. On note v0 la composante de la
vitesse initiale suivant la direction de la force gravitationnelle exercée par la Terre (matière) sur
l’antihydrogène (antimatière). La masse de H sera prise égale à celle de p, c’est-à-dire mp.

28 — Le processus de refroidissement incorporé dans la trappe de Penning permet de porter le
gaz d’ions H

+
piégés à la température T = 10µK. En supposant ce gaz parfait et en négligeant les

impulsions apportées par le photon lors de l’impact et par le positon émis, prévoir la vitesse initiale
moyenne v0 d’un antihydrogène produit par photo-détachement et estimer son écart-type σv. On
exprimera σv en fonction de kB,mp et T puis on calculera sa valeur numérique.

Page 7/8 Tournez la page S.V.P.
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29 — En admettant l’égalité des masses inerte et grave compte-tenu des résultats obtenus en
partie I, exprimer l’intensité de pesanteur ḡ supposée uniforme ressentie par un antihydrogène quittant
le piège avec une vitesse verticale de module v0. On exprimera le résultat en fonction de la hauteur
de chute h, du temps de chute tc et de v0 en espérant que l’antihydrogène va antigraviter !

30 — Un antiatome ≪ tombe ≫ sans vitesse initiale sur une paroi située à 10, 0 cm où l’on détecte
son annihilation 0, 143 s après son photo-détachement. Déterminer la valeur de ḡ correspondant à cette
mesure.

31 — On détecte un grand nombre N d’antihydrogène s’annihilant sur la paroi. On note σh

l’incertitude sur la position initiale d’un antiatome et σv l’incertitude sur sa vitesse initiale dans la
direction de chute déterminées précédemment. Les incertitudes sur le temps de chute libre et sur
la position de détection sont négligées. En considérant que les positions et les vitesses initiales sont
indépendantes et distribuées selon des lois gaussiennes, estimer l’incertitude δḡ sur la mesure de ḡ en
fonction de tc, N , σh, kB, T et mp.

32 — On donne T = 10 µK et σh = 100 µm. À partir de quelle valeur de N l’erreur relative sur
la mesure de ḡ est-elle inférieure à 1% ?

Tester la gravité pour l’antimatière est un véritable enjeu pour la physique fondamentale. Outre
la remise en cause du principe d’équivalence et des symétries fondamentales dans l’Univers, cette
expérience de pesée de l’antihydrogène, prévue pour 2016, devrait permettre de répondre à la question
de l’existence ou non de l’antigravité, pouvant expliquer l’absence d’antimatière visible dans l’Univers.

FIN DE LA PARTIE III

FIN DE L’ÉPREUVE

Formulaire et données numériques relatives à l’ensemble de l’épreuve

• Constante de gravitation universelle :
G = 6, 7.10−11 m3 · kg−1 · s−2

• Constante de Boltzmann :
kB = 1, 4 · 10−23 J ·K−1

• Vitesse de la lumière : c = 3, 0 · 108 m · s−1

• Nombre d’Avogadro : NA = 6, 0 · 1023 mol−1

• Charge élémentaire : e = 1, 6 · 10−19 C

• Masse d’un proton : mp = 1, 7 · 10−27 kg

• Masse d’un électron : me = 9, 1 · 10−31 kg

• Perméabilité magnétique du vide :
µ0 = 4π · 10−7 H ·m−1

• Unités de distance :
1UA = 1, 5 · 1011 m ; 1 pc = 3, 1 · 1016 m

• Masse du Soleil : M⊙ = 2, 0 · 1030 kg
• Masse de la Terre : Mt = 6, 0 · 1024 kg
• Rayon de la Terre : Rt = 6, 4 · 103 km

• Opérateurs scalaires et vectoriels :

⋄ ~rot( ~gradf) = ~0

⋄ div( ~rot ~A) = 0

⋄ div( ~gradf) = ∆f

• Laplacien scalaire

⋄ en coordonnées cartésiennes :
∆f = ∂2f

∂x2 + ∂2f
∂y2 + ∂2f

∂z2

⋄ en coordonnées sphériques :

∆f = 1

r2
∂
∂r

(
r2 ∂f

∂r

)

+ 1

r2 sin θ
∂
∂θ

(
sin θ ∂f

∂θ

)

+ 1

r2 sin2 θ
∂2f
∂ϕ2
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Physique II, année 2016 — filière MP

Détection des exoplanètes

L’exploration de planètes lointaines a fourni à la littérature et au cinéma de science-fiction
des œuvres parmi les plus célèbres ; citons La planète des singes (Pierre Boulle, 1963), Avatar
(James Cameron, 2009)... L’existence de ces planètes extra-solaires est longtemps restée incer-
taine jusqu’à une première découverte en 1995 ; la millième ≪ exoplanète ≫ a été confirmée en
octobre 2013 ; un an plus tard ce nombre a doublé. Ce problème aborde le délicat enjeu de leur
détection. Toutes les orbites envisagées dans ce problème sont circulaires. Les données utiles
pour les applications numériques sont rassemblées en fin d’épreuve.

I. — Fascinantes exoplanètes

I.A. — Une loi fondamentale

Dans un document concernant les méthodes de détection des exoplanètes, on lit : ≪ le mou-

vement relatif de la planète autour de son étoile est gouverné par la 3 e loi de Kepler, ou si

l’on préfère par la relation qui exprime l’équilibre entre l’attraction gravitationnelle et la force

centrifuge ≫.
On considère une planète assimilée à un point matériel P de masseMP , tournant avec la période
TP à la distance rP de son étoile considérée comme le point fixe E de masse ME ≫ MP . Toute
autre action sur P que l’attraction gravitationnelle de E est négligée.

1 — Schématiser cette description et préciser les deux référentiels permettant de com-
prendre l’utilisation de la notion d’≪ équilibre ≫ dans la citation ci-dessus. En déduire la 3e loi
de Kepler reliant rP , ME, TP et la constante de la gravitation G .

Cette relation est transposable chaque fois qu’un petit corps de massem orbite autour d’un astre
de masse très supérieure, toute autre action étant négligée et la durée mise en jeu permettant
l’approximation galiléenne.

I.B. — Principales caractéristiques de la planète

On envisage un vaisseau d’exploration spatiale E de masse m, s’approchant d’une planète P
d’apparence parfaitement sphérique, de rayon RP , dont la période sidérale de rotation sur elle-
même est tP = 19 h 30min (les unités sont celles en vigueur sur Terre). Il commence par se
mettre en orbite équatoriale basse, d’altitude h ; la période de cette orbite dans le référentiel
planétocentrique est de 2,00 h. Tout en sondant l’atmosphère et en observant la surface, les
≪ astronautes ≫ (sans préjuger de leur nationalité !) se livrent à quelques calculs.

2 — Calculer la masse MP si RP = 5000 km, h = 100 km ; peut-on envisager pour cette
planète une structure comparable à celle de la Terre : croûte et manteaux rocheux entourant
un noyau métallique de densité de l’ordre de 10 et de rayon correspondant à environ 50% du
rayon terrestre ? Des arguments quantitatifs sont attendus.

3 — Rappeler le théorème de Gauss pour la gravitation dans le cas d’une distribution
de masse à symétrie sphérique. Sous cette hypothèse, calculer la valeur numérique du champ
gravitationnel à la surface de cette planète.

4 — Rappeler succinctement l’origine de la différence entre champ gravitationnel et accé-
lération de la pesanteur à la surface d’un astre. Calculer les valeurs de l’accélération de la
pesanteur aux pôles et à l’équateur de la planète ; cet écart serait-il mesurable avec un dispositif
d’étude utilisé au lycée : enregistrement vidéo d’une chute libre puis traitement informatique ?
Quels autres dispositifs pourrait-on proposer ?
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5 — Un corps quittant radialement la surface de la planète (ou son voisinage immédiat) avec
une vitesse suffisante peut s’éloigner indéfiniment de l’astre : la vitesse minimale qui le permet,
en négligeant toute autre action sur le corps que l’attraction gravitationnelle de la planète,
est appelée vitesse de libération. En utilisant un raisonnement basé sur l’énergie, déterminer
l’expression de la vitesse de libération de la planète P , en fonction de G , MP , et RP . Faire
l’application numérique.

La figure 1 donne la densité de probabilité du module de la vitesse dans certains gaz parfaits
différentiés par leurs masses molaires et en équilibre thermodynamique à 290 K . L’abscisse
du maximum est la vitesse la plus probable vpp, elle représente environ 80% de la vitesse

quadratique moyenne définie par σv =
√
〈v2〉.
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-1
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Figure 1 – Distribution des vitesses

6 — Les gaz de l’atmosphère de la planète
P étant assimilés à des gaz parfaits en équi-
libre thermique à une température T0 proche
de 290 K, utiliser les courbes fournies pour
discuter l’éventualité que cette planète retien-
ne une atmosphère contenant plus ou moins
les mêmes espèces que celle de la Terre.

Les molécules de l’atmosphère étant soumises
à l’agitation thermique, leur énergie cinétique
se décompose selon trois degrés de liberté in-
dépendants : 〈v2〉 = 〈v2x〉+

〈
v2y
〉
+ 〈v2z〉.

7 — Déterminer l’expression théorique de
la vitesse quadratique moyenne des molécules
dans un gaz de masse molaire M à la tempé-
rature T . Faire le calcul pour le dioxygène

éventuellement présent, à T = 290K et vérifier la cohérence avec les informations fournies sur
la figure 1.

I.C. — Détection d’une exoplanète depuis la Terre

Les voyages interstellaires étant aujourd’hui hors de notre portée, il faut se contenter de ce
qu’on peut apprendre depuis la Terre et les télescopes spatiaux.
A partir d’observations effectuées à l’Observatoire de Haute-Provence (OHP), les astronomes
Michel Mayor et Didier Queloz, de l’observatoire de Genève, ont pour la première fois formel-
lement identifié en 1995 une planète extra-solaire ; elle orbite autour de l’étoile 51–Pégase, à
42 années-lumière de la Terre. Depuis, les possibilités techniques ont permis de multiplier les
découvertes, et aussi d’acquérir de plus en plus d’informations sur ces astres. On s’intéresse
particulièrement à leur température et à la composition de leur atmosphère.
Le télescope de l’OHP qui a permis la découverte offre un diamètre d’objectif d = 193 cm . Il
est situé dans un site d’observation de grande qualité. En supposant qu’il ne soit limité que par
la diffraction, on pourrait en obtenir un pouvoir séparateur angulaire de l’ordre de 1,2λ

d
(rad),

λ désignant la longueur d’onde observée. On rappelle que le pouvoir séparateur mesure le plus
petit angle séparant les rayons venant de deux points-sources que l’on parvient à voir comme
distincts l’un de l’autre.

8 — Dans l’idéal, une observation depuis le voisinage de 51–Pégase avec le télescope
de l’OHP permettrait-elle de séparer Jupiter du Soleil ? En dehors de la limite du pouvoir
séparateur, quel(s) autre(s) obstacle(s) s’oppose(nt) à l’observation visuelle directe d’une exo-
planète ?
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Les exoplanètes sont en fait détectées indirectement, par exemple par les variations de luminosité
induites lorsqu’elles passent devant ou derrière l’étoile (méthode du transit), ou par les petits
mouvements que leur attraction imprime à l’étoile autour de laquelle elles orbitent. Nous allons
nous intéresser à cette méthode, dite de la vitesse radiale.

On utilise pour cela l’effet Doppler affectant les ondes électromagnétiques : si l’émetteur E
est animé d’une vitesse radiale d’intensité vr par rapport à l’observateur O, et si la fréquence
émise est f , la fréquence reçue en O est f + ∆f . Ce décalage ∆f est positif si l’émetteur et
l’observateur se rapprochent l’un de l’autre (vr < 0) et négatif dans le cas contraire (vr > 0).

Si |vr| ≪ c, hypothèse supposée valide ici, on montre alors que |∆f |
f

= |vr|
c
.

On considère que l’émetteur est une étoile E accompagnée d’une planète P et que toutes les
deux tournent autour de leur barycentre G avec la même période T . La Terre est en O dans le
plan de l’orbite. Le système observé s’éloigne globalement de la Terre à la vitesse radiale ~vG.

O G

E

µ

~vG

~v

P

Figure 2 – Etoile-Planète

L’ensemble est représenté sur la figure 2, vu de dessus. Dans
la réalité OG ≫ GP ≫ GE, de sorte que les mouvements de
E sont très difficiles à observer directement. On reconnâıt
la vitesse radiale ~vG de G par rapport à Oxyz, et on désigne
par ~v la vitesse de E par rapport à Gxyz (les directions
fixes xyz ne sont pas précisées). On supposera de plus que
vG = ‖~vG‖ > v = ‖~v‖.

9 — Exprimer l’intensité vr de la vitesse radiale de E
par rapport à O, en fonction de vG, v et θ, puis l’amplitude
de la variation du décalage en fréquence par effet Doppler
δf = 1

2
(|∆f |

max
− |∆f |

min
).

10 — Expliquer comment le suivi temporel du décalage en fréquence de la lumière émise
par une telle étoile permet de connâıtre la période T . Pourquoi cette méthode a-t-elle permis
la découverte initiale de planètes proches de leur étoile ? Déterminer l’expression du rayon GE
de l’orbite de l’étoile autour de G, en fonction de f , δf , c et T .

Nos connaissances sur la structure et le fonctionnement des étoiles permettent de déduire leur
masse de leur luminosité. La masse ME est par conséquent raisonnablement connue.

11 — En tenant compte du fait que ME ≫ MP , déterminer des expressions approchées de
MP et PE en fonction de G , T , ME et GE.

12 — Pour avoir une idée de la précision requise dans les mesures, reprenons l’exemple du
couple Soleil-Jupiter, cette planète étant la plus massive de notre système. Calculer la valeur
de δf/f qu’un astronome extraterrestre devrait être capable de mesurer pour mettre en œuvre
la méthode étudiée.

Cette approche d’un problème expérimental nous a montré l’extrême difficulté de certaines
mesures, pour lesquelles le signal utile, ici la variation de la fréquence, est d’une part très faible
et d’autre part facilement masqué par les incertitudes induites par les fluctuations diverses du
signal émis, par les perturbations qu’il subit lors de sa propagation, par des signaux parasites
qui s’y ajoutent, par sa transformation en signal électrique, par la transmission ensuite de ce
signal électrique dans une châıne de traitement...

Dans les prochaines parties, nous allons nous intéresser à quelques aspects liés à ces questions

FIN DE LA PARTIE I
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II. — Détection d’un signal faible

II.A. — Extraction d’un signal faible du bruit par effet de moyenne

Un détecteur enregistre un spectre en le décomposant sur plusieurs canaux numérotés de 1 à
N . Chacun de ces canaux représente une bande de fréquence très étroite.
Lors d’une séquence d’acquisition, le détecteur enregistre une série de valeurs xk = sk+ bk pour
k variant de 1 à N . L’éventuel signal sk est celui dont la détection est souhaitée. Le signal
bk est un parasite appelé bruit ; différents phénomènes physiques sont à l’origine du bruit, à
commencer par l’agitation thermique des porteurs de charges.
Le bruit considéré, bk, prend une valeur aléatoire de moyenne b indépendante de k. La dispersion
autour cette moyenne est supposée gaussienne d’écart-type σ ; c’est-à-dire que pour un grand
nombre n d’acquisitions indépendantes dont les résultats sont ajoutés canal par canal, la valeur
moyenne du signal sommé sera nb et l’ordre de grandeur de la dispersion de chaque coté de
cette valeur moyenne sera

√
nσ.
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Figure 3 – Acquisition d’un bruit (sk = 0 pour tout k) sur N = 111 canaux avec b = 10 et
σ = 5. La figure de gauche représente 1 acquisition, celle de droite la somme canal par canal
de 100 acquisitions indépendantes.

13 — Représenter l’allure du graphe que l’on pourrait obtenir après 2500 acquisitions, l’axe
des ordonnées étant clairement gradué dans sa partie utile.

On considère maintenant qu’en plus du bruit gaussien d’amplitude b = 10 et d’écart-type σ = 5
présent constamment sur chaque canal, un signal utile non nul, constant et d’amplitude 1 est
présent uniquement sur les canaux 34 et 67 à chaque acquisition.

14 — Le signal utile est-il détectable par une seule acquisition ? Représenter l’allure de la
somme canal par canal de 2500 acquisitions. Le signal est-il devenu détectable ?

15 — Dans le cadre d’un bruit de dispersion σ et d’amplitude b, estimer le nombre n
d’acquisitions permettant de faire apparâıtre un signal constant d’amplitude sp dans le canal
p.

L’expression obtenue montre qu’une réduction du bruit permet de diminuer de façon impor-
tante les durées d’intégration nécessaires. Dans le cas du bruit thermique, dont l’amplitude est
proportionnel à la température absolue, il importe donc de refroidir fortement le système.
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II.B. — Refroidissement d’un capteur à bord d’un satellite

Dans le vide interplanétaire, un satellite d’observation astrophysique reçoit le rayonnement
solaire et se refroidit également par rayonnement. Son électronique de commande doit travailler
autour de 300 K, tandis que des capteurs doivent être refroidis à quelques Kelvins voire une
fraction de Kelvin. La configuration du satellite, la mise en place d’isolants ou de radiateurs,
son positionnement par rapport au rayonnement, permettent de contrôler grossièrement la
température de ses différentes parties, ce qui limite l’utilisation énergivore de systèmes de
chauffage ou de refroidissement.
L’étude et les calculs que nous allons mener sont basés sur les informations disponibles pour le
satellite Planck, qui de 2009 à début 2012 a cartographié les infimes fluctuations du rayon-
nement de fond cosmologique, dans le domaine des micro-ondes.
Des systèmes d’écrans et de radiateurs passifs permettent d’abaisser la température, du côté des
instruments, à une température T de l’ordre de 50 K ; il convient alors de refroidir les capteurs
à une température beaucoup plus basse pour augmenter leur sensibilité.
Envisageons tout d’abord des systèmes frigorifique de type réfrigérateur ditherme fonctionnant
de manière cyclique entre deux températures Tc et Tf < Tc grâce à un travail reçu W .

16 — Définir le fonctionnement d’un réfrigérateur ditherme à l’aide d’un cycle modélisé.
Analyser ce cycle à partir des principes de la thermodynamique. En déduire l’expression de
l’efficacité maximale théorique d’un tel réfrigérateur.

A bord du satellite Planck, un premier réfrigérateur, d’une puissance frigorifique de 1 W,
travaille entre 50K et 20K, puis un deuxième, d’une puissance frigorifique de 15 mW, abaisse
la température de certains équipements à 4 K.

17 — Calculer la puissance électrique minimale consommée par chacun de ces appareils.

18 — Dans une note descriptive sur le satellite Planck on peut lire ≪ Les puissances

cryogéniques peuvent sembler faibles au premier abord. L’objectif de ces réfrigérateurs est en

fait ambitieux : le réfrigérateur qui équipe notre cuisine doit évacuer seulement 7% environ de

l’énergie thermique de son contenu. Ici l’étage à 20 K doit évacuer 60% de l’énergie thermique

initiale, et 80% de cette énergie pour l’étage à 4 K ≫. Vérifier par le calcul les valeurs annoncées.

Un autre moyen pour maintenir la température d’un instrument à quelques Kelvins est d’utili-
ser un cryostat à circulation d’hélium liquide, en circuit ouvert : l’hélium se vaporise progres-
sivement et s’échappe dans l’espace. Pour abaisser encore la température, on utilise même la
dilution de 3He dans 4He ; le principe est le même (évaporation en circuit ouvert) et cela permet
de travailler autour de 0,1 K.

19 — Rappeler l’allure générale de la courbe d’équilibre entre liquide et gaz, en coordonnées
(T,P ). Pourquoi l’hélium circulant dans un serpentin en contact avec un instrument se vaporise-
t-il ? Comment peut-on obtenir une température contrôlée d’un mélange liquide-gaz ? Quel
appareillage supplémentaire serait-il nécessaire de prévoir si l’hélium liquide circulait en circuit
fermé ?

FIN DE LA PARTIE II
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III. — Transmission d’un signal bruité

Précisons tout d’abord quelques notations :

• Si P est une puissance, on notera P db = 10 log10 P sa valeur en décibels ;

• Si P désigne la puissance d’un signal et PB la puissance du bruit B, on notera Rdb le

rapport signal sur bruit exprimé en décibels, soit Rdb = 10 log10

(
P

PB

)
;

• Lorsqu’un signal traverse un équipement, on note respectivement PE et PS les puissances

d’entrée et de sortie, et γ le gain défini par γ =
PS

PE

.

III.A. — Atténuation de R par un câble de transmission

On considère la propagation d’un signal dans une ligne assimilée à un axe (O,ûx) ; la puissance
de ce signal à l’abscisse x est notée P (x).

20 — Construire un modèle usuel dans lequel la puissance absorbée par la ligne de trans-
mission dans un élément de longueur dx est localement proportionnelle au produit P (x)dx. En
déduire qu’après une longueur ℓ entre l’entrée E et la sortie S de la ligne, on a P db

S = P db

E −λ ,
où le facteur d’atténuation λ s’exprime en fonction des caractéristiques d’absorption et de ℓ.

On introduit dans ce modèle un bruit d’origine thermique de puissance moyenne PB, présent
sur toute la ligne.

21 — Établir dans ce cas la relation entre λ, Rdb

E et Rdb

S . A quelle condition le signal de
sortie sera-t-il utilisable ? Que devra-t-on faire pour transmettre des signaux à grande distance
avec des lignes de caractéristiques imposées ?

III.B. — Transmission du bruit par une châıne d’équipements

On s’intéresse maintenant à un signal traité par une suite d’appareils en cascade : amplificateurs,
filtres, etc. Afin de prendre en compte l’action de ces instruments sur le bruit, par analogie avec
le phénomène d’atténuation, on définit le facteur de bruit F d’un instrument par la relation
F = Rdb

E − Rdb

S . On supposera que F est positif.

22 — Montrer que pour un instrument donné, de facteur de bruit F et de gain γ, recevant
en entrée un signal bruité par BE, on a PBS

= fγPBE
. On vérifiera que f > 1 et on exprimera

f en fonction de F .

Les instruments sont maintenant en série (ou cascade). L’instrument k est caractérisé par un
couple (γk,fk). La puissance du bruit entrant dans chaque instrument est supposée indépendante
de ces instruments, elle sera noté PBE

. La châıne est supposée linéaire, c’est-à-dire qu’en notant
PSk

la puissance en sortie de l’instrument k on aura PSk
= γk(PSk−1

− PBE
) + PBSk

pour tout
entier k ≥ 2. La châıne est dite auto-alimentée, cela signifie que PS1

= PBS1
. On peut donc

schématiser la châıne de traitement par la figure 4.

Instrument 1

(°
1
; f1)

BE

Instrument 2

(°
2
; f2)

Instrument k

(°k ; fk) ......

BE BE

Figure 4 – Modélisation d’une châıne de traitement bruitée
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23 — Déterminer l’expression de PS2
. On pose γ12 = γ1γ2, déterminer l’expression de f12

qui permettrait de caractériser l’ensemble des deux premiers instruments par un couple (γ12,f12)
dans une châıne auto-alimentée équivalente.

24 — On pose γ13 = γ3γ12, après avoir déterminé f13, démontrer la loi de Friis donnant
le facteur de bruit f1n d’un instrument équivalent à l’association en cascade de n instruments.
Quel est l’instrument qui va déterminer la qualité de la châıne dans une association en cascade
de n amplificateurs ?

FIN DE LA PARTIE III

IV. — Exemple de bruit thermique élémentaire

Considérons un condensateur idéal de capacité C, chargé sous une tension constante U , en
équilibre thermique à la température T avec un circuit électrique. L’agitation thermique pro-
voque des échanges aléatoires de charges entre le condensateur et le circuit, de sorte que la
tension instantanée u(t) aux bornes du condensateur peut s’écrire u(t) = U+b(t), où la tension
de bruit thermique b(t) est de moyenne nulle.

25 — Déterminer l’expression de l’énergie électrique moyenne 〈EC〉 stockée dans le conden-
sateur, en fonction de C, U et σ2

b = 〈b2〉.

26 — On admet que le bruit thermique généré dans le circuit au niveau du condensateur
est associé à un degré de liberté énergétique quadratique. Déterminer l’expression de σb en
fonction de T , C et kB. Commenter le sens de variation de σb avec C. Commenter la valeur
numérique obtenue pour C = 47 nF à température ambiante.

FIN DE LA PARTIE IV
Données numériques :

• Célérité de la lumière dans le vide : c = 3,00 · 108 m · s−1 ;

• Constante de Boltzmann : kB = 1,38 · 10−23 J ·K−1 ;

• Nombre d’Avogadro : NA = 6,02 · 1023 mol−1 ;

• Constante de la gravitation : G = 6,67 · 10−11 m3 · kg−1 · s−2 ;

• Pour le Soleil :

— masse : MS = 1,99 · 1030 kg .

• Pour la Terre :

— masse : MT = 5,97 · 1024 kg ;
— rayon moyen : RT = 6,37 · 103 km ;
— période de révolution : TT = 365,24 jours terrestres ;
— vitesse de libération à sa surface : 11,2 km · s−1.

• Pour Jupiter :

— masse : MJ = 1,90 · 1027 kg ;
— période de révolution : TJ = 4335 jours terrestres ;
— demi-grand axe de l’orbite : aJ = 778 · 106 km.

FIN DE L’ÉPREUVE
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La capacité thermique des gaz
La capacité thermique des gaz est une grandeur thermodynamique assez facile à mesurer
expérimentalement. Elle a joué un grand rôle dans la compréhension de la nature microsco-
pique des gaz et de la matière en général. Elle a également été un point de questionnement
fondamental au moment de la construction de la physique quantique. Dans cette épreuve, on se
propose d’expliquer à l’aide de différents modèles théoriques les valeurs mesurées de la capacité
thermique de différents gaz parfaits diatomiques à différentes températures.
Hormis le nombre i tel que i2 = −1, les nombres complexes sont soulignés : z ∈ C. Les vecteurs
seront traditionnellement surmontés d’une flèche, par exemple v⃗ pour une vitesse ; sauf s’ils
sont unitaires et seront alors surmontés d’un chapeau, par exemple û tel que ∥û∥ = 1.

I. — De la molécule à l’oscillateur harmonique

On considère une molécule diatomique dont les deux atomes A et B sont liés par une liaison
covalente : l’énergie potentielle d’interaction entre les deux atomes est attractive à longue
portée et répulsive à courte portée. L’étude est menée dans le référentiel du laboratoire supposé
galiléen. On suppose la molécule isolée et on néglige l’interaction gravitationnelle entre les deux
atomes devant l’interaction conduisant à la liaison covalente.

1 — Tracer l’allure du profil d’énergie potentielle Ep de cette molécule en fonction de la
longueur ℓ = AB de la liaison. On y fera figurer la longueur d’équilibre ℓe de la liaison et
l’énergie de liaison Eℓ.

2 — Donner un ordre de grandeur de ℓe en nm et de Eℓ en kJ·mol−1.

3 — Compte tenu de l’allure de la courbe de la question 1, et moyennant une hypothèse à
préciser, justifier que l’on peut assimiler la liaison covalente à un ressort dont on exprimera la
constante de raideur k en fonction d’une dérivée de Ep.

On suppose cette approximation valide dans toute la suite.

4 — Exprimer l’énergie cinétique de la molécule en fonction des vitesses v⃗A, v⃗B et des
masses mA, mB des atomes A et B dans le référentiel du laboratoire.

5 — Calculer un ordre de grandeur de la vitesse caractéristique des molécules dans l’air
à 300 K et sous une pression de 1 atm. On prendra R = 25

3
J · mol−1 · K−1 pour valeur de la

constante des gaz parfait et Ma = 30× 10−3 kg ·mol−1 pour la masse molaire de l’air.

6 — Exprimer l’énergie mécanique Em de la molécule dans le référentiel du laboratoire, en
fonction de Eℓ, ℓ, ℓe, k, v⃗A et v⃗B.

7 — On note G le barycentre de la molécule tel que mA
−→
GA+mB

−−→
GB = 0⃗ et v⃗G sa vitesse

dans le référentiel du laboratoire. On appelle référentiel barycentrique, le référentiel ayant les
mêmes vecteurs de base que le référentiel du laboratoire mais d’origine G. Ce référentiel est-il
galiléen ? On justifiera sa réponse.

8 — On note v⃗ =
d
−→
AB

dt
, établir la relation Em − Eℓ = 1

2

(
m ∥v⃗G∥

2 + µ ∥v⃗∥2 + kr2
)
dans

laquelle on exprimera les constantes m et µ en fonction des masses mA, mB et la variable r en
fonction de ℓ et ℓe.
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9 — En écrivant
−→
AB = ℓ(t) êr avec êr =

−→
AB

∥
−→
AB∥

, décomposer Em en la somme de trois

termes que l’on supposera indépendants dans ce problème et qui représentent respectivement
la translation Etra, la vibration Evib et la rotation Erot de la molécule. On explicitera chacun
de ces termes en fonction des grandeurs les plus adaptées.

FIN DE LA PARTIE I

II. — Capacité thermique d’un gaz parfait diatomique
On s’intéresse maintenant à un gaz parfait de N molécules diatomiques identiques. On cherche
à déterminer l’expression de la capacité thermique de ce gaz en exploitant le modèle développé
dans la partie précédente.

10 — Exprimer l’énergie interne U de cet ensemble de particules en fonction de N et ⟨Em⟩,
où ⟨Em⟩ est l’énergie moyenne d’une molécule de cet ensemble de molécules.

11 — Énoncer le théorème d’équipartition de l’énergie.

12 — Montrer que dans le modèle classique développé dans la partie I la capacité thermique
molaire cV,m du gaz est une constante que l’on exprimera en fonction de R.

La figure 1 présente les relevés expérimentaux de la capacité thermique molaire du dichlore Cl2
gazeux et du dihydrogène H2 gazeux à diverses températures.

!" #,

10
0

10
1

10
2

10
3

1

1.5

2

2.5

3

3.5

4

Température [K]

Cl2

H2

$
/

Figure 1 – Mesures de la capacité thermique molaire du dichlore (Cl2) et du dihydrogène (H2)
gazeux en fonction de la température.

13 — Commenter les deux courbes de la figure 1 au vu des prédictions théoriques obtenues
précédemment.

FIN DE LA PARTIE II
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III. — L’oscillateur harmonique en physique quantique
On envisage dans cette partie un traitement quantique de l’oscillateur harmonique étudié dans
les parties précédentes. L’objectif est d’obtenir l’expression quantifiée des valeurs possibles de
l’énergie de cet oscillateur harmonique dans cette théorie.
On note Ψ(x,t) la fonction d’onde du système décrivant l’oscillateur harmonique associé à
la molécule diatomique considérée. Ce système est un point matériel M dont la masse est le
paramètre µ introduit à la question 8. Ce point évolue évolue le long d’un axe (O,ûx), la distance
x = OM représente l’élongation du ressort de raideur k modélisant la liaison chimique entre les
deux atomes à travers le potentiel V (x) = 1

2
kx2. Il s’agit donc d’un problème unidimensionnel.

Le système est de plus stationnaire, on peut donc séparer la fonction d’onde en deux parties
sous la forme Ψ(x,t) = f(x)e−

iE

!
t où E représente les valeurs de l’énergie accessibles à ce

système. Pour l’oscillateur harmonique, on montre que ces valeurs de E doivent être positives.
La fonction Ψ(x,t) est une solution de norme unité de l’équation de Schrödinger

−
!2

2µ

∂2Ψ(x,t)

∂x2
+ V (x)Ψ(x,t) = i!

∂Ψ(x,t)

∂t

14 — Ecrire l’équation différentielle vérifiée par la fonction f(x) en fonction des paramètres
k, µ, ! et E.

On effectue le changement de variable α = x

(
µ k

!2

)1/4

et l’on pose γ =

(
4µE2

!2k

)1/2

.

15 — Quelles sont les dimensions de α et de γ ?

16 — Ecrire l’équation différentielle vérifiée par la fonction f(α) en fonction du seul pa-
ramètre γ.

17 — Vérifier que dans le régime α → ±∞, on peut écrire f(α) ∼ e±
1

2
α2

18 — Justifier succinctement que seule la solution α *→ e−
1

2
α2

est physiquement acceptable.

Dès lors que nous connaissons le comportement asymptotique de la solution recherchée, nous
pouvons l’extraire de celle-ci en effectuant le changement de fonction f(α) = g(α)e−

1

2
α2

19 — Déterminer l’équation différentielle vérifiée par la fonction α *→ g(α) ?

Pour résoudre cette équation, on effectue un développement en série entière de la fonction g :

g(α) =
+∞∑

p=0

bp α
p

20 — Exprimer le coefficient bp+2 en fonction du coefficient bp, de l’entier p et de γ.

Si l’on conserve tous les termes de la série, on montre que le comportement asymptotique de
la fonction α *→ g(α) l’emporte sur exp(−α2/2) en ±∞ ce qui ne permet pas de construire
de solution physiquement acceptable. La seule possibilité est de tronquer la série en imposant
l’existence d’un entier n tel que si p ≥ n alors bp+2 = 0.

21 — En déduire que les énergies accessibles à un oscillateur harmonique en régime quan-
tique sont de la forme

En =

(
n+

1

2

)
!ω avec n ∈ N

où ω est une grandeur que l’on exprimera en fonction de µ et k.

FIN DE LA PARTIE III
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IV. — Capacité thermique et quantification
Comme dans la partie II, on s’intéresse à un ensemble de N molécules diatomiques identiques.
Ce gaz est à l’équilibre thermique à la température T . La probabilité π(E) qu’une molécule de
ce gaz se trouve dans un état d’énergie En s’écrit

π(En) = A exp(−βEn)

où β est une fonction de kB et de T uniquement.

22 — Par analyse dimensionnelle, exprimer β en fonction de kB et de T .

Contrairement à la partie II où l’on avait utilisé l’expression classique de l’énergie, on utilise
maintenant l’expression de l’énergie de l’oscillateur harmonique obtenue dans le modèle quan-
tique à la question 21. C’est Albert Einstein qui eût cette idée le premier en 1907 afin de
tenter de régler certains problèmes de la physique classique dans le traitement du comporte-
ment des solides à basse température. L’idée est ici la même, mais rend compte de la vibration
des molécules diatomiques.

23 — Exprimer la constante A en fonction de !, ω, β.

24 — En déduire l’expression de l’énergie moyenne ⟨E⟩ de l’ensemble de ces N particules
en fonction de !, ω, β et N .

25 — Montrer que la capacité thermique molaire à volume constant cV,m de ce gaz s’écrit

cV,m = R
ξ2

sinh2(ξ)
avec ξ =

1

2
β!ω

0 1 2 3 4 5
0

0,2

0,4

0,6

0,8

1,0

%

& %( )

Figure 2 – Graphe de χ(u)

On désigne par Tv la température, dite de vi-
bration, caractéristique des vibrations de la molécule

qui est telle que Tv =
!ω

kB
.

26 — Réécrire l’expression de cV,m en fonc-
tion de Tv et T .

La figure 2 représente l’allure de la fonction

χ(u) = u−2/sinh2(u−1)

27 — La table ci-dessous fournit la tempé-
rature de vibration de quelques molécules diato-
miques. Quelle partie des mesures présentées sur
la figure 1 le modèle est-il censé représenter ? La
théorie est-elle en accord avec l’expérience ?

Molécule 1H2
2H2

1H−2H Cl2 Br2 HCl HBr

Tv [K] 6 220 4 390 5 380 808 463 4 230 3 790

FIN DE LA PARTIE IV

FIN DE L’ÉPREUVE
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Et pour un neutron de plus. . .
Dans l’ensemble du sujet, les vecteurs sont surmontés d’une flèche en général : ~v, ~r ; les vecteurs
unitaires sont notés û, êx, . . . Pour les notations complexes, on écrira 2 = −1 et on adoptera la
notation a = a0 exp (−ωt) ou bien a = a0e

−ωt pour décrire une fonction du temps sinusöıdale,
a(t) = a0 cos(ωt). Un point sur une fonction désigne sa dérivée totale par rapport au temps :
θ̇ = dθ

dt
.

Les positions dans l’espace seront repérées en coordonnées cartésiennes (x,y,z), rapportées à
la base orthonormée (êx, êy, êz), ou bien en coordonnées sphériques (r, θ, ϕ), rapportées à la
base orthonormée locale (êr, êθ, êϕ). N désigne l’ensemble des entiers naturels, N⋆ l’ensemble
des entiers strictement positifs.

Le sujet porte sur l’étude classique puis quantique du noyau et de l’atome de deutérium
(également appelé hydrogène lourd). Le deutérium (symbole D ou bien 2H) est un des deux
isotopes stables de l’hydrogène. Le noyau du deutérium 2H, connu sous le nom de deuton,
contient un proton et un neutron, tandis que le noyau de l’isotope le plus répandu de l’hydrogène
ne contient qu’un proton, 1H. L’abondance naturelle du deutérium dans les océans de la Terre
sous forme d’eau semi-lourde (HDO) ou lourde (D2O) ) est d’environ un atome pour 6 420 atomes
d’hydrogène.

Ce problème comporte trois parties complètement indépendantes : I, II et III ; pour cha-
cune de ces parties, certaines questions peuvent également être abordées de manière indépendante,
à condition d’admettre éventuellement certains résultats affirmés par l’énoncé. La partie I est
une introduction sur les proportions de masse. La partie II décrit, en mécanique classique les
propriétés générales de l’atome de deutérium, puis de son noyau, le deuton, et leur application
à la découverte du Deutérium par Urey en . La partie III décrit, en mécanique quantique,
certaines propriétés générales des interactions à forces centrales, avant de les appliquer à l’étude
du noyau du deuton.

Les notations, valeurs des constantes fondamentales et les autres données numériques nécessaires
à la résolution du problème sont regroupées dans un tableau à la fin de l’énoncé. Les applications
numériques comporteront au mieux deux chiffres significatifs.

I. — Masses du deuton et du deutérium

Figure 1 – Échantillon d’eau lourde fabriqué par
Norsk Hydro, photographie c© Alchemist-hp.

1 — Quelle est la proportion en masse
du deutérium dans l’hydrogène océanique ?

2 — Quelle est la proportion en masse
du deuton (le noyau) dans le deutérium
(l’atome) ?

3 — Comparer les proportions (en
nombres de molécules) de l’eau lourde

D2O et de l’eau semi-lourde HDO dans les
océans. On précisera les hypothèses néces-
saires à cette comparaison.

Le premier échantillon d’eau lourde a été
isolé par le physicien Gilbert Lewis en
 puis une production industrielle par
électrolyse a été mise en pratique par
l’entreprise norvégiènne Norsk Hydro

de  à .
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4 — Citez des applications industrielles de l’eau lourde.

II. — Étude classique de l’atome de deutérium
L’étude classique des propriétés de l’atome de deutérium (formé de son noyau, le deuton, et d’un
unique électron) est elle-même divisée en deux sous-parties indépendantes : l’étude des raies
d’émission de l’atome de deutérium (II.A) et l’influence de l’effet Doppler sur leur mesure
(II.B).

II.A. — Spectroscopie atomique et découverte du deutérium

Un atome d’hydrogène (ou de deutérium) est constitué d’un électron unique, de charge −e,
de masse me, soumis à l’interaction coulombienne d’un noyau supposé fixe à l’origine O des
coordonnées. Les valeurs En de l’énergie de cet électron sont quantifiées et données par la
relation

En = −
E0

2n2
avec E0 =

mee
4

(4πǫ0~)2
et n ∈ N

⋆

L’état fondamental est celui d’énergie minimale, il correspond donc à n = 1 et sa valeur

numérique est E1 = −
E0

2
= −13,6 eV.

5 — On appelle série de Balmer l’ensemble des raies d’émission d’un atome d’hydrogène
associées à une transition d’un niveau excité En (avec n > 2) vers le niveau n = 2. Exprimer
les longueurs d’onde λn associées à ces transitions en fonction de E0, n, de la constante de
Planck h et de la célérité de la lumière dans le vide c. Calculer numériquement les longueurs
d’onde λ3 et λ4 ; quel est le domaine spectral associé ?

On peut établir, et on admettra, que la prise en compte des (faibles) mouvements du noyau ato-

mique amène à remplacer, dans toutes les équations ci-dessus, la masseme parm
′

e =
me

1 +me/M
où M est la masse du noyau : M = mp dans le cas de l’hydrogène ≪ ordinaire ≫

1H et
M = mn +mp dans le cas de l’hydrogène ≪ lourd ≫ (ou deutérium) 2H ou D.

6 — Pour une des raies de la série de Balmer, on note λn (avec n > 2) la longueur
d’onde émise par un atome d’hydrogène ordinaire, λ′n la longueur d’onde émise par un atome

de deutérium et δ =
λ′n − λn
λn

l’écart relatif associé. Montrer que δ ≃ −
me

κmp

où κ est une entier

que l’on déterminera ; calculer δ ; quelle conséquence en déduisez-vous quant à l’identification
spectroscopique du deutérium ?

II.B. — Rôle de la température de l’échantillon

Compte-tenu de la faible proportion des atomes de deutérium dans un échantillon naturel, la
détection des raies d’émission (à la longueur d’onde λ′) du deutérium, et donc l’identification
de celui-ci, nécessite que les raies d’émission ≪ majoritaires ≫ de l’hydrogène (à la longueur
d’onde λ) ne recouvrent pas les raies du deutérium. En d’autres termes, la largeur naturelle ∆ω

des raies d’émission de l’hydrogène doit vérifier
∆ω

ω
≪ δ (où l’écart relatif δ a été introduit

ci-dessus, question 6). Pour cette étude, l’atome d’hydrogène, émetteur du rayonnement étudié,
sera assimilé à un point matériel de masse m ≃ mp ; il sera étudié dans le cadre de la mécanique
classique (c’est-à-dire ni quantique, ni relativiste).

Cette largeur naturelle des raies d’émission est essentiellement liée à l’agitation thermique de
la source d’émission ; on va donc établir le lien liant la pulsation effective d’émission par un
atome d’hydrogène, et la pulsation apparente à laquelle l’onde sera observée, en fonction de la
vitesse relative de cet atome et du récepteur.
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Considérons deux référentiels (K) = (Oxyz) et (K′) = (O′x′y′z′) en mouvement relatif, entière-

ment caractérisé par la vitesse ~Ve = ~vO′/K de O′ relativement à (K) et par la vitesse angulaire
~Ω de rotation de (K′) relativement à (K).

7 — Rappeler l’expression générale de la loi de composition des vitesses reliant les vitesses
~vM/K et ~vM/K′ d’un même point mobile M relativement aux référentiels (K) et (K′).

Le référentiel (K) = (Oxyz) est celui du laboratoire ; le référentiel (K′) = (Ex′y′z′) est attaché
à un point E mobile mais les vecteurs directeurs des axes des deux référentiels sont identiques,
ê′x = êx, ê

′

y = êy et ê′z = êz. Enfin, la vitesse de E relativement à (K) est ~vE/K = ~V =
Vxêx + Vyêy + Vz êz, elle est supposé constante.

8 — Montrer, en application de la loi de composition, que les coordonnées (x,y,z) dans (K)
et (x′, y′, z′) dans (K′) d’un même événement vérifient les relations :

x′ = x− Vxt+ x′0 y′ = y − Vyt+ y′0 z′ = z − Vzt+ z′0

où x′0, y
′

0 et z′0 sont certaines constantes.

Un récepteur de lumière, fixe dans le référentiel (K), et situé à grande distance de l’émetteur
E, reçoit une onde électromagnétique émise, dans le vide, dans la direction êx. L’émetteur
E est un atome d’hydrogène et la grandeur lumineuse associée à cette onde s’écrit S(x′,t) =
S0 exp [ (kx

′ − ωt)] en notation complexe.

9 — Quelle relation lie ω et k ?

10 — Déterminer l’expression de l’onde S, dans le référentiel (K) de sa mesure, en fonction
de x et t. En déduire qu’elle est observée à une pulsation apparente ωapp que l’on déterminera en

fonction de ω, c et de certaines composantes de ~V . Cette relation caractérise l’effet Doppler.

L’émetteur E est un atome d’hydrogène au sein d’un échantillon thermostaté à la température
T ; en conséquence, sa vitesse varie de manière aléatoire (agitation thermique) avec la loi de
distribution de Boltzmann : le nombre d’atomes dont la composante Vx prend une valeur
comprise entre v et v + dv est dN = K exp

(

−αv2
)

dv.

11 — Exprimer α en fonction de T et de certaines constantes physiques. On ne cherchera
pas à calculer K.

12 — Tracer la courbe représentative (G) de f(v) = dN/dv en fonction de v.

Dans le cas d’une courbe gaussienne comme celle tracée ci-dessous, on définit la largeur ∆v de
la courbe comme l’écart ∆v = v+ − v−, où v+ et v− sont les deux valeurs de v correspondant à
des points d’inflexion de la courbe.

v

v+v−

∆v

13 — Exprimer la largeur ∆v de la courbe (G), en fonction de T , de la constante de
Boltzmann kB et de la masse mp de l’atome d’hydrogène ; commenter.

14 — En déduire l’allure de la courbe de distribution des pulsations mesurées ωapp et
calculer sa largeur ∆ωapp, définie comme ci-dessus.

15 — En pratique, on impose le critère de détection
∆ωapp

ω
6 5·10−6. Calculer numériquement

la température caractéristique à laquelle doit se dérouler l’expérience afin de pouvoir identifier
spectroscopiquement le deutérium. Conclure.
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III. — Le deuton

III.A. — Potentiels radiaux en physique quantique

L’étude d’un système de deux particules ponctuelles de masses m1 et m2, si tuées en A1 et

A2 et telles que
−−−→
A1A2 = ~r est réalisée en utilisant les coordonnées sphériques (r, θ, ϕ) pour le

vecteur ~r. Les particules sont en interaction, décrite par l’énergie potentielle Ep(r) ; la probabi-
lité d’observer une particule dans l’élément de volume dτ entourant le point ~r est donnée par
dp = |Ψ(~r, t)|2dτ , où la fonction d’onde Ψ(~r,t) est solution de l’équation de Schrödinger,

−
~
2

2µ
∆Ψ+Ep(r)Ψ(~r, t) = ~

∂Ψ

∂t
où ∆ est l’opérateur de Laplace ou laplacien ; le coefficient µ

qui remplace, dans cette équation, la masse d’une particule unique, est donné par
1

µ
=

1

m1

+
1

m2

.

On rappelle aussi l’expression de l’opérateur laplacien en coordonnées sphériques :

∆f =
1

r2

[

∂

∂r

(

r2
∂f

∂r

)

+∆angf

]

avec ∆angf =
1

sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

sin2 θ

∂2f

∂ϕ2

On cherche une solution de l’équation de Schrödinger sous la forme Ψ(~r,t) =
R(r)

r
Y (θ, ϕ)e−ωt.

16 — Indiquer et justifier brièvement l’expression liant l’énergie E d’un tel état et la pul-
sation ω.

17 — Montrer que R(r) et Y (θ, ϕ) vérifient les deux équations

−
~
2

2µ

d2R

dr2
+

[

Ep(r) +
~
2C

2µr2

]

R(r) = ER(r) et ∆angY = −CY (θ, ϕ)

où C est une certaine constante.

On rappelle les résultats de la mécanique classique pour l’étude du mouvement d’une particule
de masse µ en mouvement dans un champ de forces centrales décrit par l’énergie potentielle
Ep(r) :

— le mouvement est plan et peut, dans ce plan, être décrit en coordonnées polaires r, θ ;
— le moment cinétique est constant, directement perpendiculaire au plan du mouvement

avec pour moment cinétique σ = µr2θ̇ ;

— le mouvement est entièrement décrit par la conservation de l’énergie E =
1

2
µṙ2+Ueff(r),

où l’énergie potentielle effective a pour expression Ueff(r) = Ep(r) +
1

2

σ2

µr2
.

18 — Précisez, dans l’équation vérifiée par R(r) établie ci-dessus, les expressions analogues

de l’énergie cinétique radiale
1

2
µṙ2, de l’énergie potentielle effective et du moment cinétique σ.

19 — Quelle serait la valeur de la constante C pour une fonction d’onde purement radiale ?
On ne fera pas nécessairement cette hypothèse dans les questions qui suivent.

20 — On procède à une nouvelle séparation des variables en posant Y (θ, ϕ) = Θ(θ)Φ(ϕ).
établir les équations différentielles vérifiées par Θ(θ) et Φ(ϕ).

21 — Justifier le plus précisement possible le fait, qu’à une constante multiplicative près,
que l’on peut imposer Φ(ϕ) = emϕ où m ∈ Z.
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22 — On peut montrer, et on admettra, que les solutions de l’équation différentielle vérifiée
par Θ(θ) sont des polynômes de degré ℓ (avec ℓ > |m|) de la variable x = cos θ :

Θ(θ) = aℓx
ℓ + . . .+ a1x+ a0

En ne considérant que le terme de plus haut degré, exprimer C en fonction de ℓ seulement.
Quel est le moment cinétique σ pour une fonction d’onde caractérisée par ℓ ?

III.B. — Énergie de liaison du deuton

Le deuton est le noyau de l’atome de deutérium 2

1
H, formé d’un neutron et d’un proton. Il s’agit

d’un des très rares noyaux stables comportant un nombre impair à la fois de neutrons et de
protons (avec 6Li, 10B, 14N et 180Ta) ; en effet, de tels noyaux impairs–impairs sont en général
peu ou pas stables. L’énergie de liaison du deuton est faible (2,23MeV seulement) et il n’a
qu’un état fondamental, de moment cinétique nul (nombre quantique orbital ℓ = 0) et pas
d’état excité stable.

On considère les états liés stationnaires d’une particule de masse µ dans le puits de potentiel
défini par :

Ep = −V0 pour 0 6 r 6 a et Ep = 0 pour r > a

avec V0 > 0. On écrit la fonction d’onde indépendante du temps d’un état lié (−V0 < E < 0),

à symétrie de révolution (radiale), ψ(r) =
R(r)

r
où R(r) est solution de l’équation radiale

−
~
2

2µ

d2R

dr2
+ Ep(r)R(r) = E R(r)

Dont les solutions sont de la forme R(r) = A sin(kr) pour r 6 a, et R(r) = Be−Kr pour r > a.

23 — Justifier ces formes et exprimer k et K en fonction de E et V0.

24 — Expliciter les conditions de raccordement en r = a.

25 — On pose X = ka et Y = Ka. Écrire deux relations distinctes liant X et Y en fonction

de ρ2 =
2µV0a

2

~2
, indépendamment des valeurs des constantes A et B (qu’on ne cherchera pas

à expliciter).

26 — Représenter graphiquement, sur un système d’axes (X, Y ), les deux relations établies
à la question précédente.

27 — Montrer qu’il n’existe d’état lié que si V0 est supérieur à une certaine valeur Vmin que
l’on déterminera en fonction de ~, µ et a.

28 — Quelle est la valeur maximale Vmax de V0 pour qu’il n’existe qu’un seul état lié ?

On utilise ce modèle pour décrire l’interaction nucléaire entre un neutron et un proton, formant
le deuton (noyau de l’atome de deutérium). Le rayon du deuton est a = 2,0 · 10−15 m ; la masse

µ est la masse réduite du deuton, µ =
mnmp

mn +mp

. L’expérience montre qu’il n’existe qu’un seul

état lié, d’énergie Ed < 0.

29 — En déduire que, dans ce modèle, Vmin < V0 < Vmax et calculer Vmin et Vmax en MeV.
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30 — Que vaut l’énergie de liaison si V0 = Vmin ?

31 — L’énergie de liaison du deuton est Ed = −2,23MeV. Comparer à Vmin ; en déduire
que V0 est proche de Vmin.

32 — En explicitant les relations établies ci-dessus entre X et Y pour V0 proche de Vmin,

montrer que V0 =
~
2

2µa2

[

π

2
+

2a

~π

√

−2µEd

]2

.

33 — Calculer V0 (en MeV) et comparer à Ed.

FIN DE L’ÉPREUVE

Le tableau ci-après récapitule les valeurs de certaines grandeurs physiques ou constantes fon-
damentales.

Célérité de la lumière dans le vide c = 3,0 · 108 m · s−1

Charge élémentaire e = 1,6 · 10−19 C
Constante de Boltzmann kB = 1,4 · 10−23 J ·K−1

Constante de Planck h = 6,6 · 10−34 J · Hz−1

Constante de Dirac ~ = h/2π = 1,0 · 10−34 J · s
Masse de l’électron me = 9,1 · 10−31 kg
Masse du proton mp = 1,673 · 10−27 kg ≫ me

Masse du neutron mn = 1,675 · 10−27 kg ≃ mp

Permittivité diélectrique du vide ǫ0 = 8,9 · 10−12 F ·m−1

Température d’ébullition de l’azote (sous 1 bar) T N2

eb = 77,4K

Température d’ébullition de l’hydrogène (sous 1 bar) T H2

eb = 20,3K
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L’indice et le froid
Ce sujet comporte deux parties totalement indépendantes. Au sein de chaque partie, de nom-
breuses questions sont également indépendantes. La première partie concerne la loi de Gladstone-
Dale relative à la variation de l’indice de l’air en fonction de la pression et la température. La
deuxième partie est consacrée à l’obtention de température extrêmement basse par désaimantation
adiabatique.

Les vecteurs sont surmontés d’une flèche (E⃗) ou d’un chapeau s’ils sont unitaires (û). Par
défaut, la norme d’un vecteur ||E⃗|| est notée simplement E. La mesure algébrique d’un vecteur
sur un axe est indicée par le paramètre représentant l’axe, nous notons ainsi Ez = E⃗ · ûz.
Les valeurs des constantes fondamentales nécessaires à la résolution du problème sont regroupées
dans une annexe à la fin de l’énoncé. Vous y trouverez également un rappel de quelques fonc-
tions de trigonométrie hyperbolique et du théorème de Schwarz.
Sauf indication contraire, les applications numériques seront des ordres de grandeur qui com-
porteront toujours deux chiffres significatifs. Le nombre complexe i est tel que i2 = −1.

I. — Vérification de la loi de Gladstone-Dale

Après avoir étudié les propriétés optiques de différents liquides dans le domaine du visible,
Gladstone et Dale ont proposé en 1858 une loi empirique relative à l’indice de réfraction, noté
n, indiquant que n − 1 est proportionnel à la masse volumique du liquide. Cette loi a ensuite
été étendue au cas du fluide diélectrique homogène et isotrope, comme le sont les gaz et les
mélanges de gaz. Cette partie du sujet propose une vérification expérimentale de cette loi pour
l’air, et une explication théorique rudimentaire.
Nous notons n0 l’indice de l’air à la pression p0 et à la température T0 ambiantes dans le
laboratoire. Nous rappelons que l’indice de réfraction d’un milieu est défini par le rapport de
la vitesse c de la lumière dans le vide sur la vitesse de phase v de la lumière dans le milieu

considéré, soit n =
c

v
, cet indice est généralement plus grand que 1.

1 — Montrez que, sous réserve d’une approximation usuelle que vous préciserez, la loi de
Gladstone-Dale, pour l’air, conduit à écrire que n−1 est proportionnel au rapport de la pression
sur la température de l’air. En travaillant à température constante, montrez que la variation
d’indice n− n0 est proportionnelle à la variation de pression.

Nous posons par la suite n − n0 =
a

T0

(
p − p0

)
où a est une constante qui dépend de la

composition de l’air (humidité, taux de CO2, . . .).

2 — La variation de l’indice de l’air avec la pression est très faible, mais parfaitement me-
surable avec un instrument très sensible comme l’interféromètre de Michelson. L’interféromètre
est éclairé par une source étendue monochromatique de longueur d’onde λ dans le vide, et réglé
de façon à observer des anneaux sur un écran. Représentez, sur un schéma symbolique, un
interféromètre de Michelson en précisant la position de la source lumineuse et de l’écran. Des
lentilles minces dont vous préciserez le rôle sont à utiliser. La lame séparatrice sera représentée
par un simple trait. Quelle est la position relative des miroirs ? Nous notons f ′ la distance focale
de la lentille de projection. Déduisez-en la différence de marche δ induite par l’interféromètre
dans cette configuration en précisant vos notations. En supposant que le centre de la figure
d’interférence est un point brillant d’éclairement maximal, donnez le rayon du kième anneau
brillant en fonction de k, f ′, λ et δ0 la différence de marche au centre de la figure. On supposera
les angles des rayons lumineux par rapport à l’axe optique de la lentille suffisamment petits
pour en négliger l’ordre 3 devant les précédents.
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Une cuve est introduite entre un miroir de l’interféromètre et la lame séparatrice. Cette cuve
contient de l’air dont on peut faire varier la pression par une simple pompe à main. Un ma-
nomètre permet de mesurer la pression relative atteinte. En gonflant lentement, l’air de la cuve
reste sensiblement à température ambiante. Une microfuite permet ensuite de ramener très
lentement la pression de la cuve à p0. Dans votre analyse, la cuve sera idéalisée et vous êtes
invités à négliger le rôle des parois du dispositif.
Une photodiode est placée à la place de l’écran au centre de la figure d’interférence et permet
de décompter le nombre de franges brillantes N qui défilent lentement lors de la diminution de
la pression dans la cuve. La longueur de la cuve traversée par les rayons lumineux est L = 4 cm.

3 — Reliez la différence de marche supplémentaire due à la présence de la cuve à la variation
d’indice n− n0, puis au nombre de franges N , sur la frange centrale éclairant la photodiode.
Déduisez-en l’expression de N en fonction notamment de a et de la variation de pression p− p0
dans la cuve.

4 — Pour T0 = 300K et λ = 530 nm, le tableau suivant donne le nombre de franges N
pour quelques valeurs de surpression p− p0 exprimées en bar :

p− p0 0 0,5 0,7 1 1,3 1,5 1.8 2 2,3 2,5
N 0 17 26 40 56 68 82 92 102 111

Calculez numériquement le coefficient a en détaillant votre démarche. Si vous aviez disposé
d’un outil d’analyse numérique (calculatrice, ordinateur + python, etc· · · ), comment aurait-on
pu exploiter ces données ?

Nous utilisons par la suite la valeur en ordre de grandeur de a = 1,0× 10−6 K · Pa−1

La loi empirique de Gladstone-Dale pour l’air peut être expliquée dans le cadre du modèle de
l’électron élastiquement lié. Nous assimilons une molécule d’un gaz composant l’air à un noyau et
deux électrons optiquement actifs. Nous notons r⃗(t) le vecteur position d’un électron par rapport
au noyau, v⃗(t) sa vitesse, me la masse de l’électron et −e sa charge électrique. L’interaction
entre le noyau et l’électron est modélisée par deux forces s’exerçant sur l’électron : une force
de rappel élastique −meω

2
0 r⃗ et une force de frottement fluide −meΓv⃗. L’électron est soumis au

champ électrique de l’onde plane que nous considérons localement identique à E⃗(r⃗,t) = E⃗0 e
iωt.

5 — Établir l’équation différentielle régissant l’évolution de la position de l’électron. Pour-
quoi n’avons nous pas pris en compte l’effet du champ magnétique de l’onde sur l’électron ?
Nous nous intéressons à la solution en régime forcé de cette équation. En utilisant la notation
complexe, donnez l’expression de la vitesse v⃗ d’un électron en fonction du champ électrique.

6 — Pourquoi ne prenons-nous pas en compte le mouvement des noyaux des molécules
induit par le champ électrique de l’onde plane ? Montrez alors que le vecteur densité de courant
électronique total peut s’écrire :

j⃗ = γE⃗ avec γ =
κn∗e2

me

iω

ω2
0 − ω2 + iΓω

où κ est un facteur numérique que l’on déterminera et n∗ est le nombre volumique, c’est-à-dire
le nombre de molécules par unité de volume du gaz.
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7 — À quel type de filtre correspond γ ? Soit γ0 le maximum du module de γ, déterminez
l’expression de γ0. Nous définissons la fonction de transfert H(ω) = γ

γ0
, exprimez cette fonction

de transfert et préciser l’expression de son facteur de qualité Q. Représentez le gain de ce filtre
dans un diagramme de Bode pour un facteur de qualité de l’ordre de la centaine.

8 — L’air est assimilé à un milieu neutre électriquement mais polarisable : une onde
électromagnétique dans le domaine du visible induit un mouvement des électrons qui se traduit
par l’apparition d’un vecteur densité de courant selon la question précédente. Donnez alors les
équations de Maxwell dans ce milieu. Montrer qu’en introduisant une permittivité relative ϵr
complexe que l’on identifiera, on peut écrire l’équation de propagation pour le champ électrique

sous la forme ∆E⃗ = µ0ϵ0ϵr
∂2E⃗

∂t2
.

9 — On néglige les frottements fluides et on suppose que la pulsation de l’onde ω est très
inférieure à ω0, montrez alors que cette permittivité relative se simplifie en :

ϵr = 1 +
κe2n∗

meϵ0ω2
0

Quelle est la relation entre la permittivité relative et l’indice n ? En remarquant que n2−1 ≪ 1,
donnez l’expression de l’indice en fonction de n∗, e, me, ϵ0 et ω0.

10 — Reliez le nombre volumique n∗ à la pression et la température de l’air. Déduisez-en
l’expression de l’indice en fonction de la pression, de la température et des autres constantes.
Exprimez alors le coefficient a en fonction de e, me, ϵ0, kB et ω0. Calculez la valeur numérique
de ω0 et commentez le résultat obtenu.

FIN DE LA PARTIE I

II. — Refroidissement par désaimantation adiabatique

Le refroidissement par désaimantation magnétique est une technique assez ancienne puisque
les premières expériences ont été présentées en 1933, découlant de théorie proposée par De-
bye (1926) et Giauque (1927). Elle connâıt actuellement un regain d’intérêt dans le domaine
spatial. L’atténuation du bruit thermique sur les capteurs des satellites nécessite en effet
des températures extrêmement basses qui doivent être obtenues dans un milieu en apesan-
teur et avec un dispositif le plus léger possible. La technique de refroidissement par effet
magnétocalorique ne nécessite pas de compresseur, elle est donc compatible avec l’absence
de pesanteur. La capacité thermique importante permet de réduire la masse du dispositif. La
température de refroidissement attendue est de l’ordre de 50mK.

L’aimantation, notée M⃗ , est une grandeur intensive définie comme la densité volumique de
moment dipolaire magnétique. Il s’agit donc du moment dipolaire magnétique moyen par unité
de volume.

Le dispositif de refroidissement comporte un premier étage de refroidissement à adsorption
qui amène l’étage de désaimantation magnétique à la température de 350 mK. Le réfrigérant
utilisé pour la désaimantation est un sel d’alun de chrome de formule KCr(SO4)2 qui est pa-
ramagnétique. Les ions présentent un moment magnétique orbital principalement d’origine
électronique. En présence d’un champ extérieur, le sel présente une aimantation que l’on cherche
à exprimer.
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11 — Considérons une spire de courant circulaire, traversée par l’intensité I, dont la sur-
face est notée S. Son vecteur surface S⃗ est orienté par û vecteur unitaire normal. Le moment
magnétique associé est défini par µ⃗ = IS⃗ avec S⃗ = Sû. Plongé dans un champ magnétique
extérieur B⃗, le circuit subit une action qui tend à aligner le moment magnétique avec le champ
magnétique. Cette action se traduit par un couple de force µ⃗ ∧ B⃗. Montrez qu’il existe deux
positions d’équilibre et indiquer leur stabilité. Tracez succinctement le graphe de l’énergie po-
tentielle magnétique Em = −µ⃗·B⃗ en fonction de l’angle entre les deux vecteurs qui la définissent.
Retrouvons-nous les positions d’équilibre et leur stabilité ?

Dans le cadre du modèle semi-classique de Bohr, nous considérons un électron, de masse m
et de charge q = −e, en orbite circulaire uniforme de rayon r autour d’un noyau. Le moment
cinétique de cet électron L⃗ = r⃗∧mev⃗ est quantifié, sa norme valant L = p! où ! est la constante
de Planck réduite et p ∈ N∗.

12 — Exprimez la norme du moment cinétique en fonction notamment des normes de r⃗ et v⃗.
En remarquant que l’électron effectue un tour en une période τ , exprimez l’intensité électrique
correspondant à ce circuit élémentaire en fonction de e et des normes de r⃗ et v⃗. Déduisez-en
l’expression du moment magnétique. Montrez alors que le moment magnétique est colinéaire
au moment cinétique. Déduisez-en que sa norme µ est aussi quantifiée µ = pµB et exprimez la
constante µB appelée magnéton de Bohr en fonction de e, me et !. Calculez avec un seul chiffre
significatif la valeur numérique de µB.

Les sels ioniques d’alun présentent un moment magnétique permanent dont l’orientation est
aléatoire. En présence d’un champ magnétique extérieur, ce moment magnétique tend à s’orien-
ter selon le champ. Notons Oz l’axe du champ magnétique, soit B⃗ = B ûz. L’énergie potentielle
fait intervenir la projection du moment magnétique selon Oz qui est elle-même quantifiée.
Ainsi l’état quantique du nuage électronique d’un ion dans un champ magnétique est défini par
4 nombres quantiques (n,ℓ,m,k).

Le nombre k est entier si m est entier ou demi-entier si m est demi-entier. Il peut prendre l’une
quelconque des valeurs de l’ensemble M tel que

k ∈ M =

[
{−m, −m+ 1, · · · , − 1, 0, 1, · · · ,m− 1,m} si m est entier
{−m, −m+ 1, · · · , − 1

2
, 1
2
, · · · ,m− 1,m} si m est demi-entier

L’énergie potentielle associée à cet état s’écrit Ek = −kgµBB où g est un facteur numérique,
appelé facteur de Landé. Contrairement au ferromagnétisme, l’interaction entre les ions est
négligeable. Nous considérons n∗ ions du sel d’alun par unité de volume dont nous cherchons à
exprimer l’aimantation.

13 — En utilisant la distribution de probabilité de Boltzmann, montrez que la proportion

Pk d’ions dans l’état Ek peut s’écrire sous la forme Pk =
exp(kx)

Z
où la quantité Z permet de

normaliser la distribution, et dans laquelle on exprimera x en fonction de g, µB, B, kB et T .

14 — Exprimez Z en fonction de x et des k. Montrez que Z peut s’écrire comme la somme
des premiers termes d’une suite géométrique. Déduisez-en l’expression de Z sous la forme d’un
rapport de deux sinus hyperboliques. La fonction Z est appelée fonction de partition.
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15 — La projection du moment magnétique selon l’axe Oz vaut µz = kgµB, exprimez sa
moyenne ⟨µz⟩ dans la distribution dipolaire en fonction de g, µB et des proportions Pk, puis en

fonction de la dérivée
d

dx

[
ln(Z)

]
=

1

Z

dZ

dx
. Comme les composantes du moment magnétique

selon les autres axes sont nulles en moyenne (pas de direction privilégiée), montrez que l’ai-
mantation totale M des n∗ ions par unité de volume a pour expression

M = M∞

{
m+ 1

2

th
[(
m+ 1

2

)
x
] −

1

2 th
(
x
2

)
}

où l’on exprimera M∞ en fonction de n∗, g et µB. Ce modèle a été proposé par le physicien
français Léon Brillouin en 1927.

16 — Dans le régime x ≪ 1, on constate expérimentalement que l’aimantation suit la loi

de Curie M = γ
B

T
où γ est une constante spécifique à du sel d’alun considéré. Exprimez, dans

le cadre du modèle obtenu, γ en fonction de n∗, g, µB, du facteur m(m+ 1) et de kB.

17 — Nous prenons ici m = 3

2
. On définit la fonction de Brillouin f(x) =

M(x)

M∞

. Pour

quelles raisons physiques fondamentales observe-t-on, d’une part que lim
x→0

f(x) = 0, et d’autre

part que le graphe de f(x) présente une asymptote horizontale ? Tracer l’allure de f(x) pour

x ≥ 0. Expérimentalement, la susceptibilité magnétique χ =
µ0M

B
de ce sel d’alun est voisine

de χ = 1,0× 10−4 pour n∗ proche du millier de moles par m3, à la température de 300 K.
Retrouvez-vous cet ordre de grandeur avec g = 2 ?

Le sel d’alun utilisé dans la désaimantation suit la loi de Curie M = γ
B

T
.

Lorsqu’un champ magnétique extérieur est appliqué, les moments magnétiques tendent à s’ali-
gner selon le champ extérieur. Cet alignement est exothermique. Le sel d’alun est relié au
premier étage de refroidissement qui évacue l’énergie thermique produite. Le sel est ensuite
isolé thermiquement, et le champ magnétique est lentement diminué. Cette transformation est
considérée comme adiabatique réversible.

18 — L’énergie interne volumique u des n∗ ions d’alun par unité de volume est une fonction
d’état de ce système. Sa variation est donnée par du = Tds+BdM où s = s(T,B) est l’entropie
volumique du système. Quelle serait l’équivalent du terme BdM pour un gaz soumis à des forces
de pression ? Le sel est un solide, nous introduisons, à l’aide de l’approche des multiplicateurs
de Lagrange, la fonction enthalpie volumique h = u−BM . Exprimez la différentielle de h. Dans
le cadre du modèle utilisé, h ne dépend que de T , nous définissons cB la capacité thermique du
système par dh = cB dT . Déterminez la variation ds de l’entropie en fonction de cB, γ, B, T et
des variations de température dT et de champ magnétique dB.

19 — Montrer que

(
∂cB
∂B

)

T

= −η
γB

T 2
où l’on déterminera la constante η. Dans la gamme

de température considérée, la capacité thermique d’un sel paramagnétique non soumis à un
champ magnétique extérieur est celle d’un système chaud à deux états, i.e proportionnelle à

l’inverse du carré de la température cB(T,B = 0) =
α

T 2
où α est une constante caractéristique

du sel considéré. En déduire l’expression de cB en fonction de γ, α et des variables T et B.
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20 — Le réfrigérant est soumis à un champ magnétique de Bi = 20mT et refroidi à
une température Ti = 350mK avant d’être isolé thermiquement. Le champ magnétique est
lentement abaissé jusqu’à une valeur résiduelle de Bf = 2,0mT. Déterminez l’expression de la
température finale Tf en fonction de γ, α, Bf , Bi et Ti. Dans les conditions de l’expérience,
nous pouvons annuler le paramètre α, déduisez-en l’expression simplifiée de Tf en fonction de
Bf , Bi et Ti puis sa valeur numérique.

FIN DE LA PARTIE II

Constantes et valeurs numériques
— Constante de Boltzmann : kB = 1,4× 10−23 J ·K−1

— Nombre d’Avogadro : NA = 6,0× 1023 mol−1

— Constante des gaz parfaits : R = kBNA = 8,3 J ·K−1 ·mol−1

— Constante de Planck : h = 6,6× 10−34 J · s
— Constante de Planck réduite : ! = h

2π
= 1,1× 10−34 J · s

— Permittivité du vide : ϵ0 = 8,9× 10−12 F ·m−1

— Perméabilité du vide : µ0 = 1,3× 10−6 H ·m−1

— Charge élémentaire : e = 1,6× 10−19 C
— Masse de l’électron : me = 9,1× 10−31 kg

Formulaire de trigonométrie hyperbolique
On appelle sinus et cosinus hyperbolique de la variable réelle t, les fonctions :

sh(t) =
et − e−t

2
et ch(t) =

et + e−t

2

La fonction tangente hyperbolique de la variable réelle t est définie par le rapport th(t) =
sh(t)

ch(t)
.

Au voisinage de t = 0, le développement de Taylor de la tangente hyperbolique s’écrit :

th(t) = t−
1

3
t3 + o(t3)

On rappelle également que
d

dt

(
sh(t)

)
= ch(t) et

d

dt

(
ch(t)

)
= sh(t).

Théorème de Schwarz, ou de Young
Soit f(x,y) une fonction à valeurs réelles définie sur un ouvert de R2 et au moins deux fois
dérivable. Elle vérifie :

∂

∂y

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂y

)

Identité entre opérateurs différentiels
Soit u⃗ un vecteur de R3, on a

r⃗ot r⃗ot u⃗ = ⃗grad div u⃗−∆u⃗

FIN DE L’ÉPREUVE
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Physique II, année 2020 — filière MP

La loi de Wiedemann-Franz

En 1853 les physiciens allemands Gustav Wiedemann et Rudolf Franz remarquèrent

expérimentalement que le rapport de la conductivité thermique � d’un métal par sa conductivité

électrique � semblait constant pour tous les métaux.

Une vingtaine d’années plus tard, en 1872, le physicien danois Ludvig Lorenz découvrit qu’en
fait ce rapport dépendait linéairement de la température selon la relation

�

�
= T .

Cette relation est désormais connue sous le nom de loi de Wiedemann-Franz et la constante

, appelée coe�cient de Lorenz, est indépendante du métal considéré.

Après sa découverte expérimentale, cette relation est restée pendant longtemps un grand

mystère pour les physiciens et questionnait sur le problème du transport de l’électricité et

de la chaleur dans les métaux. Elle résista à la modélisation pendant un demi-siècle.

Avec la découverte de l’électron et de ses propriétés en 1897 par le physicien anglais Joseph
Thompson des modèles furent envisageables. L’un des tout premiers est établi par le physicien

allemand Paul Drude en 1900, il permet d’interpréter le transport des électrons dans les

métaux dans le cadre d’un modèle classique.

Ce modèle permet de justifer certains traits de la loi de Wiedemann-Franz mais n’apporte

pas toute satisfaction.

Il sera repris une trentaine d’années plus tard dans un contexte quantique par les physiciens

allemands Arnold Sommerfeld et Hans Bethe. L’analyse microscopique fine des solides

devenait possible : elle fut à l’origine de très grandes avancées technologiques qui jalonnèrent

le xxe
siècle et reste encore tout à fait d’actualité.

Nous proposons dans ce sujet de commencer (Partie I) par étudier un protocle expérimental per-

mettant de déterminer la conductivité électrique d’un métal (le cuivre). La loi de Wiedemann-

Franz sera alors démontrée dans un modèle statistique simple (Partie II), puis elle sera testée

expérimentalement pour le cuivre (Partie III). Ces trois parties sont très largement indépen-

dantes.

Sauf mention contraire, on limitera les applications numériques à des estimations ne comportant

au plus que deux chi↵res significatifs. Les données numériques utiles pour réaliser les applica-

tions numériques ainsi qu’un formulaire sont rassemblés en fin d’énoncé. Les vecteurs unitaires

sont surmontés d’un chapeau : kûxk = 1.
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I. — Détermination expérimentale de la conductivité élec-
trique du cuivre
Dans cette partie, on cherche à mettre en place un protocole expérimental permettant de

déterminer la conductivité électrique du cuivre et à exploiter un résultat de mesure.

Pour ce faire, on dispose d’un fil de cuivre de longueur 10,0 mètres, de section circulaire de

diamètre 2,0 mm, recouvert d’une résine isolante, que l’on enroule grossièrement pour réduire

l’encombrement (on néglige toute déformation due à l’enroulement). Ce fil est plongé dans un

bain thermostaté, muni d’un agitateur, pour maintenir sa température au voisinage de 20
�
C.

On commence par connecter le fil aux bornes d’un ohmmètre dont un extrait de la notice est

fourni dans la table 1.

On se place sur le calibre le mieux adapté. L’ohmmètre a�che 0,1 ⌦.

1 — Quel calibre est le mieux adapté pour cette mesure (on justifiera ce choix) ? Quelle

incertitude doit-on associer à la valeur a�chée ? Commenter.

Calibres Précision
Courant de
Mesure

Résolution

500 ⌦ 1 mA 0,1 ⌦
5 k⌦ 0,3% L + 3 UR 125 µA 1 ⌦
50 k⌦ 12,5 µA 10 ⌦
500 k⌦ 1,25 µA 100 ⌦
5 M⌦ 0,5% L + 3 UR 125 nA 1 k⌦
50 M⌦ 1% L + 3 UR 30 nA 10 k⌦

Table 1 – Tableau extrait de la notice de l’ohmmètre utilisé.

On cherche à déterminer la résistance électrique du fil à l’aide d’un autre montage, exploitant la

loi d’Ohm, un générateur de courant continu pouvant délivrer quelques ampères sous quelques

volts, un voltmètre et un ampèremètre, dont les notices indiquent :

Calibres Précision
Chute de

tension maximale
Résolution

50 mA dc 0,3% L + 2 UR < 800 mV 100 µA dc

500 mA dc 0,3% L + 3 UR < 800 mV 100 µA dc

10 A dc 1% L + 3 UR < 700 mV 10 mA dc

Table 2 – Tableau extrait de la notice de l’ampèremètre.

Calibres Précision Impédance d’entrée Résolution

500 mV dc 11 M⌦ 0,1 mV dc

5 V dc 11 M⌦ 1 mV dc

50 V dc 0,3% L + 2 UR 10 mV dc

500 V dc 10 M⌦ 100 mV dc

600 V dc 1 V dc

Table 3 – Tableau extrait de la notice du voltmètre.

Pour mesurer une résistance à l’aide d’un voltmètre et d’un ampèremètre, deux montages sont

possibles et représentés sur la figure 1.
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A !

V

"

#

Montage 1

A !

V

Montage 2

1

1

#2

"2

Figure 1 – Mesure d’une résistance

2 — En notant respectivement RA et RV les résistances internes de l’ampèremètre et du

voltmètre, évaluer pour chacun de ces montages l’erreur systématique "i =
|Ri �R|

R
où Ri =

Ui

Ii
représente la résistance mesurée dans chacun des montages i = 1 ou i = 2. Représenter sur un

même graphe les variations de cette erreur relative en fonction de R. Justifier que, dans cette

expérience, seul l’un des deux montages est pertinent.

Avec le montage adapté, pour une intensité lue à l’ampèremètre de 5,23 A, le voltmètre a�che

287,5 mV (à chaque fois, on se place sur le calibre le mieux adapté).

3 — Estimer (avec un chi↵re significatif) la résistance électrique du fil. Comparer (de

manière chi↵rée) la précision de cette seconde méthode de mesure à celle de la question 1.
Comment procéder pour améliorer encore la qualité de cette seconde mesure ?

4 — Déduire de la question précédente une estimation de la conductivité électrique du

cuivre.

II. — Relation entre conductivités thermique et électrique
dans un métal

Dans cette partie, on se propose d’établir la loi de Wiedemann-Franz. Pour ce faire, on

considère un fil de cuivre rectiligne d’axe Ox, homogène et comportant n électrons de conduc-

tion par unité de volume. Lorsqu’un champ électrique uniforme et permanent ~E est appliqué

à ce matériau, chaque électron de vitesse ~v et de masse m est soumis à la force de Cou-

lomb ~fC imposée par ce champ et à une force de frottement fluide ~fD = �m

⌧
~v qui modélise

macroscopiquement l’interaction de l’électron avec le matériau.

5 — En écrivant le principe fondamental de la dynamique à cet électron, déterminer sa vi-

tesse limite dans ce modèle. En déduire l’expression de la conductivité électrique � du matériau.

On peut s’interroger sur le sens physique de la durée ⌧ . On adopte pour cela le modèle suivant :

Soit un ensemble de N électrons de conduction. On désigne par ~vi(t) la vitesse, à l’instant t, du

i–ème électron de cet ensemble. On note ~p(t) la quantité de mouvement à l’instant t moyennée

sur l’ensemble des porteurs de charge, soit

~p(t) =
1

N

NX

i=1

m~vi(t)

Lors de son déplacement, un électron subit diverses collisions ; on note ~p
+
i,0 la quantité de

mouvement du i–ème après l’une de ces collisions. Un électron pris au hasard subit une collision
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entre les instants t et t+dt avec une probabilité dt/✓ où ✓ est une constante positive. On rappelle

qu’en l’absence de collision il est uniquement soumis à ~fC .

6 — Justifier la relation ~pi(t+ dt) =
dt

✓
~p

+
i,0 +

✓
1� dt

✓

◆
~pi(t) +

~fCdt

7 — Déduire de l’équation précédente une relation entre
d~p(t)

dt
, ~p(t), ~fC et ✓ dans la limite

dt ! 0. Commenter l’expression obtenue et relier ✓ à la durée ⌧ .

On note ⇧(t) la probabilité qu’un électron n’ait pas subi de collision entre un instant initial

t = 0 et l’instant t. L’instant initial est choisi tel que l’électron a subi sa dernière collision à

l’instant t = 0
�
, c’est-à-dire juste avant l’instant initial.

8 — Par une approche semblable à celle de la question 6, établir l’équation di↵érentielle

vérifiée par ⇧(t) pour t > 0. Intégrer cette équation pour obtenir l’expression de ⇧(t) en

fonction de ⌧ , puis calculer la moyenne temporelle de la durée entre deux collisions subies par

un électron. En déduire une interprétation physique de la durée ⌧ .

Pour obtenir l’expression de la conductivité thermique, on adopte un modèle unidimensionnel de

type gaz parfait. On note v la vitesse quadratique moyenne des électrons et on considère qu’ils

se déplacent de façon équiprobable selon +bux ou �bux à la vitesse v. Dans ce modèle, l’énergie

thermique est véhiculée globalement par les électrons le long de l’axe Ox, au grè des chocs. On

se place également en régime stationnaire. On note E
�
T (x)

�
l’énergie cinétique moyenne d’un

électron situé en x (à la température T (x)).

9 — À l’aide d’un bilan sur une section droite de métal située à l’abscisse x, montrer que

le flux thermique jq par unité de surface s’écrit :

jq =
1

2
nv

h
E
�
T (x� v⌧)

�
� E

�
T (x+ v⌧)

�i

10 — En précisant les di↵érentes hypothèses de votre calcul, exprimer jq en fonction de v,

⌧ , n,
dT

dx
et de la chaleur spécifique d’un électron CV =

dE
dT

. En retrouvant la loi de Fourier

dans cette relation, déduire l’expression de la conductivité thermique � du gaz d’électrons.

11 — Dans le cadre du modèle du gaz parfait classique monodimensionnel exprimer fina-

lement � en fonction de n, T , kB, ⌧ et de la masse m de l’électron.

12 — Exprimer le rapport
�

�T
en fonction de e et kB dans le modèle classique monodimen-

sionnel étudié jusqu’à présent. Comment se généralise cette relation dans le cas tridimension-
nel ? On justifiera sa réponse. Cette relation donne le coe�cient de Lorenz dans le modèle

classique de Drude.

En fait le gaz formé par les électrons libres contenus dans un métal ne peut absolument pas

être décrit dans un contexte classique même à température ambiante. Un modèle quantique

tridimensionnel proposé par Arnold Sommerfeld en 1926 donne les résultats suivants :

CV =
⇡
2

2

✓
kBT

✏F

◆
kB avec ✏F =

1

2
mv

2
F

où ✏F et vF sont respectivement l’énergie de Fermi et la vitesse de Fermi du gaz d’électron.

Dans ce modèle quantique la vitesse des électrons est donnée par leur vitesse de Fermi.
On admet enfin que les expressions de la conductivité thermique obtenue à la question 10
révisée à la question 12 et celle de la conductivité électrique de la question 5 restent valides

dans un contexte quantique.
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13 — Exprimer le coe�cient de Lorenz  en fonction de e et kB dans le modèle quantique

proposé par Sommerfeld. Cette relation constitue la loi de Wiedemann-Franz dans le

modèle de Drude-Sommerfeld.

14 — Comparer les valeurs du coe�cient de Lorenz dans les cas classique et quantique.

Pour les métaux conducteurs l’énergie de Fermi des électrons est de l’ordre de l’électron-volt

et on rappelle qu’à température ambiante kBT ' 1
40 eV. Que peut-on dire du modèle classique ?

III. — Détermination expérimentale de la conductivité
thermique du cuivre

Pour déterminer expérimentalement la conductivité thermique du cuivre, il est utile de connâıtre

sa capacité thermique massique et sa masse volumique ⇢.

15 — Proposer une expérience permettant de déterminer la masse volumique ⇢ du cuivre,

puis une autre permettant de déterminer sa capacité thermique massique c.

Pour accéder expérimentalement à la conductivité thermique du cuivre, on se propose d’étudier

la méthode du ⌧ flash �. Dans cette méthode, on utilise une plaque de cuivre d’épaisseur

constante L = 3,12 mm selon l’axe Ox et de dimensions grandes devant L suivant les axes Oy

et Oz — en sorte que la température dans la plaque est supposée ne dépendre que de x et t.

La plaque est située entre les abscisses x = 0 et x = L et on néglige les pertes latérales par

convection ou par rayonnement. Par linéarité de l’équation qui sera établie à la question 16, on
supposera (sans perte de généralité) que la température (exprimée en degrés Celsius) est nulle

partout dans la plaque pour t < 0. À l’instant t = 0, une lampe à infrarouge, positionnée du

côté x < 0, émet un flash lumineux puissant. Il en résulte, en t = 0, un profil de température

dans la plaque T (x,0), dont la forme sera détaillée plus loin.

16 — Établir l’équation di↵érentielle vérifiée par T (x,t) dans laquelle on fera apparâıtre le

coe�cient de di↵usion thermiqueD que l’on exprimera en fonction des paramètres du problème.

On cherche des solutions sous la forme T (x,t) = f(x)⇥ g(t).

17 — Déterminer deux équations di↵érentielles vérifiées par f(x) et g(t). En déduire la

forme générale de la fonction T (x,t).

Pour modéliser l’e↵et de la lampe flash, on utilise le profil de température initial suivant :

T (x,0) =

8
<

:

�L

�
si 0  x  �

0 sinon

où �, � et L sont trois constantes. L’évolution est su�samment rapide pour que la plaque puisse

être supposée isolée, en première approximation, pour t > 0.

18 — Justifier qu’il faut chercher la solution du problème sous la forme :

T (x,t) =

1X

n=0

exp(�↵n t) [un cos (knx) + wn sin (knx)]

19 — Exprimer les coe�cients wn, puis les coe�cients kn et ↵n en fonction de n, L et D.
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20 — Établir l’expression des coe�cients un et en déduire que :

T (x,t) = �

"
1 + 2

1X

n=1

sin(
n⇡�
L )

n⇡�
L

exp(�↵n t) cos (knx)

#

L’épaisseur � est supposée très petite devant L. Un capteur optique permet de mesurer la

température T (L,t) de la face arrière de la plaque (située à l’abscisse x = L) en fonction du

temps t.

21 — Déduire de l’expression obtenue à la question précédente, que l’expression approchée

de T (L,t), pour t > 0, est :

T (L,t) ' � ⇣(t) avec ⇣(t) =

"
1 + 2

1X

n=1

(�1)
n
exp(�↵n t)

#

La figure 2 représente la courbe ⇣(t) en fonction de ↵1 t.

0

0,2

0,4

0,6

0,8

1

2 51 3 4

!

"#$1

Figure 2 – Graphe de la fonction ⇣ en fonction de la variable ↵1t obtenu à l’aide d’une

simulation en Python.

On note t1/2 l’instant en lequel ⇣(t1/2) = 1/2.

22 — Exprimer une relation entre ↵1 et t1/2.

La figure 3 représente la courbe expérimentale T (L,t) obtenue pour la plaque de cuivre étudiée.

16

0

5

! [ ]ms

→

" # !( , ) u.a.[ ]

32 48 64 80 96 112 128 144 160

émission
du flash

Figure 3 – Graphe expérimental de la température (en unités arbitraires) de la face de la

plaque en x = L en fonction du temps.
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23 — Estimer la valeur de la conductivité thermique du cuivre.

24 — Les valeurs obtenues aux questions 4 et 23 (on prendra T ' 300 K) sont-elles

compatibles avec la loi de Wiedemann-Franz ?

Données numériques

• e = 1,6⇥ 10
�19

C est la charge élémentaire

• kB = 1,4⇥ 10
�23

J ·K�1
est la constante de Boltzmann

• c = 4,0⇥ 10
2
J ·K�1 · kg�1

est la capacité thermique massique du cuivre

• ⇢ = 9,0⇥ 10
3
kg ·m�3

est la masse volumique du cuivre

• m = 9,1⇥ 10
�31

kg est la masse d’un électron

Formulaire

Pour tout réel ↵ 6= 0 et pour tout couple (m,n) d’entiers positifs on a :

Z ↵

0

cos

⇣
⇡mu

↵

⌘
cos

⇣
⇡nu

↵

⌘
du =

8
<

:

↵

2
si m = n 6= 0

0 si m 6= n

FIN DE L’ÉPREUVE
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Physique II, année 2021 — filière MP

Le marteau de Thor

Dans la légende nordique, Mjöllnir, le marteau de Thor, dieu de la foudre et du tonnerre, est l’arme

la plus puissante des Dieux pour défendre l’Univers contre les forces du chaos. Selon une légende

populaire tenace, le célèbre marteau aurait été forgé dans un matériau présent au cœur d’une naine

blanche qui est, en quelque sorte, le cadavre d’une étoile.

Figure 1 – Thor au combat avec son célèbre marteau, illustration de Johannes Gehrts (1901)

Le sujet proposé comporte 4 parties largement indépendantes, la première concerne quelques propriétés

élémentaires du marteau. Les trois suivantes étudient l’étoile Lawd 21, une naine blanche représentative

de ce type d’astre.

Les vecteurs sont généralement indiqués par des flèches, comme la position ~r(t) sauf s’ils sont uni-

taires et sont alors surmontés d’un chapeau kberk = 1. La valeur moyenne temporelle d’une quantité

périodique dans le temps est indiquée par des crochets : hf(t)i ou h~r(t)i. Un petit formulaire et les

données nécessaires pour les applications numériques sont regroupés en fin d’énoncé. Les applications

numériques comporteront un seul chiffre significatif.
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I Le marteau

L’extrémité du marteau de Thor peut être assimilée à un parallélépipède de dimensions 15 ⇥ 15 ⇥
21 cm3

. Il est constitué à partir du matériau d’une naine blanche qui possède typiquement les carac-

téristiques suivantes : sa masse est M? = 1⇥ 1030 kg, son rayon R? = 1⇥ 104 km.

o – 1. Déterminer numériquement la masse du marteau de Thor.

Thor est un personnage doté de super-pouvoirs mais qui possède une morphologie comparable à celle

d’un humain. Grâce à son marteau doté d’un petit manche, il est capable de briser des rochers.

o – 2. Dans un environnement terrestre, proposer une évaluation numérique de la variation d’énergie

potentielle du marteau lorsque Thor l’utilise pour frapper des rochers. Commenter le résultat

en sachant que l’explosion d’un bâton de dynamite utilisé dans les mines ou les travaux publics

dégage une énergie de l’ordre de 106 J.

II Analyse du spectre de l’étoile naine

L’objet Lawd 21 est la 21
e

étoile du « Luyten Atlas of White Dwarfs » instauré dès le milieu du xx
e

siècle par l’astronome hollandais Willem Jacob Luyten.

Elle est située dans la constellation boréale d’Orion. Très peu lumineuse dans le visible, son spectre est

essentiellement situé dans l’ultra-violet lointain. Cette partie du spectre lumineux n’est pas accessible

depuis la surface de la Terre, c’est le satellite Fuse (Far Ultraviolet Spectroscopic Explorer) qui a

permis d’obtenir le spectre de la figure 2.

Figure 2 – Le spectre est sur la partie gauche avec le meilleur ajustement possible par une

loi de Planck. Sur la partie droite de la figure on trouve la position dans le ciel de cette

étoile. Ce spectre a été tracé en utilisant les données du satellite Fuse disponibles sur le site

http://archive.stsci.edu/fuse/

Ce spectre d’émission est composite. Il contient des composantes discrètes, principalement les raies

de la série de Lyman. Ces raies sont issues de l’atmosphère de cette étoile en grande partie consti-

tuée d’hydrogène. Le spectre montre aussi une forte composante continue bien ajustée par une loi de

Planck. Cette composante continue correspond à l’émission de corps noir issue de la surface de cette

étoile.

Les niveaux d’énergie de l’électron de l’atome d’hydrogène dépendent du nombre quantique principal

n 2 N⇤
, ils sont donnés par la relation En = �E0

n2
avec E0 = 13,6 eV.

o – 3. Les raies de Lyman du spectre de la figure 2 sont dues au retour de l’électron dans son niveau

fondamental. Vérifier numériquement la vraisemblance de cette affirmation.
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o – 4. La raie la plus marquée du spectre est la raie Lyman � notée Ly � sur le spectre de la figure

2. On constate que la raie Lyman � est plus proche de la raie Lyman � que cette dernière est

proche de la raie Lyman �. Expliquer.

o – 5. La résolution spectrale du spectromètre utilisé dans la mission Fuse permet d’étudier la forme

détaillée des différentes raies. Sur la figure 3 on peut voir que les raies possèdent une certaine

largeur �� autour d’une longueur d’onde particulière. A quoi est dû cet élargissement ? En

supposant que l’hydrogène qui émet ce rayonnement est un gaz parfait déterminer une relation

entre notamment ��, � et une caractéristique thermodynamique de l’étoile.

Figure 3 – Détail de deux raies caractéristiques du spectre de l’étoile Lawd21. Les histogrammes

représentent les valeurs des densités spectrales énergétiques de rayonnement mesurées et les courbes

en pointillé représentent un ajustement de l’histogramme par une distribution Gaussienne.

Avant l’avènement de la mécanique quantique, Bohr, en 1913, proposa un modèle classique de l’étude

de l’électron dans l’atome d’hydrogène. Ce modèle ne prend en compte que l’interaction dominante

entre l’électron et le noyau et suggère que l’électron effectue un mouvement circulaire de rayon r autour

du noyau. Afin d’expliquer les spectres mesurés dès la fin du xix
e

siècle et, en particulier, les raies de

Lyman, il imposa que le moment cinétique scalaire L de l’électron dans son mouvement soit quantifié

selon la loi :

L = n~ = n
h

2⇡

o – 6. Établir l’expression de E0 en fonction de e, me, "0 et ~.

Comme nous l’avions remarqué au départ, le spectre de l’étoile naine présente une composante continue

très bien décrite par la loi de Planck qui donne la densité spectrale énergétique de rayonnement u en

fonction de la longueur d’onde �. Cette densité s’exprime en J · m�4
. Elle correspond à l’ordonnée du

spectre de la figure 2. En 1900, Planck propose un modèle pour les interactions entre la matière et

le rayonnement. La matière est supposée à l’équilibre thermique à la température T – c’est le modèle

dit du corps noir – qui aboutit à l’expression suivante pour la densité spectrale de rayonnement :

u =
8⇡hc

�5

1

exp

✓
hc

�kBT

◆
� 1

où kB est la constante de Boltzmann.

o – 7. On s’intéresse au maximum de la densité spectrale de rayonnement pour une température T

fixée. En posant x =
hc

�kBT
, déterminer l’équation vérifiée par x qui assure un extremum à la

fonction u. On expliquera rapidement pourquoi la recherche d’un extremum pour u(x) permet

de trouver un extremum pour u(�).

o – 8. Montrer, moyennant une approximation raisonnable, que u est maximale pour une valeur entière

de x. En déduire, dans cette approximation, une expression du produit �max T de la longueur

d’onde �max obtenue lorsque u est maximale et de la température T en fonction de constantes

fondamentales de la physique.
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La loi précédente porte le nom de loi de Wien, elle s’écrit numériquement sous la forme :

�max T ' 3 mm · K

o – 9. Déterminer la température de la surface de l’étoile naine Lawd21.

III Estimation du rayon de la naine blanche

L’essentiel de la matière constituant le cœur d’une naine blanche est constitué d’atomes de carbone

entièrement ionisés. Le numéro atomique du carbone est Z = 6. On considère uniquement l’isotope 12

du carbone.

o – 10. L’énergie de première ionisation du carbone est Ei1 ' 11 eV, celle de seconde ionisation

Ei2 ' 24 eV, et celle de dernière ionisation est Ei6 ' 490 eV. Un atome de carbone pré-

sent à la surface de la naine blanche est-il à l’état atomique ou ionisé ? On précisera le cas

échéant son degré d’ionisation.

o – 11. En considérant que l’essentiel de la masse M? de la naine blanche est constitué par des atomes

de carbone totalement ionisés, exprimer Ne le nombre d’électrons contenus dans cette étoile en

fonction de M? et mp la masse d’un proton.

Selon la théorie de Fowler, les électrons contenus dans la naine blanche constituent un gaz parfait

quantique au sein duquel il existe une pression dite de dégénérescence quantique. La pression de dégé-

nérescence quantique liée aux noyaux des atomes de carbone est négligeable devant celle des électrons.

À l’issue de son calcul, Fowler trouve l’expression de la pression de dégénérescence quantique qui

règne dans la naine blanche :

Pe =
⇡
4/3

15

~2
me

✓
3Ne

V?

◆5/3

où me est la masse d’un électron et V? le volume de l’étoile.

En 1930, à l’âge de 19 ans, le physicien indien Chandrasekhar intégra le prestigieux laboratoire

d’Eddington et de Fowler pour y réaliser son doctorat. Il développa la théorie de Fowler en

tenant compte de la Relativité restreinte alors que Fowler n’avait travaillé que dans le cadre de la

mécanique classique. Dans la suite, nous resterons dans le cadre de la théorie de Fowler.

o – 12. Par analyse dimensionnelle, justifier le fait que Pe est bien une pression.

On considère que la naine blanche est à l’équilibre lorsque la pression de dégénérescence quantique est

compensée par la pression d’origine gravitationnelle. Il nous faut donc déterminer l’expression de cette

pression gravitationnelle.

o – 13. Rappeler l’expression de la force gravitationnelle existant entre deux corps ponctuels de masse

m1 et m2 séparés par une distance r. En déduire l’expression de l’énergie potentielle gravita-

tionnelle de ce système à deux corps.

Pour la naine blanche, l’énergie potentielle gravitationnelle est :

Eg = �3GM
2
?

5R?

o – 14. En considérant le travail élémentaire des forces de gravitation lors d’une variation dV? du volume

de l’étoile, donner l’expression de la pression d’origine gravitationnelle.

o – 15. Déterminer l’expression du rayon R? de la naine blanche à l’équilibre en fonction de G, ~, me,

mp et M?. Sachant que
1
8
(9⇡)2/3

1,75/3
' 1

2 , et en prenant M? = 1030 kg, estimer l’ordre de grandeur

de R? selon la théorie de Fowler.
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IV Au cœur de la naine blanche

Au cœur de l’étoile, les atomes de carbone sont intégralement ionisés. La répulsion électrostatique entre

les noyaux de carbone peut être assez forte pour les contraindre à se placer au voisinage d’un nœud

d’un réseau que nous supposerons cubique de côté a. Ce nœud est le site de chaque noyau. Chaque site

est donc au centre d’une petite cellule cubique de côté a. L’ensemble forme donc a priori un solide de

type cristallin. Dans un modèle simple mais effectif, un volume V de ce solide fond lorsqu’en moyenne

sur l’ensemble de celui-ci, le carré de l’amplitude s
2

du mouvement d’agitation des noyaux autour de

leur site devient trop important à l’échelle du pas du réseau a. Selon le critère de Lindemann proposé

en 1910, en écrivant s
2 = �

2
a
2
, la fonte se produit dès que � devient de l’ordre de 10%.

o – 16. Exprimer le nombre de noyaux d’atomes de carbone Nc contenu dans la naine blanche en fonction

de Ne puis en fonction de mp et M?. En déduire une expression de a en fonction de mp, M? et

R?. L’évaluation de la valeur de a conduit à a ' 4⇥ 10�12 m.

Le mouvement d’un noyau autour de son site est sous le contrôle du champ électrique dans ce voisinage.

Dans ce type de solide, les électrons sont totalement délocalisés dans le solide et sont assimilables à

un fluide de densité uniforme tandis que les noyaux sont agités de petits mouvements autour de leur

site. Dans le modèle de Wigner-Seitz, on représente une cellule élémentaire par une boule de rayon

a dont la densité volumique de charge est uniforme et égale à ⇢ = �6e

a3
. On repère la position du noyau

de l’atome de carbone de masse mc = 12mp par un point M tel que ~r =
��!
OM = rber où ber est le vecteur

unitaire radial des coordonnées sphériques. Le point O est le centre de la distribution sphérique de

charge dans laquelle évolue le noyau. On suppose par la suite que l’on a toujours r < a.

o – 17. Montrer que le champ électrique dans lequel évolue un noyau est : ~E = � 2er

"0a
3
ber.

o – 18. En restant dans le cadre de la mécanique classique, justifier que ~r(t) est confiné dans un plan.

Montrer que les coordonnées cartésiennes de ~r(t) dans ce plan sont des oscillations harmoniques

dont on exprimera la pulsation ! en fonction e, a, mp et "0. Quelle est la nature de la courbe

C = {t 2 R, ~r(t)} ?

Exprimer la constante s
2
0 =

⌦
~r
2(t)

↵
en fonction de deux des quatre conditions initiales du

problème plan.

o – 19. Déterminer l’expression de l’énergie mécanique Ecl d’un noyau en fonction de !, mp et s
2
0.

Le résultat classique que nous venons d’obtenir est spécifique à chaque noyau qui est caractérisé par une

valeur de s
2
0. A l’échelle d’un échantillon de volume V de l’étoile, on peut le généraliser en remplaçant

s
2
0 par sa valeur moyenne s

2
sur l’ensemble des valeurs de s

2
0 dans le volume considéré.

Une autre façon de procéder est de considérer directement les aspects statistiques de ce problème dans le

cadre de la mécanique quantique. Comme nous venons de le voir lors des deux questions précédentes les

noyaux peuvent être assimilés à des oscillateurs harmoniques de pulsation commune mais d’amplitudes

différentes. En mécanique quantique, l’étude d’un oscillateur harmonique de pulsation ! permet de

montrer que son énergie est quantifiée par un entier naturel i et s’exprime selon :

Ei =
✓
i+

1

2

◆
~! pour i 2 N

Dans un cadre statistique simplifié, on peut assimiler un volume V occupé par les noyaux dans l’étoile

à une assemblée d’oscillateurs harmoniques de pulsation ! en équilibre thermique à la température T .

o – 20. Dans le cadre de la physique statistique, déterminer l’expression de la probabilité pi pour qu’un

oscillateur harmonique décrit par la mécanique quantique possède l’énergie mécanique Ei. On

pourra poser � =
1

kBT
.

o – 21. En déduire l’expression de l’énergie moyenne d’un oscillateur harmonique Eqs dans le cadre de

ce modèle statistique quantique.
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o – 22. En rapprochant l’expression de Eqs de la valeur classique moyennée sur un volume V , montrer

que

�
2 = �

2
0

1

tanh
✓

T

avec �
2
0 = A

~
e

r
"0

mpa
et ✓ = B

~e
kB

p
"0mpa

3

on précisera les valeurs simples des deux constantes numériques A et B.

o – 23. Sachant que �
2
0 ' 10�3

et ✓ ' 5,5 ⇥ 105 K, évaluer � à la surface de la naine blanche et au

cœur de celle-ci où on estime que la température est Tc ' 107 K. En déduire l’état de la matière

constituant l’étoile à la fois en surface et plus en profondeur.

Formulaire

En coordonnées sphériques (r,✓,') de vecteurs unitaires associés (ber,be✓,be�), on donne pour une fonction

scalaire f(r,✓,') son gradient et son laplacien :

���!
gradf =

@f

@r
ber +

1

r

@f

@✓
be✓ +

1

r sin ✓

@f

@'
be�

� f =
1

r2

@

@r

✓
r
2 @f

@r

◆
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@f

@✓

◆
+

1

r2 sin2 ✓

@
2
f

@'2

Données numériques

Constante de Planck : h = 6,6⇥ 10�34 J · s

Constante de Planck réduite : ~ =
h

2⇡
= 1,1⇥ 10�34 J · s

Constante de Boltzmann : kB = 1,4⇥ 10�23 J ·K�1

Constante de Newton : G = 6,7⇥ 10�11m3 · kg�1 · s�2

Permittivité diélectrique du vide : "0 = 8,9⇥ 10�12 F ·m�1

Célérité de la lumière dans le vide : c = 3,0⇥ 108m · s�1

Masse du proton et masse du neutron : mp = mn = 1,7⇥ 10�27 kg

Masse de l’électron : me = 9,1⇥ 10�31 kg

Charge de l’électron : e = 1,6⇥ 10�19C

FIN DE L’ÉPREUVE
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Physique II, année 2023 — filière MP

Déformations élastiques
Ce sujet est consacré à l’étude de certaines propriétés de systèmes élastiquement déformables.
Les parties I, II et III sont très largement indépendantes sous réserve de revenir aux définitions
de la constante de raideur k d’un ressort et du module d’élasticité E d’un matériau présentées
dans la partie I.

La partie I étudie les ressorts élastiques linéaires et leurs associations à partir de la loi de Hooke.
La partie II en propose une généralisation en abordant la description du module d’élasticité des
solides déformables. Enfin, la partie III décrit une expérience de mouvement brownien reliant
les oscillations d’un ressort et l’agitation thermique du gaz dans lequel le dispositif expérimental
est plongé.

I Ressorts et loi de Hooke

Le physicien anglais Robert Hooke est le premier à avoir énoncé (en ����) la loi associée à
la déformation élastique d’un ressort, établissant son allongement comme une fonction linéaire
de la force exercée sur ses extrémités. Il ne s’agit en général que du premier ordre d’un déve-
loppement en série de Taylor et la loi linéaire de Hooke peut donc devenir inexacte pour les
grandes déformations.

I.A Mouvements d’un ressort

•O • • •M

`

~u

Figure 1 – Loi de Hooke

On notera k la raideur d’un ressort élastique,
de masse négligeable, de longueur au repos `0.
Si l’une de ses extrémités est fixe en O, l’exer-
cice d’une force de tension ~T = �T~u (où ~u est
un vecteur unitaire) sur l’extrémité mobile M

du ressort induit une déformation de celui-ci de
sorte que (cf. figure 1)

��!
OM = `~u soit colinéaire

à ~T avec T = k [`� `0].

C’est la loi de Hooke. On note aussi � = 1/k la souplesse du ressort.
o – 1. Montrer que la force de tension ainsi exercée sur M est conservative et déterminer l’énergie

potentielle Ep(T, �) associée en fonction de T et �.
Les deux extrémités P et M d’un tel ressort sont maintenant astreintes à se déplacer le long
de l’axe fixe et horizontal (Ox) du référentiel galiléen (R). Deux points matériels de masse
mM = m1 et mP = m2 sont attachés aux extrémités du ressort et leur action sur l’axe (Ox) est
notamment décrite par les forces de frottement ~f!M = ��1~vM et ~f!P = ��2~vP où on a noté
~vM et ~vP les vitesses de M et P dans ce référentiel (cf. figure 2) ; on notera aussi

��!
OM = x1(t)~ex

et
�!
OP = x2(t)~ex.

P

x2

M

x1
• • • • x

Figure 2 – Deux masses reliées par un ressort
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o – 2. Établir les équations différentielles vérifiées par x1(t) et x2(t).
o – 3. On en cherche des solutions de la forme xi(t) = x0i + aieµt où x01, x02, a1, a2 et µ sont

des constantes. Déterminer et commenter la relation liant x01 et x02.
o – 4. Montrer que la condition ai 6= 0 impose une équation algébrique du quatrième degré

vérifiée par µ, que l’on écrira en fonction de m1, m2, �1, �2 et k.
o – 5. On suppose enfin ici que m1 = m2 = m, �1 = �2 = 0. Montrer qu’il n’existe alors que deux

solutions physiquement différentes de cette équation, pour chacune d’elles on exprimera
µ ainsi que le rapport a2/a1 et on précisera la nature du mouvement des masses.

I.B Association de ressorts
On associe maintenant deux ressorts élastiques en série ; on notera �1 = 1/k1 et �2 = 1/k2
leurs souplesses, `01 et `02 leurs longueurs au repos et on suppose qu’ils restent alignés le long
de la droite (Ox) liant leurs extrémités les plus éloignées (cf. figure 3). On néglige la masse du
point d’attache A.

•P • • •A • • •M x

�1, `01 �2, `02

Figure 3 – Association de ressorts en série

o – 6. Exprimer, en fonction notamment des abscisses xP , xA et xM les forces de tension exercées
par les deux ressorts.
En déduire qu’ils sont équivalents à un unique ressort donc on déterminera la souplesse
� ainsi que la longueur à vide `0.

o – 7. Représenter sur un schéma l’association de deux ressorts en parallèle et donner l’expression
de la raideur équivalente à cette association.

De ces études, on peut déduire ce qui suit : la raideur k d’un fil métallique élastique de longueur
L et de section (constante) s s’exprime sous la forme :

k = E
s

L
(1)

où E est une grandeur caractéristique du matériau appelée module d’élasticité ; cette notion a
notamment été présentée par l’anglais Thomas Young en ����.

o – 8. Rappeler les analogies de cette relation avec celles exprimant les résistance et/ou conduc-
tance électrique d’un élément conducteur métallique.
En déduire la dimension du module d’élasticité.

I.C Tensions dans une tige élastique
Dans cette partie I.C on néglige les effets de la pesanteur. Une tige métallique homogène, de
section s, de masse M et de longueur au repos L, caractérisée par le module d’élasticité E,
est étirée le long de son axe horizontal par la rotation entretenue à vitesse angulaire constante
~! = !0~ez de son point d’attache O autour de l’axe vertical (Oz). Du fait des effets centrifuges
dus à la rotation, la tige s’allonge en régime permanent ; l’élément de tige qui se trouve au repos
à la distance r passe à la distance r + ⇠(r) (cf. figure 4).
On étudie le système matériel ⌃ qui, au repos, est compris entre les distances r et r + dr de
l’axe (Oz).
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en mouvement

r

r + ⇠(r)

r!0

z

•

au repos

Figure 4 – Élongation lors d’un entraînement centrifuge

o – 9. Exprimer la masse dM de ⌃ en fonction notamment de dr. Justifier que ce système se
comporte comme un ressort de souplesse d� =

dr

Es
.

o – 10. Exprimer la force de tension T (r) exercée par ⌃ sur la partie intérieure de la tige (celle
comprise entre 0 et r) en fonction de E, s et @⇠/@r.

o – 11. En déduire la condition d’équilibre relatif de ⌃ dans le référentiel entraîné avec la tige en

rotation sous la forme
@
2
⇠

@r2
= ��r où � est une constante que l’on exprimera en fonction

de E, !0, L, M et s.
o – 12. Préciser la condition aux limites aux extrémités (r = 0 et r = L) de la tige pour la

fonction ⇠ ; en déduire ⇠(r). Exprimer aussi T (0) en fonction de M , !2
0 et L ; commenter

l’expression obtenue.

II Module d’élasticité des solides déformables

II.A Estimation en ordre de grandeur
Le module d’élasticité, relié à la raideur k d’une tige élastique de longueur L et de section
s par la relation (1), est lié aux variations d’énergie de la tige lors d’une dilatation ou d’une
compression. L’énergie concernée est, dans le cas d’un matériau métallique, celle des électrons,
de masse me = 9,1·10�31 kg au sein des mailles du cristal métallique ; on notera a la dimension
caractéristique de ces mailles.
Dans une première approche heuristique, on fait l’hypothèse que le module d’élasticité ne dépend
que de me, a et de la constante de Planck h = 6,6·10�34 J·s sous la forme E = C m

↵
eh

�
a
� où la

constante adimensionnée C est de l’ordre de grandeur de l’unité.
o – 13. Par analyse dimensionnelle, déterminer les entiers ↵, � et �.
o – 14. Rappeler l’ordre de grandeur usuel de a ; en déduire celui de E.

II.B Modèle quantique du puits infini 3D
On rappelle ici l’équation de Schrödinger pour une particule de masse m lorsque l’interaction
avec l’extérieur est décrite par le potentiel d’interaction U(~r) :

� ~2
2m
� (~r, t) + U(~r) (~r, t) = j~ @

@t
 (~r, t) (2)

où j2 = �1,  (~r, t) est la fonction d’onde et ~ = h/2⇡. Dans ce qui suit, on étudie une particule
dans un puits de potentiel infini défini à trois dimensions par U = cte = U0 pour 0 < x < a1,
0 < y < a2 et 0 < z < a3 tandis que U ! +1 en dehors de cette région bornée de l’espace.
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o – 15. Quelles sont l’interprétation physique et la dimension de la fonction d’onde  (~r,t) ?
o – 16. On cherche des solutions de l’équation de Schrödinger de la forme  (~r,t) = �(x,y,z)W (t).

Quelle est la forme de W (t) ? Comment s’appelle ce type de solution ?
o – 17. On suppose encore �(x,y,z) = F1(x)F2(y)F3(z). Déterminer les fonctions Fi (i = 1, 2, 3)

en fonction de ai et de trois nombres entiers ni 2 N⇤, à une constante multiplicative
arbitraire près.

o – 18. Montrer que l’énergie Ef de l’état fondamental de la particule s’écrit :

Ef = U0 +
h
2

8m


1

a21

+
1

a22

+
1

a23

�
(3)

La particule de masse m, qui reste dans son état fondamental, évolue lentement d’un état
isotrope où le volume V = a

3 du puits est celui d’un cube de côté a à une situation comprimée

où une des dimensions a1 = a � �a < a tandis que les deux autres dimensions augmentent
simultanément et symétriquement (a2 = a3 à tout instant) de manière à maintenir constant le
volume V = a1a2a3 du puits.

o – 19. Exprimer la variation �E1 de l’énergie de l’état fondamental qui accompagne cette trans-
formation.

o – 20. On suppose �a ⌧ a. Montrer qu’au premier ordre non nul en �a/a la variation d’énergie
se met sous la forme �E1 = 1

2K�a
2, on exprimera K en fonction de h, m et a.

On rappelle que (1� ✏)�2 = 1 + 2✏+ 3✏2 + o(✏2).

II.C Compression d’une tige
On s’intéresse maintenant à une tige (cf. figure 5) de section constante s, d’axe (Ox) et de
longueur L, réalisée dans un matériau qui peut être décrit comme dans la partie II.B : il est
divisé à l’échelle microscopique en zones cubiques de côté a et supposées alignées avec les axes
de coordonnées (Oxyz).

F F

s

L

~ex

Figure 5 – Compression d’une tige

Un opérateur exerce alors sur chaque extrémité de la tige une force F uniformément répartie
de manière à diminuer la longueur de la tige qui passe de L à L� �L. On admet que le travail
de cette force a pour effet l’augmentation de l’énergie des électrons du milieu, à raison d’un
électron de valence par cube élémentaire de côté a.

o – 21. Exprimer, en fonction de a, L et s le nombre N de cubes élémentaires de côté a à l’intérieur
de la tige.

o – 22. En supposant la compression uniforme, relier la variation �a de la dimension de cube
selon (Ox) à L, a et �L.

o – 23. En déduire l’augmentation d’énergie �Et de la tige ; en déduire l’expression de F en
fonction de K, s, a et �L.

o – 24. En déduire l’expression du module d’élasticité E, défini par la relation (1), en fonction
de h, a et me. Comparer au résultat de la partie II.A.
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III L’expérience de Kappler

On dispose au sein d’un gaz thermostaté à la température ✓ une plaque de masse m retenue
par un ressort vertical de raideur k = 1/�, disposée dans le champ de pesanteur d’intensité
g (figure 6). Sous l’action des chocs des molécules du gaz, cette plaque se déplace de manière
aléatoire le long du seul axe vertical (Oz) de part et d’autre de sa position d’équilibre z0 ; on
parle de mouvement brownien.

gaz, ✓

•O

•

•

•

z

au repos

•O

•

•

•

en mouvement

Figure 6 – Oscillations dues au mouvement brownien

o – 25. Le point d’attache du ressort est en z = 0 et on note `0 sa longueur au repos. Déterminer
la position d’équilibre z0 puis exprimer l’énergie potentielle totale dont dérivent les forces
élastiques et de pesanteur en fonction seulement de � et z

0 = z � z0.

Dans ce qui suit on pourra introduire la fonction Ep(z0) =
z02

2� .

On admet que les valeurs de z
0 lors du mouvement brownien sont alors régies par la loi de

probabilité de Boltzmann : on note kB = 1,4·10�23 J·K�1 la constante de Boltzmann et P (z0)dz0

est la probabilité pour que la plaque soit disposée entre les altitudes z
0 et z

0 + dz0. On admet
donc l’expression P (z0) =

1

⇣(✓)
exp

�
��(✓)z02

�
.

On donne les valeurs des intégrales
Z 1

0

e�at2dt =
1

2

r
⇡

a
et

Z 1

0

t
2e�at2dt =

1

4

r
⇡

a3
.

o – 26. Exprimer �(✓) et calculer ⇣(✓) en fonction de kB✓ et �.
o – 27. Sans faire de calculs, que vaut la valeur moyenne hz0i ?
o – 28. Calculer la valeur moyenne hz02i ; commenter, au regard du théorème d’équipartition.

En ����, le physicien allemand Eugen Kappler a publié dans la revue Annalen der Physik

les résultats d’une expérience basée sur ce principe en utilisant un miroir suspendu à un fil de
torsion vertical (ressort en rotation). L’expérience concluait à la validité de la loi de Boltzmann
avec une mesure précise de la constante de Boltzmann.

o – 29. Connaissez-vous d’autres cas de mouvement brownien ? D’autres expériences ayant conduit
à une vérification expérimentale de la loi de Boltzmann ?

FIN DE L’ÉPREUVE
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Physique II, année 2024 — filière MP

Thermodynamique du froid
Le sujet, consacré à l’étude de certaines propriétés physiques à très basse température, com-
porte deux problèmes totalement indépendants numérotés I (étude de transferts thermiques
conductifs et convecto–conductifs) et II (étude d’un réfrigérateur par détente d’un gaz).

Les vecteurs sont surmontés d’une flèche (~w), à l’exception des vecteurs unitaires notés avec un
chapeau (û). Les applications numériques seront réalisées avec seulement deux chiffres significa-
tifs. Les données numériques nécessaires et un formulaire, relatif en particulier aux coordonnées
sphériques, figurent en fin d’énoncé.

I Refroidissement des supraconducteurs
Parmi les applications importantes des basses températures, on compte la supraconductivité :
certains métaux ou oxydes métalliques acquièrent, en dessous d’une certaine température cri-
tique (T < Tsc) un caractère supraconducteur, le matériau pouvant conduire un courant élec-
trique permanent sans aucune dissipation d’énergie. Cette propriété est par exemple mise à
profit pour la production de champs magnétiques intenses.

Dans tout ce qui suit, le matériau supraconducteur est assimilé à un conducteur thermique de
conductivité thermique � de la loi de Fourier, de masse volumique ⇢ et de capacité thermique
massique c. On rappelle que, dans ce cas, l’évolution de la température à l’intérieur du matériau
conducteur est donnée par l’équation de diffusion thermique :

⇢c
@T

@t
= ��T où � est l’opérateur laplacien.

Les échanges thermiques entre ce matériau et le fluide qui l’entoure seront, dans tous les cas,
décrits par la loi de Newton : le transfert thermique pariétal (à la surface ou sur les bords)
du solide de température T vers le fluide de température Tf , par unité de temps et par unité
d’aire, est jpar = k (T � Tf ) où k est une constante. Les études menées en I.A et I.B sont
totalement indépendantes.

I.A Refroidissement progressif d’un supraconducteur
Le matériau (supraconducteur) étudié dans cette partie I.A à la forme d’une boule de rayon
R, de température uniforme T (t). Il est entièrement plongé dans un liquide réfrigérant qui
maintient, à grande distance du matériau, la température uniforme et constante T0 < Tsc (cf.
figure 1).

k

R

T0

Ts(t)
T (t)

Liquide de refroidissement

•
r

M

Figure 1 – Boule de supraconducteur en cours de refroidissement

o – 1. Donner, en les justifiant, les unités (ou les dimensions) de k et �.
Établir, dans le cas unidimensionnel, l’équation de diffusion thermique rappelée ci-dessus.
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o – 2. Rappeler l’expression de la diffusivité thermique Dth d’un matériau.
À quelle condition, portant sur la durée �t du refroidissement, l’hypothèse consistant à
considérer la température du matériau comme uniforme est-elle légitime ? On se placera

dans ce cas dans la suite.

o – 3. Exprimer en fonction des données la capacité thermique Cth de la boule solide, ainsi que la
résistance thermique d’isolement Rth associée aux échanges pariétaux convecto-conductifs
à sa surface.

Pour l’étude du refroidissement, il faut aussi tenir compte des transferts thermiques au sein
du liquide réfrigérant. On admet que la température Tf en un point M du liquide supposé
immobile ne dépend que de la distance r au centre O de la boule (figure 1). On néglige la
capacité thermique massique du liquide réfrigérant ; sa conductivité thermique est notée �0.

o – 4. Montrer que Tf (r,t) = T0 + [Ts(t)� T0]R/r

o – 5. Pourquoi est-il licite de décrire les transferts à travers le fluide en termes de résistance
thermique ?
Exprimer la résistance thermique R0

th associée au refroidissement conductif, en fonction
de �0 et R.

On suppose pour finir que �0 � Rk.

o – 6. Déterminer l’équation d’évolution de la température T (t) de la boule solide ; on posera

⌧ =
⇢Rc

3k
.

o – 7. On notera Ti = T (t = 0) la température initiale du matériau. Tracer l’allure de la
courbe T (t) et exprimer la durée �t au bout de laquelle le matériau débute la transition
conducteur 7! supraconducteur.

I.B Refroidissement stationnaire d’un fil supraconducteur
L’absence de résistivité dans les matériaux supraconducteurs n’empêche pas, notamment dans
le cadre de régimes transitoires électromagnétiques, l’existence de dissipations de puissance
dues au champ électrique induit. Il s’ensuit un chauffage local du matériau supraconducteur.
Le passage éventuel de celui-ci au-dessus de la température critique Tsc a alors un effet catas-
trophique : l’effet Joule apparaît, la température augmente de plus en plus et la surchauffe du
bobinage peut détruire celui-ci : c’est le phénomène de quench (voir figure 2).

Figure 2 – Fuite d’hélium suite à la destruction (quench) d’un aimant supraconducteur utilisé
pour la RMN. Département de Chimie de l’université de l’Alberta
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On va dans ce qui suit s’intéresser aux conditions de refroidissement propres à éviter le phéno-
mène de quench.
Le matériau supraconducteur étudié a la forme d’un fil cylindrique de rayon R, de très grande
longueur (figure 3). Il est entièrement plongé dans un liquide réfrigérant qui maintient une tem-
pérature uniforme T0 < Tsc, avec lequel les échanges thermiques se font selon la loi de Newton.
La totalité du fil cylindrique est le siège d’une production de puissance électromagnétique avec
la densité volumique supposée uniforme et constante pu.

z

R

rk

T
0

Liquide
de

refroidissem
ent

z

R

r

Ps(r)

Vue de dessus

Figure 3 – Fil supraconducteur en régime stationnaire

o – 8. Exprimer la puissance totale Ps(r) évacuée par une hauteur H de la partie du fil située
au plus à la distance r de l’axe avec 0 6 r < R, cf. figure 3.

o – 9. En déduire, en régime permanent, l’intensité jth(r) de la densité volumique de flux ther-
mique conductif dans le fil.

o – 10. Déterminer l’expression de la température de surface Ts en fonction de T0, k, pu et R .
o – 11. À quel endroit dans le fil la température est-elle maximale ?

Déterminer l’expression de la valeur Tmax correspondante.
Montrer que le phénomène de quench ne se produit pas si pu est inférieur à une valeur
critique pmax que l’on exprimera.

II Réfrigérateur à détente de gaz
Les premières études des propriétés des systèmes physiques à très basses températures, et en
particulier la découverte de la supraconductivité, ont été faites en utilisant des réfrigérateurs
à détente de gaz, à la suite des travaux des néerlandais van der Waals et Kamerlingh

Onnes. Les parties II.A (étude statistique des gaz parfaits), II.B (modèle énergétique de van

der Waals) et II.C (refroidissement par détente) sont indépendantes.

On n’oubliera pas que le modèle utilisé pour la description thermodynamique des fluides n’est

pas le même : modèle des gaz parfaits dans la partie II.A et modèle avec interactions entre

molécules dans la suite.
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Figure 4 – Kamerlingh Onnes (à gauche) et van der Waals (à droite) photographiés
devant la machine à liquéfier l’hélium, laboratoire de l’Université de Leiden, ����

II.A Thermodynamique des gaz parfaits
On étudie ici un système thermodynamique formé de N particules réparties sur p niveaux
d’énergie "j (j = 1, 2, . . . , p) non dégénérés. Le système est maintenu à température constante
T par contact avec un thermostat et on notera � = 1/kBT .

o – 12. Rappeler la loi statistique de Boltzmann. On notera Z(�) =
pX

j=1

exp (��"j).

o – 13. Exprimer l’énergie moyenne " d’une des N particules du milieu en fonction de Z(�) et sa
dérivée.
En déduire l’expression de l’énergie interne U(�) du système.

o – 14. Montrer qu’on peut exprimer, en fonction d’une somme (qu’on ne cherchera surtout pas
à calculer), l’écart-type �" associé à la moyenne ".
Quel est l’écart-type �U associé ? Que peut-on en en déduire ?

Les états possibles du système étant très nombreux, les sommes exprimant Z(�) et donc U(�)
explicitées ci-dessus sont remplacées par des intégrales : le nombre dg d’états distincts corres-
pondant à un intervalle d’énergie d" s’exprime alors sous la forme dg = q(")d" où q(") est la

densité d’états, on adoptera l’expression Z(�) =

Z
q(") exp (��") d" où l’intégrale est étendue

à toutes les valeurs possibles de l’énergie ".
o – 15. Préciser l’unité (ou la dimension) de la densité d’états q(").

On étudie maintenant les propriétés thermodynamiques d’un gaz parfait monoatomique formé
de N atomes identiques, décrits dans le cadre de la mécanique classique : un atome de masse m a

pour vecteur position ~r(t) et pour vitesse ~v(t) =
d~r

dt
relativement au référentiel d’étude, supposé

galiléen et lié au récipient fixe, de volume V , qui contient ce gaz. L’énergie des molécules est
purement cinétique donc 0 6 " < +1.

o – 16. Montrer que q(") est proportionnel à
p
". Pour la suite, on pourra poser q(") = Q

p
" sans

préciser la constante Q.

o – 17. En déduire l’expression de Z(�) en fonction de �, Q et de l’intégrale A =

Z 1

0

p
x e�xdx

(il est aussi inutile de calculer A).
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o – 18. Déterminer enfin l’énergie interne U du gaz, en fonction de N et � ; commenter le résultat
obtenu et proposer une généralisation dans le cas d’un gaz parfait diatomique.

II.B Le modèle de van der Waals
On peut rafiner le modèle du gaz parfait en considèrant maintenant le modèle d’un fluide F
constitué de molécules assimilées à des sphères de rayon r0 en interactions : l’énergie potentielle
d’interaction entre deux molécules est attractive, ne dépend que de la distance r entre leurs
centres et s’écrit "p = � ↵

r6
où r > 2r0 et ↵ est une constante. Le volume total occupé par le

fluide est V , la température T et l’énergie cinétique moyenne du gaz sera notée Ec =
NkB
� � 1

T .

o – 19. Quelle est la nature des interactions décrites ici ?
Quel est le signe de ↵ ?

Pour le calcul de l’interaction entre une molécule donnée de centre O (à l’origine des coordon-
nées) et le reste du gaz, on admet que les N � 1 autres molécules sont réparties uniformément

en fonction de la distance r avec une densité particulaire n⇤ =
N

V
uniforme pour r > 2r0 (voir

la figure 5).

o – 20. Quel est le nombre (moyen) dN de molécules dont le centre est situé à une distance de O
comprise entre r et r + dr ?
En calculant une intégrale, déduire l’énergie potentielle d’interaction moyenne "1 de la
molécule centrée sur O avec toutes les autres. On pourra considérer que V � r30 pour
évaluer les bornes d’intégration.

Figure 5 – Interaction d’une molécule avec le reste du gaz

Page 5/7



Physique II, année 2024 — filière MP

o – 21. En déduire l’expression de l’énergie interne du fluide F se met sous la forme

U =
NkB
� � 1

T � N2a

V

dans laquelle on exprimera la constante a en fonction de ↵ et r0.

Un modèle un peu plus élaboré de physique statistique permet également d’obtenir l’entropie
de la même quantité de fluide F , elle s’écrit :

S = S0 + kBN ln
T c(V � u)

T c
0 (V0 � u)

où l’exposant c ainsi que S0, T0, V0 sont des constantes et u = N
4

3
⇡(2r0)

3.

o – 22. Justifier physiquement le signe de c.

Pour toute évolution infinitésimale d’un système fluide de température T et à la pression P , on
indique la relation dU = T dS�P dV entre les variations dU , dS et dV de l’énergie interne, de
l’entropie et du volume.

o – 23. En déduire c en fonction de � ainsi que l’équation d’état P = P (T,V,N) du fluide F .
Commenter.

II.C Refroidissement par détente adiabatique
Dans cette dernière partie les grandeurs thermodynamiques utilisées sont toujours les mêmes
que dans les parties précédentes mais elle s’entendent pour une mole de fluide.
On étudie les évolutions d’un fluide F caractérisé par l’énergie interne molaire (admise) :

U =
RT

� � 1
� A

V

et par l’équation d’état molaire (également admise) :
✓
P +

A

V 2

◆
(V � B) = RT

où A et B sont des constantes strictement positives (leurs valeurs numériques pour N2 et H2

figurent en fin d’énoncé) et � > 1. Enfin, le modèle constitue une correction par rapport au
modèle du gaz parfait ; en particulier, on se limitera partout au corrections du premier ordre
en fonction des constantes A et B.

o – 24. Montrer que l’enthalpie molaire H(T,P ) du fluide s’écrit H = CPT �KP

✓
1

T
� 1

Tr

◆
où

RTr =
2A

B
et CP > 0 et K > 0 sont des constantes que l’on exprimera en fonction des

données.
o – 25. Comment nomme-t-on la détente adiabatique et isenthalpique d’un fluide ?

La transformation ainsi décrite est-elle réversible ?
À quelle condition une détente de ce type permet-elle un refroidissement ?
Faire l’application numérique pour N2 et H2 et conclure.

FIN DE L’ÉPREUVE
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Données numériques
Grandeur Notation Valeur numérique

Constante d’Avogadro NA 6,0·1023 mol�1

Constante de Boltzmann kB 1,4·10�23 J·K�1

Constante molaire des gaz parfaits R 8,3 J·K�1·mol�1

Coefficients de l’équation de van der Waals
Pour le diazote N2 Pour le dihydrogène H2

A = 1,4·10�1 SI B = 3,9·10�5 SI A = 2,5·10�2 SI B = 2,7·10�5 SI

Repérage sphérique d’un point M

Le point M de coordonnées cartésiennes (x,y,z) peut aussi être repéré par ses coordonnées
sphériques r, ✓ et ' rappelées sur le schéma ci-après :

~ez r

(Oz)

(Oy)

(Ox)

✓

~er

~e✓

~e'

•

•
y

• •

•

•

•

•z

M

x '

Formulaire en coordonnées sphériques
Gradient :

��!
grad f =

@f

@r
ûr +

1

r

@f

@✓
û✓ +

1

r sin ✓

@f

@'
û'

Laplacien scalaire :

�f =
1

r2


@

@r

✓
r2
@f

@r

◆
+

1

sin ✓

@

@✓

✓
sin ✓

@f

@✓

◆
+

1

sin2 ✓

@2f

@'2

�
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Physique I, année 2022 — filière MP

L’anémométrie à fil chaud

Figure 1 – Anémomètre

L’anémométrie à fil chaud est une technique permettant de mesurer
la vitesse d’écoulement d’un fluide. Elle est basée sur l’influence de la
vitesse d’écoulement du fluide sur le transfert thermique conducto-
convectif d’un solide conducteur plongé dans ce fluide.
Le système le plus couramment utilisé est un petit fil cylindrique,
d’un diamètre typique dw de l’ordre de quelques micromètres, par-
couru par un courant et donc chauffé par effet Joule.
Ce petit fil est fixé à des broches d’alimentation par l’intermédiaire
d’une gaine d’adaptation qui permet notamment l’alimentation du
fil et de fixer la longueur active du fil, notée Lw qui est ici de l’ordre
de quelques millimètres.
Quelques valeurs numériques concernant certaines caractéristiques
physiques du fil chaud sont rassemblées dans le tableau ci-dessous.

Matériau Résistivité à

20�C : ⇢20
[µ⌦ · cm]

Conductivité

thermique : �w

[W · cm�1 ·K�1
]

Masse

volumique : µw

[kg ·m�3]⇥ 104

Capacité

thermique

massique : cw
[kJ ·kg�1 ·K�1)]

Tungstène 5,5 1,9 1,93 0,14
Platine 9,8 0,72 2,15 0,13

Platine-iridium 32 0,17 2,16 0,13

Les applications numériques seront réalisées avec au plus 2 chiffres significatifs.

I Étude énergétique de l’anémomètre

I.A Bilan d’énergie dans le fil chaud
Le fil conducteur (en tungstène par exemple) est parcouru par un courant électrique continu
d’intensité I. Il est plongé dans un fluide en écoulement. On utilisera les notations suivantes :

• Caractéristiques du fil (que l’on repère avec l’indice « w » pour wire en anglais) : masse
volumique µw, capacité thermique massique cw, température Tw, résistivité (inverse de la
conductivité) électrique ⇢w, conductivité thermique �w, longueur Lw et diamètre dw.

• Caractéristiques du fluide (généralement de l’air que l’on repère lorsqu’il a ambiguïté avec
l’indice « f » pour fluide) et de l’écoulement : masse volumique µf , viscosité ⌘, température
Tf , pression pf , vitesse de l’écoulement ~V . Ces caractéristiques sont supposées constantes
pendant la mesure.

Si l’on note h le coefficient de transfert thermique conducto-convectif, la puissance thermique
surfacique cédée par le fil au fluide à travers la surface S est donnée par la loi de Newton :

�Q̇f

dS
= h (Tw � Tf) (1)

On notera (Ox) l’axe du fil, ses extrémités étant situées en x = �Lw/2 et x = +Lw/2.
o – 1. Rappeler la loi d’Ohm locale. Définir les grandeurs intervenant dans cette loi et donner

leurs unités usuelles. Établir l’expression de la résistance électrique totale, notée Rw, du
fil en fonction de ⇢w, Lw et dw.
En déduire la puissance Pj dissipée par effet Joule dans le fil en fonction de ⇢w, Lw, dw
et I, puis la puissance volumique dissipée par effet Joule : Pv =

dPj

d⌧
.
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o – 2. Rappeler la loi de Fourier de la conduction thermique. Définir les grandeurs intervenant
dans cette loi. On dit souvent qu’il s’agit d’une loi phénoménologique. Que cela signifie-
t-il ? La température est supposée homogène sur chaque section du fil d’abscisse x. Que
peut-on en déduire ?
Établir l’équation de diffusion thermique dans le cas d’un fil à la température T (x,t) où
seuls les transferts thermiques par conduction ont lieu.

On se place en régime permanent dans tout le reste de la partie I et on suppose la vitesse ~V

de l’écoulement uniforme et indépendant du temps. En plus des transferts thermiques par
conduction, on prend en compte les transferts thermiques par conducto-convection et ceux
provenant de l’effet Joule. Les transferts thermiques sont intégrés dans le terme conducto-
convectif.

o – 3. Dans la loi de Newton (1), la grandeur h dépend de la vitesse ~V de l’écoulement. Quelle
est son unité ? Expliquer qualitativement comment varie h en fonction de V =

���~V
���.

Expliquer alors comment évolue Tw quand V augmente.
o – 4. En effectuant un bilan énergétique sur un élément de volume de fil compris entre les

abscisses x et x+dx, établir l’équation aux dérivées partielles vérifiée par la température
Tw(x,t).

La résistivité du fil dépend en fait de la température Tw de ce dernier. Expérimentalement, on
mesure que si le fil est en contact avec un fluide à la température Tf , sa résistivité ⇢w vérifie la
relation :

⇢w = ⇢f [1 + ↵ (Tw � Tf)] (2)

où ⇢f est sa résistivité à la température du fluide et ↵ = 10�3 K�1 est un coefficient expérimental
supposé constant. On note enfin T1(x) = Tw(x)� Tf .

o – 5. Mettre l’équation obtenue à la question 4 sous la forme :

d 2
T1(x)

dx 2
+K1T1(x) +K2 = 0 (3)

Exprimer les constantes K1 et K2 en fonction de l’intensité I et des caractéristiques du
fil, du fluide et de l’écoulement. On montrera, en particulier, que ↵K2 = K1+4h/(�wdw).
Dans la plupart des anémomètres à fil chaud, K1 est négatif. Déterminer la condition
correspondante sur le coefficient conducto-convectif h. On se place dans ce cas dans toute
la suite et on pose :

`c =
1p
|K1|

On considère que le contact thermique assuré par les gaines d’adaptation entre les extrémités
du fil et les broches de l’anémomètre (voir figure 1) se fait sans résistance thermique (contact
parfait). Les broches et les gaines sont à la température Tf du fluide.

o – 6. Rappeler la définition d’une résistance thermique ainsi que son unité. Quelle est la consé-
quence d’un contact sans résistance thermique ?
Déterminer la solution générale de l’équation différentielle (3).
En tenant compte des conditions aux limites dans le problème et de sa symétrie, montrer
que T1(x) s’exprime assez simplement à partir de la fonction cosinus hyperbolique. En
déduire l’expression du profil de température Tw(x) dans le fil de la sonde en fonction de
x, `c, K2, Tf et Lw.
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o – 7. Déterminer la puissance thermique Q̇g cédée par le fil à l’ensemble des deux gaines d’adap-
tation en fonction de `c, K2, Lw, �w et dw.

o – 8. Montrer que la moyenne spatiale hTwi de la température du fil s’écrit selon la relation

hTwi = Tf +K2`
2
c


1� ⇤ tanh

✓
Lw

2`c

◆�

dans laquelle on précisera l’expression du paramètre ⇤.

La figure 2 représente la distribution de température dans le fil chaud pour différentes valeurs
du rapport k =

Lw

2`c
. La fonction tracée est

f(y) =
Tw � Tf

hTwi � Tf
avec y = x/Lw

Figure 2 – Représentation graphique de la fonction f(y) pour quatre valeurs du paramètre k.

o – 9. Pour un fil de tungstène de diamètre dw = 5µm, de longueur Lw = 1,2mm et fonc-
tionnant dans un régime de température Tw tel que `c = 30 dw, évaluer, en faisant les
approximations pertinentes, la valeur numérique du coefficient

⇠ =
Tw,max � Tf

hTwi � Tf

où Tw,max est la température maximale atteinte dans le fil. En exploitant la figure 2,
commenter la valeur trouvée.

Page 3/7



Physique I, année 2022 — filière MP

I.B Puissance thermique cédée au fluide

o – 10. Commenter les courbes de la figure 2. Quelle approximation peut-on faire quant à la
température Tw dans le cas d’un fil long (on précisera ce que « long » signifie ici) ?

La résistivité ⇢w du fil est toujours supposée dépendre de la température du fluide avec lequel
il est en contact selon la relation (2).

o – 11. Calculer la résistance Rw,1 d’un fil supposé long en fonction de sa résistance Rf à la
température Tf , de ↵ et des températures hTwi et Tf .

Toujours dans le cadre d’un fil long, on fait l’hypothèse que la puissance thermique Q̇g cédée par
le fil aux deux gaines d’adaptation est négligeable devant la puissance Q̇j dissipée par effet Joule
le long du fil ou celle, notée Q̇f , correspondant aux échanges thermiques conducto-convectifs
reçus par le fluide à l’interface entre le fil et le fluide.

o – 12. Déterminer, en régime permanent, l’expression de Q̇j en fonction de la différence hTwi�Tf .

Pour un fluide de viscosité ⌘ et de masse volumique µf , qui s’écoule à la vitesse V autour d’un
obstacle fixe de taille caractéristique dw, on définit le nombre de Reynolds Re = µfV dw/⌘. Il
compare deux modes de transport au sein du fluide.

o – 13. Sachant que la viscosité ⌘ s’exprime en Pa · s déterminer la dimension de Re.

On définit par ailleurs le nombre de Nusselt, Nu = hdw/�f .

o – 14. Déterminer la dimension de Nu et proposer une interprétation physique de cette quantité.
Comment varie Nu lorsque la vitesse V du fluide s’écoulant autour du fil augmente ?

On admet que le nombre de Nusselt vérifie la loi de King Nu = A+B
p
Re où A et B sont des

constantes connues qui ne dépendent que de la nature du fluide en écoulement.

o – 15. En exploitant l’expression de hTwi obtenue à la question 8 et les résultats de la question 5,
montrer que dans le cas d’un fil long on peut écrire

`c =
dw

2
✓
⌫ avec ✓ =

1

Nu

�w

�f

Rw,1

Rf
. (4)

On précisera la valeur numérique de l’exposant ⌫.

o – 16. On considère de nouveau un fil de longueur Lw quelconque. Établir l’expression de la
puissance thermique Q̇f associée au transfert conducto-convectif du fil vers le fluide.

On suppose que la relation (4) reste valable en ordre de grandeur pour un fil de longueur
quelconque et que, de plus, le coefficient ✓ qu’elle fait intervenir est de l’ordre de l’unité pour
toutes les mesures effectuées.

o – 17. En étudiant le rapport Q̇f/Q̇g, et sachant que dans le contexte d’étude Nu ' 10 SI, justifier
a posteriori que l’on puisse simplifier le problème en ne considérant pas les pertes dans
les gaines d’adaptation sous l’hypothèse d’un fil long.
En utilisant le résultat de la question 12 et en supposant que l’on puisse appliquer la loi
de King, montrer que, pour un fil long, la mesure de la vitesse V du fluide se ramène à
une mesure de résistance. On déterminera l’expression de V en fonction notamment de
Rw,1, Rf et I.
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II Anémométrie à deux fils
On étudie à présent une autre technique qui utilise deux fils parallèles séparés par une distance ✏
comme représenté sur la figure 3 ci-dessous.
Cette technique est plus précise que la précédente car elle permet de faire deux mesures : la
première n’utilise que le premier fil ; la seconde étudie la réponse induite par le premier dans le
second.

Figure 3 – Disposition des 2 fils.

— Le premier fil (l’émetteur, repéré par un indice e), froid initialement (c’est-à-dire à la tem-
pérature du fluide environnant Tf), est traversé par une impulsion électrique d’intensité
I = 1A et d’une durée ⌧ de quelques µs, appelée « phase de chauffe », à l’issue de laquelle
le fil s’est donc échauffé.
On fait ensuite passer dans l’émetteur un faible courant I0 = 1mA, dont on négligera
l’influence thermique, et on mesure la tension à ses bornes en fonction du temps. On
obtient ainsi l’évolution de la résistance électrique Re(t) en fonction du temps et donc
celle de sa température Te(t).

— Un second fil (le recepteur, repéré par un indice r) est placé parallèlement au premier, en
aval dans l’écoulement du fluide (ici de l’air), à une distance ✏ = 0,5mm du premier. Sous
l’action de l’écoulement, une trainée d’air chaud (zone échauffée du fluide par l’impulsion
thermique de l’émetteur) va atteindre le récepteur.
L’acuité et la durée de cette trainée d’air chaud vue par le second fil vont dépendre
notamment de la norme V de la vitesse de l’air.

Hormis leur température et donc leur résistance, les caractéristiques de ces deux fils sont sup-
posées identiques à celles du fil utilisé dans la partie I.
On se concentre tout d’abord sur le fil émetteur de l’impulsion thermique afin d’étudier la
première possibilité de mesure de la vitesse de l’écoulement. On néglige la conduction thermique
dans le fil et entre le fil et les broches. On suppose donc, conformément à ce qui a été fait
précédemment, que la température du fil est homogène et ne dépend que du temps, tout comme
sa résistance toujours obtenue dans le cadre du modèle de résistivité résumé par la relation (2).
Pendant la phase de chauffe, l’impulsion étant très brève, on négligera les pertes d’énergie dues
à la convection de l’air autour du fil lors de cette phase. L’origine des temps t = 0 correspond
au début de l’impulsion électrique.

o – 18. Montrer que, pendant la phase de chauffe, la température Te(t) vérifie une équation dif-
férentielle qui peut se mettre sous la forme

d(Te � Tf)

dt
� Te � Tf

⌧1
=

RfI
2

C
(5)

où l’on exprimera la durée caractéristique ⌧1 de montée en température et le paramètre C

en fonction des paramètres du problème. Que représente C ?
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o – 19. Résoudre cette équation en exprimant finalement Te(t) en fonction de t, Tf , ↵ et ⌧1.
En déduire, en fonction de ⌧ , ⌧1 et ↵, l’expression de l’amplitude de l’impulsion ther-
mique �Te,max = Te,max � Tf obtenue dans le fil émetteur après qu’il a été parcouru par
l’impulsion de courant.

o – 20. Une fois l’impulsion terminée, i. e. pour t > ⌧ , le fil émetteur ne reçoit plus de courant
qui le chauffe, il se refroidit par convection au contact thermique de l’air en mouvement.
Déterminer la température de l’émetteur Te(t) durant cette phase dite de relaxation en
fonction de t, ⌧ , Tf , �Te,max ainsi que d’une nouvelle durée ⌧2 caractéristique de cette
phase de relaxation dépendant notamment de Nu.

Sur la figure 4 ci-dessous le graphe de gauche indique l’allure de Te(t) mesurée lors des phases
de chauffe et de relaxation au contact de deux écoulements de vitesse différente.

Sur cette même figure 4, le graphe de droite montre de façon plus quantitative en échelle semi-
logarithmique, des relevés expérimentaux de la phase de relaxation pour différentes valeurs de
la norme de la vitesse de l’écoulement.

Figure 4 – Mesures au niveau de l’émetteur. Sur la figure de droite on a représenté les mesures
et leurs différentes régressions linéaires.

o – 21. Pendant la phase de chauffe, on constate sur la partie gauche de la figure 4 que les
deux courbes sont confondues. Quelle hypothèse émise plus haut ce résultat permet-il de
confirmer ?

o – 22. Expliquer qualitativement comment l’analyse des courbes de la figure 4 permet une pre-
mière mesure de la norme de la vitesse de l’écoulement du fluide.

L’air réchauffé par l’émetteur va être transportée par convection jusqu’au second fil, le récepteur.
En alimentant ce dernier par un très faible courant I0 = 1mA, dont on peut toujours négliger
l’influence thermique, on peut mesurer sa résistance et en déduire sa température.

Certains résultats expérimentaux sont rassemblés dans la figure 5 sur la page suivante 1.
1. Ils ont été collectés dans l’article « Pulsed-wire technique for velocity measurements in natural convection

flow – a numerical optimisation tool », Grignon et al., 1998, International Journal of Heat and Mass Transfer,

volume 41, p. 3121-3129.
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Figure 5 – Analyse des températures.

Sur la partie gauche de la figure 5, on a représenté avec les mêmes échelles de temps et d’am-
plitude l’allure typique des pics de températures relevés dans chacun des deux fils.

De façon plus quantitative, on a représenté sur la partie droite de cette même figure, le résultat
des mesures de l’évolution de la fonction normalisée (Tr (t)� Tf ) /�Tr,max pour différentes
valeurs de la norme de la vitesse de l’écoulement.

o – 23. Commenter les deux courbes de la partie gauche de la figure 5. Proposer des explications
qualitatives pour les différents phénomènes que l’on peut observer.

o – 24. Expliquer qualitativement comment l’analyse des courbes de la figure 5 permet une se-
conde mesure de la norme de la vitesse de l’écoulement du fluide.

FIN DE L’ÉPREUVE
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À propos des araignées
Les araignées ou Aranéides sont des prédateurs invertébrés arthropodes. À ce jour, plus de
47 000 espèces subdivisées en 117 familles sont repertoriées et 1700 d’entre elles vivent en
France. Les araignées produisent des fils de soie constitués d’un entrelacement de nombreuses
fibrilles élémentaires. Le diamètre de ces fils varient typiquement de 1 jusqu’à 70 µm. À diamètre
équivalent, ces fils sont plus résistants que l’acier et possèdent de nombreuses autres propriétés
qui les rendent intéressants pour l’industrie, pour la confection par exemple de nouveaux tex-
tiles, de gilets pare-balles ou encore de cordes d’instruments de musique. Dans la nature, l’usage
que les araignées en font est multiple et dépend des espèces considérées : fil de sécurité pendant
un saut pour fuir ou pour se déplacer (fil d’Ariane), tissage de toile pour pièger des proies,
moyen de s’élever dans les airs et de voyager au gré des courants aériens pour les araignées
montgolfières (fil de la Vierge), confection de catapultes pour la chasse, création de dômes pour
le stockage d’air sous l’eau douce pour les espèces subaquatiques . . .

Nous proposons d’aborder quelques problèmes de physique relatifs aux araignées et plus par-
ticulièrement aux trois espèces représentées dans la figure ci-dessous (Fig. 1). Les applications
numériques seront données avec un chiffre significatif. Les vecteurs sont indiqués par des flèches
(~v ) sauf s’ils sont unitaires et sont alors surmontés d’un chapeau (kbexk = 1). Les nombres
complexes sont soulignés à l’exception de j tel que j

2
= �1. Un formulaire est fourni en fin

d’énoncé.

Les 3 parties de ce problème sont indépendantes.

Figure 1 – Xysticus sp. est une araignée-crabe volante. Hyptiote cavatus est une araignée
catapulte, tisseuse de toiles triangulaires. Les araignées Nephila pilipes fabriquent des fils dont
les propriétés mécaniques rivalisent avec les meilleures fibres artificielles : ils peuvent être as-
semblés pour former des cordes de violon produisant un son au timbre exceptionnel. Source des
images : Wikipédia.

I Des araignées volantes
Certaines araignées volantes dont la taille est comprise entre 2 et 7mm parviennent, en tirant
profit des forces électrostatiques, à décoller et à s’envoler. Elles arrivent ainsi à parcourir, au
gré des vents, des distances considérables (plusieurs centaines de kilomètres) comme l’a observé
pour la première fois, Charles Darwin, lors de son grand voyage à bord du Beagle de 1831 à 1836.
Dans cette partie du problème, nous nous intéressons à la physique permettant d’expliquer un
tel phénomène.

o – 1. En utilisant une schématisation sphérique rudimentaire pour modéliser ces araignées,
estimer un ordre de grandeur mg pour leur masse.
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Par temps clair, le champ électrique, en tout point de la surface de la Terre est radial uniforme,
dirigé vers le centre de la Terre et sa valeur moyenne vaut E0 = 120V · m�1. En première
approximation on assimile localement l’atmosphère terrestre à un condensateur plan dont les
deux armatures sont le sol terrestre et la couche de l’ionosphère située à l’altitude z0 = 60 km

de celui-ci.

o – 2. Évaluer la valeur de la densité surfacique moyenne de charge au niveau du sol, notée �.
Des mesures ont permis de montrer qu’il existe une différence de 360 kV entre l’ionosphère
et le sol. Que pouvez vous conclure quant à la validité du modèle électrique atmosphérique
proposé ?

Les araignées volantes positionnent leurs corps de manière à prendre le vent, en éjectant vers
le ciel des fils de soie, qui grâce aux courants d’air et au champ électrique leur permettent de
s’élever. Darwin nota que ces araignées décollent en présence au niveau du sol de légers courants
d’air ascendants ayant des vitesses U de l’ordre de 0,1m · s�1 et que le nombre de fils fabriqués
par celles-ci peut atteindre quelques dizaines.

On peut montrer que les forces hydrodynamiques sont insuffisantes pour permettre à elles seules
de faire s’élever les araignées.

Darwin remarqua que les différents fils tissés par une même araignée s’écartent en éventail du
fait d’une répulsion électrostatique. Pour corroborer cette hypothèse, on modélise chaque fil de
soie comme un fil rigide isolant, de longueur L que l’on supposera inextensible dans un premier
temps, possédant en son extrémité libre, une charge q. Ces charges placées dans le champ
électrique terrestre interagissent entre elles. On suppose qu’il y a 2n fils et que les charges
correspondantes se répartissent régulièrement sur le cercle formant la base d’un cône d’angle ↵

en son sommet S (lequel correspond à l’extrémité commune des soies) avec la verticale (Fig. 2).

Figure 2 – Représentation schématique d’une araignée prête à décoller.
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o – 3. Montrer que le potentiel électrique créé sur une charge par les 2n � 1 autres charges
s’exprime comme :

V =
q

p⇡✏0L sin↵
G(n) avec G(n)� 1 =

n�1X

k=1

1

cos
�
⇡k
2n

� +
1

sin
�
⇡k
2n

� =

n�1X

k=1

2

sin
�
⇡k
2n

�

On précisera la valeur de l’entier p. On pourra éventuellement considérer les points dia-
métralement opposés Ak et Ak+n avec 1  k  n.
En déduire l’énergie d’interaction électrostatique du système total constitué des 2n charges
en l’absence de champ électrique extérieur.
S’il n’est soumis qu’à ce potentiel, quelle est alors la forme de l’éventail à l’équilibre ?

On étudie le mouvement de cet éventail autour de sa position d’équilibre en supposant qu’à
l’instant t tous les fils forment le même angle ↵(t) avec la verticale. On simplifie le système
en considérant, d’une part, que la masse m de chaque fil est ponctuelle, située en leur milieu
et, d’autre part, on néglige l’énergie potentielle de pesanteur et celle de déformation élastique
devant l’électrostatique. On suppose finalement que S est fixe.

o – 4. Déterminer l’équation différentielle régissant ce mouvement. Discuter la stabilité de l’équi-
libre et établir l’expression de la période T , du mouvement au voisinage de la position
d’équilibre en fonction de ✏0, m, L, q et G(n).

o – 5. Déterminer l’expression de l’énergie électrostatique du système lorsque celui-ci est main-
tenant immergé dans le champ électrique terrestre ~E0 existant au niveau du sol ainsi que
l’équation permettant de déterminer la valeur de l’angle ↵ à l’équilibre. Expliquer quali-
tativement comment varie l’ouverture d’équilibre de l’éventail en fonction respectivement
de q, n, L et E0. On observe un angle ↵ = 30

� pour un éventail constitué de 2n = 6 soies
longues de 1 mètre. Que vaut alors la charge q ? On donne G(3) ' 38/(3

p
3).

o – 6. Calculer le module de la force électrique s’exercant sur l’araignée au niveau du sol pour
une charge dont le module est de l’ordre du nanocoulomb. Par temps clair et uniquement
par la force électrique, combien de fils sont-ils nécessaires pour soulever les plus petites
araignées ? Commenter ce résultat.

Figure 3 – Modèle de coin.

En réalité, lorsqu’elles décollent, les araignées sont situées sur
des zones où le champ électrique est bien plus important que
dans les conditions normales du fait d’un phénomène connu
sous le nom d’effet de pointe. On retrouve ces conditions au
sommet des arbres ou du mât du Beagle comme dans l’expé-
rience de Darwin.
Pour appréhender un tel effet, on considère un conducteur plan
infini dans lequel un endroit possède la forme d’un coin obtus
ou aigu (Fig. 3) dont le sommet O forme l’origine d’un repère
de coordonnées polaires. La région de l’espace pour laquelle
0 < ✓ < ' est l’air assimilé au vide ne contenant aucune charge
libre. Les conditions aux limites sont V (r,0) = V (r,') = V0.
On note V (M), le potentiel électrique en un point M de l’espace.

o – 7. Déterminer l’équation différentielle satisfaite par V (r,✓) dans cette région.
On cherche une solution aux variables polaires séparées : V (r,✓) = f(r)⇥ g(✓). Écrire les

équations vérifiées par f et g et en déduire que V (r,✓) = Ṽ +

1X

n=1

anr
!n sin(!n✓). Dans

cette relation, Ṽ et (an)n2N⇤ sont des constantes que l’on ne cherchera pas à déterminer.
On précisera par contre l’expression de !n en fonction de ' et de l’entier positif n.

Page 3/8



Physique II, année 2022 — filière MP

o – 8. En ne considérant que le terme n = 1 qui s’avère prépondérant, déterminer l’expression
du champ électrique ~E(M).
En déduire une condition sur ' pour laquelle ~E(M) peut devenir très important si M !
O.

II Propriétés mécaniques des fils d’araignée
L’élongation relative d’un fil de soie de longueur initiale `0 de section S0 soumis à une force de
traction d’intensité F est donnée, dans le régime des faibles élongations, par la loi de Hooke :
�`

`0
=

1

E

F

S0
où E est le module de Young du matériau constituant le fil.

o – 9. Quelle est la dimension de E ?
Montrer que, dans ce régime, le comportement mécanique du fil peut être assimilé à celui
d’un ressort de constante de raideur k que l’on exprimera en fonction des données du
problème.

Figure 4 – Extension d’un fil.

Pour mesurer le module de Young d’un fil d’araignée,
on procède à une expérience simple. Le fil de longueur
`0 est attaché en deux points fixes A et B distants
de `0 et situés sur une même horizontale. Une masse
m est suspendue au point C milieu du fil. Sous l’effet
du poids de cette masse, le fil adopte à l’équilibre une
forme en V, dans laquelle les deux segments formant
le fil ont la même longueur `.
On mesure alors la hauteur h dont le milieu du fil s’est déplacé par rapport à l’horizontale.
Cette configuration d’équilibre est représentée sur la figure 4.

o – 10. Établir, lorsque la masse m est suffisament faible, la loi de puissance qui relie h à m et
aux autres variables du problème.

La figure 5 ci-contre reproduit les résultats de cette
expérience réalisée avec un fil de longueur `0 = 5 cm de
rayon a = 5µm et différentes masses m suspendues.

o – 11. Vérifier que la loi obtenue à la question 10 est
compatible avec l’expérience.
Déterminer la constante de raideur k du ressort
équivalent au fil ; en déduire une estimation de la
valeur numérique du module de Young du fil. On
pourra utiliser la figure 9 du formulaire.

L’araignée Hyptiote cavatus, qui possède une masse
d’environ 7mg, utilise ses muscles pour enrouler l’un
des fils afin de tendre la toile, comme on utilise son
bras pour tendre la corde d’un arc.

Figure 5 – Mesures de h(m).

Elle garde alors cette position jusqu’à ce qu’une proie entre en contact avec la toile. Quand
elle relâche la tension, la toile subit alors une très forte accélération puis s’emmêle autour de
l’insecte proie, ce qui marque le début du processus de capture.
La vitesse de l’araignée qui reste accrochée à la toile atteint alors une valeur maximale d’environ
vmax = 3m · s�1 en ayant subi une accélération maximale prodigieuse amax = 800m · s�2.
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Figure 6 – (a) Organisation spatiale schématique de la toile triangulaire servant de piège –
(b) Modèle mécanique équivalent au repos et sous tension

o – 12. En modélisant la toile par un simple fil de soie dont on négligera la masse devant celle de
l’araignée, estimer, en fonction de vmax et amax, l’allongement maximum �` du fil avant
que l’araignée ne relâche la tension (Fig. 6), ainsi que sa raideur k en fonction de m, vmax

et amax.
Évaluer, en fonction de m, vmax et amax, la puissance mécanique instantanée maximale
Pmax développée pendant le processus de capture.
Sachant que la puissance massique musculaire maximale que peuvent fournir les arthro-
podes est d’environ P = 326W · kg�1 par kilo de muscle, estimer la masse de muscle
nécessaire qu’il faudrait à notre araignée pour réaliser ce processus de capture sans aide
extérieure. Conclure.

Figure 7 – Le vol de Spiderman.

Dans les films, le super-héros Spiderman, dont
on estime la masse à m = 75 kg, poursuit les
voitures en se balançant sur des fils d’immeuble
en immeuble.
Il attache son fil supposé inextensible, de masse
négligeable et de longueur ` = 25m sur un point
de l’immeuble situé en face, à l’horizontale par
rapport à sa position. Dans ces conditions on a
donc ✓(t = 0) = ⇡/2.
Il se laisse alors entraîner sans vitesse initiale.
(Fig. 7).

o – 13. Écrire les équations du mouvement de Spiderman. En déduire, en fonction de m et
g, l’expression de la tension maximale que doit supporter ce fil si l’on suppose qu’il est
inextensible.

On suppose que le fil que tisse Spiderman est constitué en réalité de N filaments de soie
identiques assemblés en parallèle.
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o – 14. Déterminer la constante de raideur du ressort équivalent à N ressorts identiques de
constante de raideur k disposés en parallèle.
Sachant que le module de Young d’un filament de soie et son rayon valent respectivement
E = 10MPa et a = 5µm, combien de filaments le fil doit-il comporter au minimum
pour que les filaments ne subissent pas une déformation supérieure à 1 % et donc pouvoir
supporter Spiderman lors de son vol ?
Est-ce cohérent avec le diamètre des fils, de l’ordre du centimètre, produits par Spider-
man dans les films ?

III Produire de la musique avec des fils d’araignée
Du fait de leurs propriétés mécaniques si particulières (valeur importante du module de Young,
large domaine d’élasticité et faible masse linéique), des physiciens ont récemment eu l’idée
d’assembler des milliers de fils de l’araignée Nephila pilipes, particulièrement résistants, pour
fabriquer des cordes de violon.
Lorsque la corde fabriquée est utilisée pour produire du son, il convient de s’assurer que sa
tension soit bien sûr inférieure à sa tension de rupture Tr, mais également que la corde fonctionne
dans son régime élastique. Les premiers résultats obtenus se sont révélés très encourageants et
prometteurs notamment en ce qui concerne la qualité du timbre puisque le spectre du son
produit présente de nombreux pics d’amplitude importante à hautes fréquences.
On étudie les mouvements d’un fil d’araignée de longueur ` de masse linéique µ, autour de
sa position d’équilibre. Au repos, le fil est rectiligne et parallèle à l’axe horizontal (Ox). On
note z(x,t) le déplacement du point du fil à l’abscisse x à l’instant t par rapport à sa position
d’équilibre z = 0. On ne considère que les mouvements latéraux de faible amplitude s’effectuant
dans le plan Oxz (Fig. 8). Le fil étant accroché en ses deux extrémités en deux points fixes. La
tension du fil au point d’abscisse x à l’instant t est notée : ~T (x,t) = Tx(x,t)bex + Tz(x,t)bez.

Figure 8 – Fil horizontal subissant des déformations de faible amplitude.

On effectue les deux hypothèses suivantes :
• La déflexion est de faible amplitude de même que l’angle ↵(x,t) que fait le fil avec l’hori-

zontale à la position x et à l’instant t (voir Fig. 8), ce qui entraîne : |@z
@x

| ⌧ 1 ;

• On néglige les effets de la pesanteur.
o – 15. On considère la portion de fil comprise entre les plans d’abscisses x et x + dx. Exprimer

la longueur de portion de fil ds, cos[↵(x,t)] et sin[↵(x,t)] en fonction de dx et
@z

@x
.

En appliquant le théorème de la résultante cinétique à cette portion de fil, montrer que
Tx(x,t) ne dépend pas de x.
Que peut-on conclure pour la norme T de la tension dans le fil ?
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o – 16. Montrer que le déplacement du fil z(x,t) vérifie alors l’équation aux dérivées partielles :

@
2
z

@t2
� c

2 @
2
z

@x2
= 0 . (1)

On exprimera c en fonction de T et µ. Que représente cette grandeur physique ?
o – 17. Montrer que des fonctions de la forme z(x,t) = f(x� ct)+ g(x+ ct) sont des solutions de

cette équation. Interpréter le sens physique des fonctions f et g.

On cherche les solutions correspondant à un régime purement sinusoidal. On utilise la repré-
sentation complexe de ces solutions sous la forme

z(x,t) = Ae
j(!t�kx)

+Be
j(!t+kx)

où ! est la pulsation du signal, k l’amplitude du vecteur d’onde, A et B des amplitudes com-
plexes.

o – 18. Traduire les conditions aux limites imposées au fil en des contraintes sur z(x,t).
En déduire la relation entre A et B ainsi que les valeurs de ! permises.
Comment appelle-t-on ce type d’onde et pourquoi ?

o – 19. Sachant que la fréquence de vibration de la note jouée (correspondant à la fréquence de
la note fondamentale) vaut 300Hz, que la longueur du fil est ` =

1
3 m et que sa masse

linéique est µ = 0,5mg ·m�1, quelle doit être la tension T appliquée à la corde ?
Sachant que la tension Te au-delà de laquelle la corde n’est plus dans son régime élastique
est de l’ordre de 10 newtons, que pouvez vous conclure ?

Dans le cadre d’un modèle plus élaboré on prend en compte la raideur du fil à travers son
module de Young E. L’équation de propagation des ondes de déformation de faible amplitude
dans un fil de rayon a devient alors :

µ
@
2
z

@t2
� T

@
2
z

@x2
+

E⇡a
4

4

@
4
z

@x4
= 0 (2)

o – 20. En supposant que la déformation z(x,t) de la corde est de la même forme que précédem-
ment, établir la relation de dispersion donnant k en fonction de ! et des paramètres du
problème.
Montrer que les fréquences propres de la corde s’écrivent alors sous la forme :

fn =
nc

2`

p
1 + Bn2 , (3)

où B est une grandeur physique que l’on exprimera en fonction de E, T , ` et a.
Sachant que pour la corde fabriquée à partir des fils d’araignée E = 6,0GPa et a = 350µm

et que pour une corde classique E = 2,5GPa et a = 400µm, que pouvez-vous conclure
sur la nature du son produit à T et ` fixées ?
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Formulaire
Détail de la représentation graphique de la fonction logarithme népérien

Figure 9 – Graphe de la fonction ln x pour x 2 [0,36; 0,42].

Opérateur gradient en coordonnées cylindriques :

~grad(f) =
@f

@r
ber +

1

r

@f

@✓
be✓ +

@f

@z
bez

Rayon terrestre Rt = 6400 km

Permitivité électrique du vide ✏0 = 8,9⇥ 10
�12 ' 1

36⇡
⇥ 10

�9
F ·m�1

Accélération de pesanteur terrestre g = 10m · s�2

Masse volumique de l’eau ⇢e = 1,0⇥ 10
3
kg ·m�3

FIN DE L’ÉPREUVE
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Physique I, année 2024 — filière MPI

Des objets astronomiques, de Mars à Sirius
Ce sujet comporte deux problèmes totalement indépendants étudiant différents aspects de l’as-
tronomie (la science des planètes et des étoiles) et en particulier de l’astrophysique (l’étude
des modèles physiques des astres). Le problème I décrit des notions connues depuis le xviie

siècle (la mécanique céleste des trajectoires des planètes et les lois de Kepler et Newton).
Le problème II propose une étude de quelques propriétés énergétiques des étoiles en comparant
leur énergie gravitationnelle avec des termes comparables liés aux autres interactions au sein
de l’étoile.
Pour toutes les applications numériques, on se contentera de deux chiffres significatifs. Les
notations des constantes fondamentales utiles, des données numériques et des rappels de syntaxe

Python sont regroupés en fin d’énoncé. On pourra noter ûx, ûy, ûz la base cartésienne associée
au repère (Oxyz) et ûr, û✓ la base locale associée aux coordonnées polaires r, ✓ du point M

situé dans le plan (Oxy), cf. figure 1.

y

O
x

r

•M

✓

ûr

û✓

ûx

ûy

z

Figure 1 – Base locale associée aux coordonnées polaires

On posera j
2
= �1. On notera par un point les dérivées temporelles, ḟ =

df

dt
. Les vecteurs ~w

sont surmontés d’une flèche, sauf les vecteurs unitaires notés û.

I Les lois de Kepler et l’unité astronomique
Ce problème est consacré aux lois de Kepler (���� et ����) et à une mesure historique de
l’unité astronomique par Cassini (����). On notera que ces travaux sont toux deux nettement
antérieurs à la publication de la loi de la gravitation universelle par Newton (����).
On s’intéressera en particulier aux orbites de la Terre et de Mars, la planète la plus proche de la

Terre avec une trajectoire extérieure. Le plan de sa trajectoire est presque confondu (à moins de

2
�

près) avec le plan de l’écliptique (la trajectoire terrestre). Ces deux trajectoires sont proches

de cercles autour du Soleil.

I.A Mouvements d’une planète sous l’action d’un astre attracteur
On étudie ici, relativement à un référentiel galiléen (R0), le mouvement d’un astre P assimilé
à un point P de masse mP sous l’action du seul champ de gravitation exercé par un autre astre
attracteur A de masse mA et de centre fixe A. On notera ~r =

�!
AP , r = k~rk et ~r = rûr.

o – 1. Quelle condition (inégalité forte) permet de considérer A comme fixe ?
Quelle est l’expression de la force gravitationnelle ~F exercée par A sur P si les deux
astres sont assimilés à des points ?
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o – 2. Que devient l’expression de ~F si P reste ponctuel tandis que l’astre A , de rayon RA < r,
possède une répartition de masse à symétrie sphérique ? On justifiera sa réponse.

o – 3. Cette expression reste-t-elle encore applicable si P et A sont tous deux à symétrie sphé-
rique ? On pourra, dans tout ce qui suit, considérer A et P comme des points matériels

A et P .

o – 4. Montrer que le mouvement de P est plan ; on notera (Axy) le plan de ce mouvement.
Définir la constante C issue de la loi des aires pour ce mouvement et relier cette constante
aux coordonnées polaires (r, ✓) du mouvement de P dans (Axy).

On note ~v la vitesse de P et ûr, û✓ les vecteurs de la base polaire associée au mouvement de P .
~v est fonction du temps et donc aussi de l’angle polaire ✓.

o – 5. Exprimer
d~v

d✓
et en déduire que ~v(✓) = C

û✓ + ~e

p
où ~e est une constante d’intégration et

p un paramètre du mouvement qu’on exprimera en fonction de C, mA et de la constante
universelle de gravitation G.
Montrer que le vecteur ~e est sans dimension et situé dans le plan (Axy) du mouvement.

Sans perte de généralité, on peut supposer que ~e = eûy avec e = k~ek > 0.
o – 6. Exprimer ṙ et r✓̇ en fonction de C, p, e et ✓.

En déduire r en fonction de p, e et ✓ et montrer que e < 1 pour un mouvement borné.
Quelle est, dans ce cas et sans démonstration, la nature de la trajectoire ? On admettra
que le mouvement est périodique de période T .

I.B Période du mouvement
o – 7. En utilisant par exemple la question précédente, montrer que T = Ip3/2/

p
GmA où la

constante I s’obtient par le calcul de l’intégrale I =

Z 2⇡

0

d✓

(1 + e cos ✓)2
.

o – 8. Dans le cas particulier où e = 0, préciser la nature de la trajectoire et l’expression de T ;
en déduire une des lois de Kepler, préciser laquelle et proposer son énoncé « historique »
sous forme d’une phrase en français.

Le calcul de l’intégrale I en fonc-
tion de e peut être mené de ma-
nière numérique (au moyen d’un
script Python) ; les résultats sont
illustrés figure 2.

o – 9. Proposer l’écriture des
lignes de code Python
permettant le tracé de la
figure 2 : courbe en trait
plein puis mise en exergue
d’une dizaine de valeurs
régulièrement réparties
pour 0 6 e 6 1

2 .
Note : on pourrait mener le cal-

cul exact de l’intégrale qui fournit

I(e) = (1� e
2
)
�3/2Ie=0. Ce calcul

n’est pas demandé ! Figure 2 – Calcul numérique de l’intégrale I
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I.C Mesure de l’unité astronomique

Figure 3 – La Terre et la Lune vues
depuis Mars par la sonde Mars Global

Surveyor, photo NASA

Nous admettrons pour la Terre et Mars des orbites
circulaires centrées au centre S du référentiel de Co-

pernic, de rayons respectifs a0 (c’est l’unité astrono-
mique) et a1, de périodes T0 et T1.
Le principe de la mesure de a0 proposée par Cassini,
à la fin du xvii

e siècle, consistait à observer simulta-
nément, depuis deux observatoires bien séparés (Paris
et Cayenne, distants en ligne droite de ` = 7070 km)
la planète Mars lorsqu’elle est à sa distance minimale

de la Terre, puis d’évaluer l’angle ↵ entre les deux
directions de visée (Paris �! Mars et Cayenne �!
Mars).

o – 10. Représenter sur un schéma unique l’ensemble des paramètres géométriques a0, a1, `, ↵
ci-dessus au moment de la mesure, lors d’une conjonction inférieure (le Soleil, la Terre et
Mars sont alignés dans cet ordre).

o – 11. En déduire la relation permettant de déterminer a0 en fonction de T0, T1, ` et ↵.
o – 12. La valeur annoncée par Cassini était ↵ = 14

00 (secondes d’angle). Est-elle compatible
avec la relation ci–dessus ?

II Structure et énergie des étoiles
Les parties II.A, II.B et II.C sont très largement indépendantes. Les étoiles à l’équilibre seront
ici décrites comme des boules homogènes de masse M et de rayon R en équilibre sous l’action
de leur propre gravitation et de diverses forces antagonistes qui s’opposent à l’effondrement
de l’étoile : il s’agira de la pression thermodynamique associée à l’agitation thermique dans la
partie II.B et d’une propriété strictement quantique, la pression de confinement, dans la partie
II.C.

•
O

État initial (pas de masse)

R

•
O

État intermédiaire

r

dr

•
O

État final (étoile constituée)

R

masse M

Figure 4 – Constitution progressive de l’étoile

II.A L’énergie gravitationnelle
Du fait de la symétrie sphérique de l’étoile, on va définir son énergie gravitationnelle Wg comme
l’énergie mécanique qu’un opérateur fournit à l’étoile pour la constituer, à partir de gaz sans
interaction car pris à grande distance, en couches concentriques de rayon croissant (figure 4).
Ce calcul sera effectué pour une évolution quasi–statique, l’opérateur agissant à tout instant
pour compenser exactement les forces gravitationnelles.
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o – 13. Donner et justifier physiquement le signe de Wg. Expliquer pourquoi on nomme parfois
E` = �Wg l’énergie de liaison de l’étoile.

o – 14. Exprimer la masse volumique ⇢, supposée uniforme et constante, de l’étoile en fonction
de M et R.
En déduire, en fonction de M , R et r, les expressions de m (masse déjà constituée dans
une sphère de rayon r) et de dm (masse à apporter pour faire passer ce rayon de r à
r + dr).

o – 15. Justifier que la contribution dWg à l’énergie gravitationnelle de cet accroissement (passage

de r à r + dr) s’écrit dWg = �Gmdm

r
.

Calculer l’énergie gravitationnelle totale Wg de l’étoile en fonction de G, M et R.

II.B Pression cinétique
Certaines étoiles sont en équilibre sous l’action de la pression cinétique liée à l’agitation ther-
mique qui résiste seule à l’effondrement gravitationnel. On va tout d’abord décrire cet équilibre
dans une géométrie cartésienne, l’axe (Oz) étant dirigé selon le champ de gravitation local
~G(z) = G(z)ûz (figure 5) avec G(z) < 0. On note aussi ⇢(z) la masse volumique du fluide au
repos et P (z) la pression dans le fluide.

z

Fluide
•z1

•z2
S

~G

Figure 5 – Géométrie du champ de gravitation local

o – 16. On s’intéresse à l’équilibre de la colonne de fluide d’aire S et comprise entre les altitudes z1
et z2. Expliciter, éventuellement sous forme intégrale, les forces exercées sur cette colonne.
En déduire l’équation différentielle reliant P (z), ⇢(z) et G(z).

La pression équilibrant la force gravitationnelle, les ordres de grandeur des énergies thermique
et gravitationnelle doivent être comparables ; nous allons ici le vérifier en évaluant l’énergie
cinétique de l’étoile dans le cadre d’un modèle très simplifié dans lequel la masse volumique
⇢ est constante mais qui prend maintenant en compte la géométrie sphérique du système. On
suppose ainsi que l’équation d’équilibre local obtenue en géométrie cartésienne à la question 16

se généralise grâce à la symétrie sphérique en faisant z ! r avec ⇢(r) = cste.
o – 17. Un volume V de fluide est soumis à la pression P , supposée uniforme. Dans quel modèle

l’énergie cinétique d’agitation thermique associée peut-elle s’écrire Ec =
3
2PV ? Dans la

suite de cette partie II.B on supposera que c’est bien le cas en chaque point intérieur à

l’étoile.

o – 18. Expliciter le champ gravitationnel ~G(~r ) ressenti au sein de l’étoile en équilibre à la dis-
tance r du centre, en fonction de G, M , R et r.

En déduire l’expression de la pression P (r) =
3GM2

8⇡R6
(R

2 � r
2
).

o – 19. Calculer l’énergie cinétique totale de l’étoile Ec en fonction de G, M et R ; commenter.
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II.C Pression de confinement quantique
Nous ne ferons plus ici l’hypothèse d’un équilibre de la gravitation par la pression cinétique ;
au contraire, nous négligerons tout effet thermique pour les étoiles décrites dans cette partie
II.C.
L’étoile sphérique étudiée ici, de rayon R, de masse M et de volume V est essentiellement
constituée de N atomes d’hydrogène, donc de N protons de masse mp et d’autant d’électrons
de masse me ⌧ mp, chacune de ces particules étant confinée dans un volume # = V/N . On va
montrer que le principe d’incertitude impose à chacun des atomes une énergie cinétique dite
de confinement quantique. Celle-ci sera évaluée dans un modèle très simplifié, chaque particule
restant libre de toute interaction mais confinée dans un volume cubique de côté a tel que a3 = #.

o – 20. Exprimer a en fonction de M , R et mp seulement.
On rappelle pour un état stationnaire d’une particule de masse m, libre et à une dimension

(Ox), l’équation de Schrödinger avec ~ = h/2⇡ : � ~2
2m

@
2
 

@x2
= j~@ 

@t
pour la fonction d’onde

 (x,t) =  (x)e
�j!t.

o – 21. La particule étudiée étant confinée à l’intervalle x 2 [0 , a], exprimer la fonction d’onde
spatiale  1(x) et l’énergie e1 de l’état fondamental en fonction de h, m et a.
Justifier que cette relation illustre le principe d’indétermination de Heisenberg.

o – 22. Que deviennent ces expressions de la fonction d’onde et de l’énergie de l’état fondamental
dans un modèle confiné à trois dimensions, x 2 [0 , a], y 2 [0 , a] et z 2 [0 , a] ?

o – 23. En déduire que l’énergie cinétique totale due au confinement de l’étoile se met sous la
forme Ec = �M

5/3
/R

2 dans laquelle on exprimera � en fonction de h, mp et me.

II.D Le cas des naines blanches
On s’intéresse ici aux naines blanches, étoiles dans lesquelles la pression due au confinement
quantique (avec l’énergie cinétique exprimée en fonction de M et R dans la partie II.C) est net-
tement supérieure aux effets de l’agitation thermique (que l’on négligera donc ici) et compense
seule les effets de la gravitation (avec l’énergie de gravitation exprimée également en fonction
de M et R dans la partie II.A).
La particularité de ces étoiles (essentiellement composées de carbone) et la prise en compte
des dégénerescences des états d’énergie des électrons introduisent des facteurs numériques dans
l’expression de � obtenu dans un cas simple à la question 23. Ces spécificités ne modifient
toutefois pas l’expression de l’énergie cinétique totale due au confinement de l’étoile. En ����,
Fowler

1 propose la valeur � = 1,6 · 106 SI pour les naines blanches. On utilisera cette valeur
dans le reste du problème.

o – 24. Pour une étoile de ce type, déterminer le rayon Req qui assure un minimum de l’énergie
totale.

o – 25. Calculer numériquement Rwd dans le cas d’une masse égale à celle du Soleil et conclure.
En ����, Chandrasekhar

2 explique qu’il faut prendre en compte le caractère relativiste des
électrons confinés dans les naines blanches. Il en deduira un modèle plus correct pour ces étoiles.

o – 26. En estimant la vitesse des électrons dans le modèle de Fowler justifier l’argument de
Chandrasekhar.

FIN DE L’ÉPREUVE

1. R. H. Fowler, On dense matter, Monthly Notices of the Royal Astronomical Society, 87, 114, 1926

2. S. Chandrasekhar, The maximal mass of ideal white dwarfs, Astrophysical Journal, 74, 81, 1931
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Formulaire en coordonnées sphériques

��!
grad

⇥
F (r)

⇤
=

dF

dr
ûr div [F (r)ûr] =

1

r2

d

dr

⇥
r
2
F (r)

⇤

Données numériques
Grandeur Symbole, valeur et unité

Constante de Planck h = 6,63·10�34
J·Hz�1

Constante de la gravitation universelle G = 6,67·10�11
m

3·kg�1·s�2

Distance Terre–Soleil (unité astronomique) a0 = 1UA = 1,50·1011 m
Masse de l’électron me = 9,11·10�31

kg

Masse du proton mp = 1,67·10�27
kg

Masse du Soleil M� = 1,99·1030 kg
Rayon du Soleil R� = 6,96·108 m
Rayon de la Terre RT = 6,37·106 m
Période du mouvement de la Terre (année) T0 = 365 j = 3,16·107 s
Période du mouvement de Mars T1 = 687 j

Seconde d’arc 1
00
= 4,85µrad

On donne
✓
5

4

◆2

' 1,6 et

687

365

�1/3
' 5

4
.

Syntaxes Python
Syntaxe d’appel Résultats ou commentaires

? Générer un tableau de n valeurs régulièrement sur [a , b] :

r = numpy.linspace(a, b, n) r est un tableau de type numpy.array

? Évalue l’intégrale y =

Z b

a

f(x)dx et estime l’erreur numérique

r = scipy.integrate.quad(f, a, b) r = (y, err)
? Créer ou activer une fenêtre de tracé :

r = matplotlib.pyplot.figure() exécuter avant de générer des tracés
? Tracer la courbe représentative de y = f(x)

matplotlib.pyplot.plot(x, y) x et y, énumérables de même dimension
? Afficher la ou les fenêtres de tracé :

matplotlib.pyplot.show() exécuter après avoir généré des tracés

Page 6/6



A2025 – PHYSIQUE I MPI

ÉCOLE NATIONALE DES PONTS et CHAUSSÉES,
ISAE-SUPAERO, ENSTA PARIS,

TÉLÉCOM PARIS, MINES PARIS,
MINES SAINT-ÉTIENNE, MINES NANCY,

IMT ATLANTIQUE, ENSAE PARIS,
CHIMIE PARISTECH - PSL.

Concours Mines-Télécom,
Concours Centrale-Supélec (Cycle International).

CONCOURS 2025

PREMIÈRE ÉPREUVE DE PHYSIQUE

Durée de l’épreuve : 3 heures

L’usage de la calculatrice ou de tout dispositif électronique est interdit.

Les candidats sont priés de mentionner de façon apparente

sur la première page de la copie :

PHYSIQUE I - MPI

L’énoncé de cette épreuve comporte 7 pages de texte.

Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il le

signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu’il est

amené à prendre.

.

Les sujets sont la propriété du GIP CCMP. Ils sont publiés sous les termes de la licence
Creative Commons Attribution - Pas d’Utilisation Commerciale - Pas de Modification 3.0 France.

Tout autre usage est soumis à une autorisation préalable du Concours commun Mines Ponts.



Physique I, année 2025 — filière MPI

Impulsion mécanique et mesures optiques
Le sujet comporte quatre parties I, II, III et IV qui, bien que liées les unes aux autres,
peuvent être abordées de manière totalement indépendante sous réserve d’admettre éventuel-
lement les résultats affirmés par l’énoncé. Dans les questions posées, exprimer signifie donner
une expression littérale et calculer signifie donner une valeur numérique ; toutes les applica-
tions numériques seront réalisées avec seulement deux chiffres significatifs. Les vecteurs seront
surmontés d’une flèche, ~p ou ~v. Les grandeurs complexes seront soulignées,  ou z, sauf i, tel
que i

2
= �1.

Dans le langage général, le sens usuel du mot impulsion désigne l’élan initial qu’on peut donner à
une particule élémentaire ou à un projectile macroscopique qui poursuit ensuite son mouvement.
Le même mot a un sens plus spécifique en physique ; l’impulsion, d’abord définie en mécanique
classique comme la quantité de mouvement dans de très nombreux cas, se retrouve en mécanique
quantique comme en mécanique relativiste avec un sens étendu.
Nous admettrons dans tout ce qui suit que l’impulsion ~p d’une particule ponctuelle libre (non
engagée dans une liaison), de masse m et d’énergie E est, dans le cadre général de la théorie
d’Einstein (����), donnée par la relation dite du triangle relativiste :

E2
= p2c2 +m2c4 (1)

où p = k~p k et c = 3,0⇥10
8
m · s�1 est la célérité de la lumière dans le vide ; par ailleurs, cette

même impulsion ~p est, dans la description ondulatoire des particules, associée à la longueur
d’onde � de l’onde associée à la particule par la relation de De Broglie (����) :

� =
h

p
(2)

où h = 6,6⇥10
�34

J · Hz�1 est la constante de Planck (����).

I Impulsion de particules élémentaires
o – 1. Quel est, à votre avis, la nature du « triangle relativiste » évoqué par la relation (1) ?

Représenter celui-ci.
Quelle est l’unité usuelle, dans le système international, de l’impulsion p ? du produit pc ?

L’énergie des systèmes macroscopiques s’exprime usuellement en joule (J) ou en kilowatt-heure
(1 kW · h = 3,6MJ). Dans toute la suite de la partie I, l’énergie des particules élémentaires sera
donnée en MeV (méga-électron volt) où 1MeV = 10

6
eV et 1 eV = 1,6⇥10

�19
J. Les masses des

particules seront données en MeV/c2 et leurs impulsions en MeV/c. Par exemple la masse de
l’électron vaut me = 0,51MeV/c2 et celle du proton vaut mp = 940MeV/c2 (ou, si on préfère,
mec2 = 0,51MeV et mpc2 = 940MeV).

o – 2. On appelle énergie de repos d’une particule la valeur E0 de l’énergie de celle-ci lorsque
son impulsion est nulle. Exprimer E0 pour un proton et calculer sa valeur numérique.

Pour une particule en mouvement, le supplément d’énergie Ec = E�E0 porte le nom d’énergie

cinétique.
o – 3. On s’intéresse d’abord aux particules vérifiant la relation (1) dans le cas de la limite

classique, lorsque Ec ⌧ E0. En vous limitant au premier ordre non nul, donner dans ce
cas une expression de Ec en fonction de l’impulsion p et de la masse m de la particule.
Quelle est alors la relation entre l’impulsion ~p et la vitesse ~v d’une particule ?
Quelle vitesse maximale peut-on donner à un proton pour rester dans la limite classique
telle que Ec/E0 < 1% ? Même question pour un électron.
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Si on ne se limite pas aux faibles vitesses, on peut montrer, et on l’admettra, la relation générale
entre la masse m, la vitesse ~v de norme v = k~vk, l’impulsion ~p de la particule et la célérité c de
la lumière :

~p =
m~vp

1� v2/c2
(3)

o – 4. En déduire l’expression générale de l’énergie totale E = f(E0, v, c) d’une particule de
masse m.

o – 5. Un photon est une particule associée à une onde électromagnétique dans le vide et dont
la vitesse est donc égale à c. Que peut-on en déduire, pour sa masse, de la relation
E = f(E0, v, c) établie à la question précédente ?
Déduire de (2) l’expression de l’énergie E d’un photon en fonction de la longueur d’onde
� puis de la fréquence ⌫ de l’onde. Faire l’application numérique dans les cas des ondes
lumineuses des domaines bleu (� ⇠ 400 nm) puis rouge (� ⇠ 600 nm). On pourra exploiter
le fait que hc ' 1,2 eV⇥µm et on exprimera E en eV.

II Le spectre d’émission des atomes d’hydrogène
On s’intéresse ici à l’émission d’un photon, d’énergie E et d’impulsion p = E/c, par un atome
initialement au repos, de masse m. Au cours de cette émission, l’atome passe de l’énergie initiale
Ei à l’énergie finale Ef = Ei � �E < Ei et il recule avec, dans le cadre d’une description
classique, l’impulsion m~v et l’énergie cinétique 1

2mv2 (figure 1) de sorte que l’impulsion totale

du système complet reste nulle après l’émission, comme elle l’était avant émission. La direction
de l’impulsion ~p du photon est donc opposée à la vitesse ~v de l’atome qui recule.

Ei

atome au repos av
an

t

ap
rè

s Ef

atome qui recule
•~v

photon

E
~p

Figure 1 – Émission d’un photon par un atome au repos

o – 6. On admet que l’énergie totale du système après émission est identique à celle de l’atome
au repos avant l’émission. En déduire la relation E = mc2

⇣p
1 + 2⌘ � 1

⌘
et exprimer ⌘

en fonction de �E, m et c.
o – 7. Dans le cas de l’atome d’hydrogène, �E est de l’ordre de quelques électrons–volts. En

déduire qu’on peut négliger l’énergie de recul de l’atome et conclure quant à la relation
entre �E = Ei � Ef et l’énergie E du photon émis.

La résolution de l’équation de Schrödinger (����) dans le cas de l’atome d’hydrogène montre
que les valeurs de l’énergie En de l’atome sont quantifiées en fonction du nombre quantique
principal n 2 N⇤ et de la grandeur H = 27,2 eV selon la relation : En = �H/(2n2

). Cette
expression est confirmée par l’étude des ondes lumineuses, de longueur d’onde �, émises par un
ensemble d’atomes d’hydrogène qui rayonnent par désexcitation depuis un état initial quantifié
par ni vers l’état final quantifié par nf < ni.

o – 8. Lorsque l’état final est nf = 1, montrer qu’il existe une �max telle que � 6 �max et donner
une estimation de �max. Quel est le domaine spectral correspondant à ces raies d’émission ?
Lorsque l’état final est nf > 2, montrer qu’il existe une �min que l’on estimera, telle que
� > �min . Quel est le domaine spectral correspondant à ces raies d’émission ?
Les raies d’émission de l’hydrogène dans le domaine visible (les raies de Balmer) ont été
étudiées à partir de ���� par Ångstrøm ; à quelles valeurs de nf correspondent-elles ?
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C’est la connaissance précise de ce spectre qui a permis l’étude de la quantification de l’éner-
gie des atomes donc l’introduction de la mécanique quantique au début de XXe siècle. Cette
connaissance a été par la suite améliorée au moyen de la spectrométrie interférentielle.

III Mesures interférométriques de longueurs d’onde
En ����, Michelson est le premier américain à recevoir le prix Nobel de physique pour
ses instruments optiques de précision et les mesures spectroscopiques et métrologiques réalisées

au moyen de ceux-ci. En particulier, il publiera en ���� des mesures relatives aux spectres
d’émission de plusieurs sources, obtenues par spectroscopie interférentielle, et notamment pour
les raies H↵ (rouge) et H� (bleue) d’émission par les atomes d’hydrogène.

III.A L’interféromètre de Michelson
Le schéma du montage utilisé par Michelson est proposé figure 2. Le dispositif monochroma-
teur, formé d’un prisme de verre dispersif et d’une fente étroite, éclaire l’appareil en sélection-
nant une raie quasi-monochromatique de longueur d’onde �0, appartenant au domaine visible.
L’observation est réalisée au moyen d’un oculaire afocal, réglé à l’infini : il donne d’un objet
situé à grande distance une image également à grande distance, mais agrandie.

source

N

O

~ey

~ex

~ez

L1

L2
monochromateur

prismefente
miroir fixe

V1

V2

miroir mobile

vi
s

de

ch
ar

io
ta

ge

oculaire

x

z

Figure 2 – Dispositif de mesure en spectroscopie interférentielle

o – 9. L’interféromètre comporte deux lames de verre L1 et L2, parallèles, de même épaisseur e
et de même indice optique n, inclinées d’un angle ⇡/4 relativement à l’axe (O,~ex) normal
au miroir fixe. La lame L1 est munie d’une couche semi-réfléchissante sur une seule de ses
faces ; laquelle ? Justifier, en vous appuyant sur un schéma.
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o – 10. Après réglage des vis V1 et V2 les miroirs fixe et mobile sont rendus rigoureusement
perpendiculaires ; l’axe optique (O,~ez) de l’oculaire est alors confondu avec la normale au
miroir mobile et l’opérateur observe, au moyen de cet oculaire réglé à l’infini, des franges
d’interférence. Quelle est la forme de ces franges ?
Peut-on encore les observer si l’oculaire est déréglé ?

o – 11. Tout en observant les franges, l’observateur peut actionner la vis micrométrique et dépla-
cer le miroir mobile dans le plan (O,~ex,~ey), le long de l’axe (O,~ez). Relier le nombre �N
de franges sombres qui défilent au centre du champ et le décalage �z du miroir mobile.

o – 12. Exprimer, au moyen d’un schéma approprié, la différence de marche observée à l’infini
dans une direction donnée, en fonction de l’écart séparant les deux miroirs.
Le déplacement maximal de la vis micrométrique à partir du contact optique est noté
�zmax. Déterminer, après ce déplacement, l’angle �✓ qui sépare le centre de la figure de
la première frange de même nature.

o – 13. Dans le cas d’une des raies de l’hydrogène atomique, on observe le défilement de N = 3156

franges pour un décalage �z = 1035± 2µm. S’agit-il de la raie H↵ ou H� ?
Avec quelle précision relative mesure-t-on sa longueur d’onde �0 ?
Que vaut alors �✓ ? Commenter.

III.B Cohérence spectrale d’une source
Une source de lumière éclaire avec la même intensité I0 les deux voies d’un interféromètre ;
l’observation est réalisée en un point où la différence de marche est �.

o – 14. Dans le cas où la source est rigoureusement monochromatique, de longueur d’onde �0,
exprimer l’intensité I(�) en fonction de I0, �0 et �. Définir et calculer le facteur de contraste
C des franges.

Certaines sources lumineuses sont en fait bichromatiques : elles émettent deux radiations de
longueurs d’onde très proches �1 et �2 et on pose alors �0 = 1

2 (�1 + �2) et �� = |�2 � �1| en
admettant toujours ��⌧ �0.

o – 15. Pour certaines sources bichromatiques les deux radiations émises sont de même intensité ;
c’est le cas des lampes à vapeur de sodium, étudiées notamment par Michelson dans
les conditions décrites en III.A. Expliciter l’intensité I observée en fonction de I0, de la
différence de marche �, de �0 et de ��.
Exprimer le facteur de contraste C des franges et montrer comment il permet la mesure
de �0/��.

o – 16. D’autres sources, comme celles émettant la raie H↵ de l’hydrogène, peuvent être écrites
comme bichromatiques mais les intensités I1 et I2 < I1 émises aux longueurs d’onde �1 et
�2 sont différentes. Pour quelle(s) valeur(s) de � le facteur de contraste des franges est-il
minimal ? Quelle est cette valeur minimale ?
Dans le cas de la raie double H↵, l’écart �� est de l’ordre de 1,4⇥10

�11
m. Est-il possible

de le mettre en évidence avec le montage proposé ci-dessus ?

III.C Les tubes à hydrogène
Pour l’étude du spectre d’émission de l’atome d’hydrogène, une première technique 1, initiée
dans les années ����, a consisté à utiliser un tube AB contenant de l’hydrogène moléculaire
(dihydrogène, formule H2) sous faible pression (150mbar) soumis à des décharges électriques de

1. D. Chalonge et Ny Tsi Zé, J. Phys. Radium, ����
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haute tension entre deux électrodes E1 et E2 ; l’observation se fait au travers d’une fenêtre de
quartz F (cf. figure 3). Le spectre d’émission obtenu présente la superposition d’un fond quasi-
continu et de raies bien identifiées, comme le montre la figure 4 tirée de l’article présentant la
technique originelle.

Figure 3 – Illustration du dispositif : reproduction de la figure 1 de l’article originel

o – 17. Quel est le rôle du circuit à circulation d’eau qui entoure le tube central ?
Sur le spectre proposé en figure 4, quelle est l’unité de la graduation donnée en abscisse ?
Quelle est, à votre avis, l’origine du fond continu (essentiellement dans le proche ultra-
violet) marqué en trait pointillé gris ?

Figure 4 – Spectre d’émission du tube à hydrogène en échelle logarithmique

On préfère actuellement utiliser des lampes à décharge d’une constitution différente : il s’agit
de tubes à décharge remplis de vapeur d’eau permettant l’obtention d’un spectre atomique sans
bande continue. En présence des décharges à haute tension, ce type de lampe est le siège des
réactions H2O = HO+ H.

o – 18. Quelle propriété du spectre d’émission de la molécule hydroxyle HO est ici mise à profit ?

Ces lampes contiennent une certaine proportion d’eau lourde, molécules HDO dans laquelle un
des deux atomes d’hydrogène 1

1H est remplacé par un atome de deutérium 2
1D, dont le noyau est

formé d’un proton et d’un neutron. Si on tient compte de la masse mN du noyau atomique,
on peut montrer que la longueur d’onde d’émission d’une des raies spectrales de l’hydrogène
atomique vérifie la relation :

� = �1
me +mN

mN

où me est la masse de l’électron et �1 la longueur d’onde idéale si mN ! 1.
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o – 19. Les raies d’émission du deutérium sont-elles, par rapport à celle de l’hydrogène ordinaire,
décalées vers le bleu ou vers le rouge ?
De quelle résolution spectrale (en nanomètre) faut-il disposer pour séparer les raies de
l’hydrogène et celles du deutérium?
À partir d’une lecture de la courbe de la figure 4, faire l’application numérique dans le
cas de la raie H�.

IV L’équation de Klein–Gordon
Lors du développement de la mécanique quantique (ou mécanique ondulatoire), l’onde de ma-
tière  (~r,t) a d’abord été considérée comme solution de l’équation de Schrödinger (4) :

� ~2
2m
� + V (~r) (~r,t) = i~@ 

@t
où ~ =

h

2⇡
et i2 = �1 (4)

pour une particule de masse m repérée par sa positon ~r et soumise à l’interaction décrite par
la fonction potentiel scalaire V (~r). En ����, Klein et Gordon en ont proposé une version
modifiée qu’on écrira :

~2c2� +

✓
i~ @
@t

� V (~r)

◆2

 (~r,t) = m2c4 (~r,t) (5)

Dans la suite on s’intéressera exclusivement aux solutions de l’une ou l’autre équation, de la
forme :

 (~r,t) =  
0
exp


� i

~ (Et� p(E)x)

�

où  
0

est une certaine constante complexe, x est l’une des coordonnées cartésiennes de ~r, E > 0

est l’énergie de la particule et p(E) > 0 son impulsion.

o – 20. L’état associé à cette fonction d’onde est-il stationnaire ?
Dans quel sens le mouvement de la particule décrite par cette onde a-t-il lieu ?
Exprimer les vitesses de phase v' et de groupe vg en fonction de E, de p(E) et de sa
dérivée.

o – 21. Exprimer p(E) et vg(E) dans le cas d’une particule vérifiant l’équation de Schrödinger
dans un domaine où V est constant. En déduire le caractère relativiste ou non du modèle
associé à l’équation de Schrödinger.

o – 22. Répondre aux mêmes questions dans le cas d’une particule vérifiant l’équation de Klein–
Gordon (5).

On s’intéresse enfin à la résolution du problème physique suivant : la particule étudiée est
libre (V = 0) pour x < 0 et x > a et pourvue d’une énergie E, tandis que, dans l’intervalle
x 2 [0,a], elle est soumise à une interaction caractérisée par V = V0 > E (figure 5) et même
V0 � E > mc2. Les solutions de l’équation (de Schrödinger ou de Klein–Gordon) seront
donc écrites, pour x < 0 et x > a, sous les formes respectives :

 (x < 0,t) =  
0
exp


� i

~ (Et� px)

�
+R 

0
exp


� i

~ (Et+ px)

�

 (x > a,t) = T  
0
exp


� i

~ (Et� px)

�

où T et R sont deux constantes complexes.
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x

V (x)

a0

V0

 =  
0
e
�iEt�px

~ +R 
0
e
�iEt+px

~  = T  
0
e
�iEt�px

~

E
" = V0 � E > mc2

Figure 5 – Barrière de potentiel

On se place d’abord dans le cas de l’équation de Schrödinger.
o – 23. Quelle est la nature de l’onde dans le domaine x 2 [0,a] ?

Quelles relations permettent de calculer R et T ? On ne demande pas de les exprimer ici !

Quel phénomène physique peut-on mettre ainsi en évidence ?
Quelle est l’interprétation physique de |T |2 ?

On se place maintenant dans le cas de l’équation de Klein–Gordon.
o – 24. Quelle est la nature de l’onde dans le domaine x 2 [0,a] ? On notera qu’en introduisant

" = E � V0, on a q2 =
("�mc2)("+mc2)

c2
> 0.

Les mêmes relations que dans l’étude de la barrière de potentiel dans le cadre de l’équation de
Schrödinger conduisent, pour l’onde de Klein–Gordon, à la relation (que l’on admettra) :

|T |2 = 1

|cos'� i↵ sin'|2
avec ↵ =

1

2

✓
p

q
+

q

p

◆
et ' =

qa

~

o – 25. Déterminer la valeur maximale de |T |2. Commenter.

FIN DE L’ÉPREUVE
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La Lune, notre satellite
La Lune est le satellite naturel de la Terre. De tout temps, elle a été pour les humains un objet
de mesure du temps, une source de lumière nocturne voire une divinité. Elle est aujourd’hui un
objet de recherche scientifique et un symbole de la conquête spatiale.

Ce sujet aborde différents aspects de l’étude de la Lune. Il comporte, tout d’abord, l’étude
antique qu’a réalisée Aristarque de Samos sur la Lune, puis la télémétrie Terre-Lune moderne.
On étudie ensuite une théorie sur l’origine de la Lune avant de s’intéresser à l’étude de son
noyau. Les deux parties sont largement indépendantes.

Les applications numériques seront données avec 2 chiffres significatifs.
Plusieurs données numériques et formules sont fournies en fin de sujet.

I Les caractéristiques de la Lune et de son orbite

I.A La Lune dans l’antiquité
Dès l’antiquité les humains se sont intéressés à la Lune et à ses caractéristiques.
La Lune réalisant une révolution autour de la Terre tout en étant éclairée par le Soleil, la partie
visible de la Lune depuis la Terre change. La succession des phases de la Lune vue depuis la
Terre s’appelle un cycle lunaire et a permis de définir la notion de mois. La durée d’un cycle
lunaire est environ ⌧c` = 30 jours.
L’écart entre la période de révolution ⌧` de la Lune et le cycle lunaire provient du fait qu’en
même temps que la Lune tourne autour de la Terre, cette dernière tourne également autour
du Soleil. Après une révolution de la Lune autour de la Terre, la phase de la Lune n’est pas la
même. La Lune doit parcourir une plus grande distance pour finir le cycle lunaire.

o – 1. Rappeler quelle est la période de révolution ⌧t de la Terre autour du Soleil.
En déduire la fraction ' de l’orbite que parcourt la Terre durant un cycle lunaire.

o – 2. En déduire la période de révolution de la Lune autour du centre de la Terre.

Au IIIème siècle avant Jésus-Christ, Aristarque de Samos réalise des mesures astronomiques afin
de déterminer les dimensions de la Lune ainsi que le rayon de son orbite autour de la Terre. À
partir de ses observations il mesure que :

— la Lune met 1 heure à parcourir son propre diamètre vu depuis la Terre ;
— lors d’une éclipse totale de Lune, la Lune reste 2 heures dans l’ombre de la Terre ;
— l’angle sous lequel on voit la Lune depuis la Terre est de 2� (on sait aujourd’hui que c’est

environ 4 fois moins).
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o – 3. À la même période, Ératosthène mesure qu’un arc de 7,2� de la circonférence terrestre
mesure environ 800 km. En déduire la valeur du diamètre terrestre.

o – 4. En utilisant les mesures d’Aristarque de Samos, déterminer le rapport entre le diamètre
lunaire et le diamètre terrestre. On pourra s’aider d’un schéma.
En déduire la valeur du diamètre lunaire évaluée par Aristarque.
Calculer l’écart relatif de ce résultat avec le véritable diamètre de la Lune qui est d’environ
3 500 km. Commenter.

o – 5. On conserve désormais la valeur du diamètre de la Lune valant 3 500 km. Déterminer la
distance Terre-Lune à partir des mesures d’Aristarque de Samos.

o – 6. La masse volumique moyenne d’une roche est de l’ordre de quelques tonnes par mètre
cube. En déduire une estimation de la masse de la Lune puis de l’intensité du champ de
pesanteur lunaire. Comparer avec l’intensité du champ de pesanteur terrestre.

I.B La mesure moderne de la distance Terre-Lune
La mesure actuelle de la distance Terre-Lune se fait à l’aide de la télémétrie laser. Depuis la
surface de la Terre, on envoie une impulsion laser vers des miroirs déposés à la surface de la
Lune par différentes missions, dont celui le plus utilisé, déposé par la mission Apollo 15 en 1971.

Figure 1 – Cavité optique.

Pour produire le laser nécessaire à cette expérience,
on réalise une cavité optique constituée de deux
miroirs en vis-à-vis séparés par de l’air dans le-
quel on place un amplificateur optique. La cavité
optique est paramétrée sur la figure 1. Le repère
orthonormé (~ex;~ey;~ez) est direct.
On considère que les miroirs sont constitués de
métal idéal, c’est-à-dire qu’un champ électrique ne
peut pas se propager à l’intérieur. Le champ électrique ~Ei = E0 cos(!t�kx)~ey est introduit dans
la cavité optique. Enfin, l’amplificateur optique ne sera pas pris en compte pour la propagation
de l’onde dans la cavité remplie d’air qui sera supposé avoir les mêmes propriétés que le vide
pour le champ électromagnétique.
On rappelle la relation de passage pour le champ électrique entre deux milieux 1 et 2 : ~E2� ~E1 =
�
✏0
~n12 où ~E1 et ~E2 sont les champs électriques dans les milieux 1 et 2 ; � est la charge surfacique

de l’interface entre les deux milieux ; ✏0 est la permittivité diélectrique du vide ; ~n12 est le vecteur
normal à l’interface dirigé du milieu 1 vers le milieu 2.

o – 7. Quelles sont les caractéristiques du champ électrique ~Ei introduit dans la cavité optique ?
On précisera le nom et l’unité des grandeurs E0, ! et k.

o – 8. En utilisant la relation de passage fournie, déterminer l’expression du champ électrique
réfléchi par le miroir situé en x = L.

o – 9. Déterminer les expressions du champ magnétique incident ~Bi et du champ magnétique
réfléchi ~Br existants dans la cavité.

o – 10. En déduire l’expression du champ électrique résultant ~E et du champ magnétique résul-
tant ~B dans la cavité. Commenter le résultat obtenu en terme d’amplitude, de phase et
de tout autre caractère pertinent.
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o – 11. Déterminer l’expression du vecteur de Poynting ~⇧ de l’onde électromagnétique résultante
ainsi que sa valeur moyenne au cours d’une période ⌧ = 2⇡/!. L’un des deux miroirs n’est
pas parfaitement réfléchissant, quel en est l’intérêt ? Expliquer le rôle de l’amplificateur
optique.

o – 12. Justifier que la forme du champ électromagnétique ne permet pas d’utiliser la cavité pour
obtenir n’importe quelle fréquence laser. Déterminer l’expression des fréquences possibles
en fonction notamment de la longueur L de la cavité.

o – 13. Le laser utilisé pour la télémétrie Terre-Lune est un laser YAG-Nd de longueur d’onde
� = 1064 nm auquel on a adjoint un doubleur de fréquence. Quelle est la longueur d’onde
utilisée pour cette mesure et quel est le domaine électromagnétique correspondant ?

o – 14. La durée moyenne de l’aller-retour pour un très grand nombre d’impulsions laser entre
la Terre et la Lune est �t = 2,56 s. Déterminer la distance Terre-Lune obtenue par la
télémétrie laser. Comparer avec le résultat obtenu par la mesure d’Aristarque de Samos.
Commenter.

II Les origines de la Lune
L’origine de la Lune a été soumise à de nombreuses hypothèses. Des hypothèses les plus folklo-
riques aux hypothèses les plus sérieuses, l’origine de la Lune est toujours soumise à controverses,
malgré un consensus important de la communauté scientifique sur la théorie de l’impact.

II.A La théorie de la fission
La théorie de la fission est introduite par l’astronome Georges Darwin, fils du célèbre biologiste,
à la fin du XIXème siècle. Dans cette théorie Darwin suppose que, lorsque la Terre était encore
en formation et liquide, sa rotation a suffi à la déformer et à en expulser une partie. Ce morceau
expulsé de la Terre serait à l’origine de la Lune. Darwin imaginait même que le grand océan
pacifique était le vestige de cet évènement.
On a représenté sur la figure 2 ci-après les différentes phases de cette théorie : 1.La Terre
non déformée, 2.La Terre déformée par rotation, 3.La création d’un bourrelet pré-lunaire et
l’expulsion de la Lune et 4.La Lune créée.

Figure 2 – Étapes de la formation de la Lune dans la théorie de Darwin de la fission.
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o – 15. Expliquer en quoi la plus faible densité de la Lune par rapport à la Terre est un argument
en faveur de la théorie de la fission.

On étudie un morceau de roche terrestre de masse m, posé sur la surface de la Terre. On se place
dans le référentiel terrestre non galiléen en coordonnées sphériques (~er;~e✓;~e�). On rappelle que
la latitude d’un point de la surface terrestre est l’angle entre le rayon de la Terre en ce point et
le plan de l’équateur, lui-même orthogonal à l’axe de rotation terrestre.

o – 16. Rappeler le nom et l’expression générale de chacune des forces d’inertie. On précisera
clairement la signification des différentes grandeurs introduites.

o – 17. Réaliser un bilan des forces exercées sur l’élément de masse m posé à la surface de la
Terre. Réaliser un schéma de la situation dans le cas où la masse considérée se trouve à
la latitude �.

o – 18. Justifier la forme de la Terre déformée par rotation représentée sur la seconde étape de la
figure 2. Déterminer une estimation de la variation ⇢ du rayon de la terre entre sa valeur
au pôle et celle à l’équateur.

On considère désormais que la masse se situe au niveau de l’équateur.
o – 19. En reprenant le bilan des forces sur la masse m dans ce cas, calculer la période de rotation

terrestre nécessaire pour expulser de la Terre cette masse. Comparer cette valeur avec la
période actuelle de rotation terrestre. Faire un commentaire sur la validité de la théorie
de la fission.

II.B La théorie de l’impact
La théorie de l’impact propose qu’une petite planète ait percuté la Terre, provoquant le mélange
des deux astres et l’expulsion de débris qui se sont regroupés pour former la Lune. Cette théorie
est celle qui fait actuellement consensus dans la communauté scientifique.
Les études sismologiques sur la Lune ont montré qu’elle possède un noyau dont une partie est
solide. On retrouve la structure interne de la Lune sur la figure 3.

Figure 3 – Structure interne de la Lune.
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La croûte est constituée d’anorthosite, une roche magmatique. Le manteau est constitué d’un
mélange d’olivine, d’orthopyroxène et de clinopyroxène. Le noyau liquide et la graine sont
principalement constitués de fer. On considère que chacune des couches est homogène.
On s’intéresse dans un premier temps à l’évolution de la température de la Lune suite à l’impact.
On note :

• Ts et T`, les températures à la surface du Soleil et de la Lune ;
• Rs et R`, les rayons du Soleil et de la Lune ;
• Ds�`, la distance entre le Soleil et la Lune ;
• A, l’albédo de la Lune, c’est-à-dire la fraction de l’énergie solaire reçue qui est réfléchie par

la Lune.

o – 20. En utilisant la loi de Stefan-Boltzmann, fournie en fin de sujet, déterminer l’expression
de la puissance solaire absorbée par la Lune. En l’assimilant à un corps noir, déterminer
ensuite l’expression de la puissance perdue par la Lune par rayonnement. Déterminer
enfin l’expression de la puissance totale perdue par la Lune.
L’application numérique de cette grandeur donne une puissance de l’ordre de 1015 W.

o – 21. Rappeler la loi de Fourier en indiquant les noms et les unités des grandeurs introduites.

o – 22. Établir l’équation de la chaleur. Donner l’expression du coefficient de diffusion thermique
et son unité. On notera les grandeurs avec l’indice i = 1,2,3,4 correspondant aux différents
milieux décrits sur la figure 3. On considèrera les conductivités thermiques uniformes et
constantes en les prenant égales à leur moyenne sur le volume de la couche considérée.

o – 23. Établir les quatre équations traduisant la conservation du flux thermique au niveau des
quatre interfaces que l’on doit considérer.

Différentes études permettent d’obtenir une estimation de la température de la Lune en fonction
de la profondeur. Les résultats de cette estimation sont fournis sur la figure 4.

Figure 4 – Estimation de la température interne de la Lune en trait noir plein. Modèle simplifié
(affine par morceau) en trait gris pointillé.
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o – 24. Expliquer en quoi le profil de température dans le noyau n’est pas incompatible avec
l’existence de la graine.

On adopte dorénavant une vision simplifiée dans laquelle :

— la Lune n’est constituée que de deux couches : la couche rocheuse jusqu’à 1400 km de
profondeur et le noyau de fer au centre ;

— la température de chacune des deux couches est modélisable par une fonction affine de la
coordonnée radiale : Tn(r) = an� bnr pour le noyau (n) et Tr = ar� brr pour la roche (r).
Ce modèle simplifié est représenté en trait gris pointillé sur la figure 4 ;

— les capacités thermiques volumiques du noyau et de la roche peuvent être considérées
comme constantes en les prenant égales à leur moyenne sur le volume de la couche cor-
respondante.

o – 25. Déterminer les valeurs numériques des constantes an, bn, ar et br.

o – 26. En utilisant la modélisation affine de la température, déterminer l’expression de l’énergie
interne de la Lune en fonction notamment des capacités thermiques volumiques de la
roche et du noyau ainsi que des rayons Rn du noyau et R` de la Lune.
L’application numérique de cette grandeur donne 4,1 · 1028 J.

o – 27. Déterminer l’expression de l’énergie interne de la Lune lorsqu’elle sera totalement refroidie
et thermalisée à la température Tf = 250 K.
L’application numérique de cette grandeur donne 1,4 · 1028 J.

o – 28. Donner une estimation du temps nécessaire pour que la Lune soit uniformément refroidie
dans ce modèle. Commenter le résultat obtenu.

Données

— Constante de gravitation universelle : G = 6,7 · 10�11 m3·kg�1·s�2

— Permittivité diélectrique du vide : ✏0 = 8,9 · 10�12 F·m�1

— Perméabilité magnétique du vide : µ0 = 1,3 · 10�6 m·kg·s�2·A�2

— La puissance surfacique P rayonnée par un corps noir dont la surface est à la température
T est donnée par la loi de Stefan-Boltzmann. Elle s’exprime sous la forme P = �T 4 où �
est la constante de Stefan-Boltzmann.

— Gradient en coordonnées sphériques :

��!
grad T =

@T

@r
~er +

1

r

@T

@✓
~e✓ +

1

r sin ✓

@T

@�
~e�

— Laplacien en coordonnées sphériques :

�T =
1

r2
@

@r

✓
r2

@T

@r

◆
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@T

@✓

◆
+

1

r2 sin2 ✓

@2T

@�2

FIN DE L’ÉPREUVE
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Instabilités et oscillations de relaxation
Ce sujet est consacré à certaines situations physiques instables conduisant à des oscillations de

relaxation. Ce terme désigne des oscillations non linéaires obtenues par l’augmentation continue

d’une contrainte, suivie du relâchement subit de celle-ci. Le sujet est constitué de trois problèmes

totalement indépendants sur cette thématique assez courante en physique.

Bien que les trois problèmes traitent de phénomènes physiques analogues, les méthodes déve-

loppées sont totalement différentes :

— le problème I analyse un oscillateur historique de l’électronique linéaire. Il s’agit de l’em-

ploi de méthodes numériques pour l’intégration des équations différentielles déduites des

lois physiques, avec prise en compte d’un basculement périodique ;

— le problème II est consacré à l’étude des régimes stables et instables d’un montage à portes

logiques. Il s’agit de la résolution par morceaux d’une équation différentielle linéaire, avec

raccordement par continuité d’une grandeur physique ;

— le problème III s’intéresse à une description analytique complète des équations du mou-

vement d’un solide frottant sur un support fixe et du crissement qui en résulte.

Les vecteurs (~w) sont surmontés d’une flèche. Les applications numériques seront réalisées avec

un seul chiffre significatif. Lorsqu’un code informatique est demandé, il sera rédigé dans la

syntaxe de Python 3. Un petit formulaire et quelques valeurs numériques sont regroupés en

fin d’énoncé.

Figure 1 – Cir-

cuit

I Oscillateur à tube
On considère le montage de la figure 1 comportant un générateur idéal

de tension constante E0, un résistor de résistance R, un condensateur de

capacité C et un dipole D assimilé à un résistor de résistance RL = ↵R.

I.A Une première équation d’évolution
Dans un tel circuit linéaire, l’équation d’évolution de u(t) est une équation

différentielle linéaire du premier ordre à coefficients constants dont la so-

lution comporte d’une part une solution de l’équation homogène uH(t) et

d’autre part une solution particulière uP (t).

o – 1. Laquelle de ces deux solutions correspond au régime transitoire ?

Sa forme générale dépend-elle de E0 ?

Proposer un schéma simplifié et en déduire, en effectuant le moins de calculs possible,

qu’il s’agit d’une solution caractérisée par une constante de temps ⌧↵ qu’on explicitera en

fonction de ⌧0 = RC et de ↵.

o – 2. À quelle condition l’autre solution correspond-elle au régime permanent ?

Sa forme générale dépend-elle de C ? des résistances R et RL ?

Proposer un schéma simplifié et en déduire simplement l’expression correspondante u1
de u en fonction de ↵ et E0. .

I.B Un dipôle à deux états
En réalité, le dipôle D est une lampe contenant un gaz raréfié qui peut être dans deux états

électriques (lampe éteinte ou allumée). Ces deux états correspondent chacun à une valeur de ↵.
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Le comportement électrique de D diffère selon son état : c’est un assez bon conducteur si elle

est allumée, et un assez bon isolant si elle est éteinte.

o – 3. Que peut-on dire a priori de ↵ si la lampe est éteinte ? si elle est allumée ?

On réalise le circuit avec R = 20 k⌦ et C = 200µF. Lors du branchement initial du circuit, on

admettra que la lampe est éteinte et le condensateur déchargé. Par la suite :

— la lampe reste éteinte tant que la tension à ses bornes vérifie |u| < Ua où Ua = 90V est

la tension d’allumage ; dans ce cas elle a pour résistance Re � R ;

— une fois allumée, la lampe a pour résistance Ra ' 1 k⌦ ; elle reste allumée sauf si la tension

à ses bornes diminue trop et elle va donc s’éteindre dès lors que |u| < Ue où Ue = 70V
est la tension d’extinction.

o – 4. Exprimer et calculer ⌧↵ dans les deux régimes, successivement lampe éteinte puis allumée.

o – 5. Exprimer la limite limt!1 u(t) si la lampe ne s’allume jamais ; puis si elle reste allumée.

En déduire que le système oscille seulement si E0 > 0 est compris dans un intervalle que

l’on déterminera. Est-ce le cas avec E0 = 120V, valeur choisie dans la suite ?

Ces oscillations seront-elles observables à l’œil ?

I.C Étude numérique du régime d’oscillation
On propose une étude numérique des oscillations au moyen d’un algorithme dérivé de la méthode

d’Euler explicite pour l’étude de u(t) ; le passage de t à t + �t se fait au moyen de la fonction

Next :

1 def Next(u, al , dt):
2 i = (E - u)/R
3 if al:
4 al = u >= Ue
5 else:
6 al = u > Ua
7 u += dt*(i - al*u/Ra)/C
8 return u, al

o – 6. Quelle est la signification de la variable (logique) al ?

Quel est l’objectif des lignes 3 à 6 ?

Justifier, au moyen d’un schéma électrique, la ligne 7.

On propose enfin de tracer l’allure de la courbe représentative de u(t) au moyen du code ci-

après :

1 E = 120.0
2 R = 2.0E4
3 C = 200.0E-6
4 Ua = 90.0
5 Ue = 70.0
6 Ra = 1.0E3
7 tmax = 20.0
8
9 def Etude(tmax , N, u0 , all0):

10 h = tmax/N
11 t, u, all = 0, u0 , all0
12 LT = LU = []
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13 for k in range(N):
14 LT.append(t)
15 LU.append(u)
16 t = t + h
17 u, all = Next(u, all , h)
18 pl.figure ()
19 pl.plot(LT , LU)
20 pl.show()

suivi de l’exécution des lignes :

1 import matplotlib.pyplot as pl
2 Etude(tmax , 500, 0, False)

o – 7. Le tracé sera-t-il satisfaisant ?

Si non, quelle(s) modification(s) proposez-vous ?

Après rectification si nécessaire, l’allure du tracé obtenu est représenté figure 2.

u(t)

t

•b

•a

�t0 �t1

• •

Figure 2 – Tracé de u(t) par la méthode numérique proposée

o – 8. Sur la figure 2, identifier les phases où la lampe est allumée et celles où elle est éteinte ;

quelle est la valeur de a ?

La valeur de b dépend en fait du paramètre N de la fonction Etude ; avec N = 500 on

trouve par exemple b ' 59V. Expliquer pourquoi cette valeur reste inférieure à 70 V ?

II Oscillateur à portes logiques
Dans la partie précédente, les oscillations étaient dues aux deux états du dipôle D. On peut

également utiliser un circuit comportant une rétroaction pour engendrer des oscillations : c’est

le cas dans cette partie.

II.A Identification d’un circuit intégré
On récupère au laboratoire un circuit intégré comportant un certain nombre de portes logiques

identiques, dont on est sûr :

— de leur tension d’alimentation Vcc = 15V associée à la technologie CMOS employée ;

— de la faible valeur (i < 0,1µA) des courants d’entrée, qu’on négligera donc dans tout ce

qui suit.
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Les références du circuit intégré n’étant plus lisibles, on n’est plus sûr de la nature des portes

en question ; on sait cependant qu’il s’agit nécessairement de portes figurant dans la liste AND,

OR, NAND, NOR (ou en français ET, OU, NON ET, NON OU). Pour déterminer la nature

de ces portes, on réalise deux séries de mesures de la caractéristique entrée–sortie selon les

schémas des figures 3 et 4

• •?

• •
ue us

us

ue

•Vcc

•
1
2Vcc

•
Vcc

Figure 3 – Montage d’une première série de mesures (à gauche) et ses résultats (à droite).

•
•?

• •
ue us

us

ue

•Vcc

•
Vcc

Figure 4 – Montage de la seconde série de mesures (à gauche) et ses résultats (à droite).

o – 9. Que peut-on déduire de la première expérience (figure 3) ? Et de la seconde expérience

(figure 4) ?

On poursuivra l’étude, indépendamment des conclusions ci-dessus, en n’utilisant que des portes

NAND (NON ET) que l’on symbolisera à l’aide du schéma suivant :

o – 10. Proposer des montages n’utilisant que des portes NAND réalisant les fonctions NOT,

AND et OR. On vérifiera le comportement de chaque montage en donnant sa table de

vérité.

o – 11. Le circuit intégré Texas Instruments CD-4011 (photographie de la figure 5) comporte qua-

torze broches (pins en anglais). Combien de portes NAND comporte-t-il au maximum ?

Justifier.

Figure 5 – Circuit intégré TI CD-4011
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II.B Emploi de portes logiques
De nombreux documents destinés à la réalisation de montages d’électronique musicale proposent

l’utilisation du circuit théorique présenté sur la figure 6 avec R = 1M⌦ et C = 100 nF. La

tension d’entrée marquée v (pour « valid ») peut être, selon le cas :

— maintenue égale à v = 0 V (le circuit est alors dit invalidé) ;

— portée à la valeur constante v = +Vcc (le circuit est alors dit validé). On considérera qu’à

l’instant de la validation le condensateur est déchargé.

Figure 6 – Un circuit classique de l’électronique musicale

On notera s(t) la tension en sortie de la porte 2 et e(t) la tension à l’autre entrée de la porte 1

(voir figure 6). Les tensions e, s et v sont toutes déterminées relativement à la masse électrique

du montage. Dans toute la suite de cette partie, on suppose que le seuil de basculement des

portes NAND utilisées est égal à Vcc/2. On notera respectivement bs et be les valeurs binaires

associées à s et e ; ainsi par exemple bs = 1 si s > Vcc/2 et bs = 0 sinon.

o – 12. Lorsqu’il est invalidé, montrer que le circuit atteint toujours un état stable pour lequel

on déterminera les valeurs de s et e, et de bs et be.

o – 13. À l’instant t = 0 le circuit est alors validé. Montrer qu’une seule des deux portes NAND

change d’état (on dit qu’elle bascule) ; laquelle ?

Que dire de la différence e(t)� s(t) en t = 0+ et en t = 0� ? Exprimer e(t) et en déduire

que cet état dure jusqu’à un instant t1, que l’on déterminera en fonction de R et C.

Un nouveau changement d’état a lieu à l’instant t = t1

o – 14. Exprimer s(t+1 ) et e(t+1 ) où la notation t+1 désigne la limite t ! t1 par valeur supérieure.

Déterminer alors e(t) pour t > t1 et en déduire que cet état dure jusqu’à un instant t2
que l’on exprimera en fonction de R et C.

o – 15. Avec la même convention, exprimer s(t+2 ) et e(t+2 ), puis e(t) pour t > t2. En déduire

l’existence d’un nouvel instant de basculement t3 > t2 que l’on exprimera en fonction de

R et C.

o – 16. Tracer l’allure de e(t) et s(t) sur une durée au moins égale à 2t3, en positionant clairement

les instants t1, t2 et t3 ainsi que les valeurs de e et s correspondantes.

o – 17. Commenter le comportement du circuit et calculer la valeur numérique de la durée carac-

téristique associée.

Proposer une application dans le domaine pour lequel ce circuit a été conçu.
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III Le crissement

III.A Les lois de Coulomb
Les crissements et grincements qui caractérisent certains frottements sont des oscillations de

relaxation. La fréquence des relaxations est aussi celle de l’onde sonore émise, qui est souvent

désagréable à entendre, notamment à cause de sa position dans la gamme des sons aigus. Nous

allons en donner une description très simplifiée, dans le cadre des lois, dites de Coulomb, qui

régissent le frottement de glissement d’un solide (⌃) en translation relativement à un support

fixe (F ).
Nous supposerons ici l’existence (figure 7) d’une surface de contact plane entre (⌃) et (F ).

Figure 7 – Lois de Coulomb du frottement de glissement

Ces lois décrivent la force de contact ~R = ~RN + ~RT exercée par le support (F ) sur le solide

(⌃). Il s’agit d’une force exercée en un point P de la surface de contact des deux solides ; elle

peut être décomposée en une partie ~RT colinéaire à la surface de contact des deux solides et

une autre ~RN perpendiculaire à celle-ci.

Les lois de Coulomb distinguent deux situations :

— Lorsque (⌃) est en mouvement à la vitesse ~vg (dite vitesse de glissement), ~RT est colinéaire

à ~vg, de sens inverse et de norme proportionnelle à celle de ~RN , k~RTk = fdk~RNk, où le

coefficient fd > 0 porte le nom de coefficient de frottement dynamique ; il reste constant

pendant tout le mouvement et ne dépend que de l’état de surface des deux solides en

contact.

— Lorsque le mouvement de (⌃) cesse, ~vg = ~0 et la composante tangentielle vérifie néces-

sairement la condition k~RTk 6 fsk~RNk où le coefficient fs porte le nom de coefficient de
frottement statique ; lui aussi ne dépend que de l’état de surface des solides.

III.B Le modèle de crissement
Lorsqu’on appuie une craie sur un tableau noir avant de la déplacer, on entend parfois distinc-

tement le bruit du crissement lors du déplacement de la craie. Pour étudier cette situation, on

modélise (figure 8) la craie et son appui par un solide rectangulaire (⌃) de masse M attaché à

un ressort ; le tableau noir par un support fixe (F ) confondu avec le plan horizontal (Oxy) ; le

déplacement, par le mouvement à vitesse constante v0 de l’extrémité A du ressort élastique de

raideur k et de longueur à vide `0.

Le ressort reste constamment parallèle à l’axe (Ox), à t = 0 il est à sa longueur naturelle `0.

L’autre extrémité du ressort, notée H, est liée au mobile (⌃) ; c’est sa vitesse que l’on souhaite

étudier. À l’instant t = 0, on a xH(0) = �`0.

On note enfin fs > fd les coefficients de frottement statique et dynamique de la craie sur le

tableau et g = k~gk l’accélération de la pesanteur.
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Figure 8 – Un modèle pour le crissement

o – 18. Exprimer la force de traction exercée par le ressort sur le mobile en fonction de k, v0, t
et de XH(t) = xH(t) + `0.

Exprimer aussi la composante normale ~RN de la force de contact exercée sur la craie.

o – 19. En déduire qu’à partir de t = 0 la craie reste immobile jusqu’à l’instant t = t0 que l’on

déterminera en fonction de fs, M , g, k et v0.

o – 20. On pose ⌧ = t�t0. Préciser les valeurs de xA, de XH et de sa dérivée VH = dXH

d⌧
à l’instant

⌧ = 0 avant d’expliciter l’équation différentielle vérifiée par XH(⌧) sous la forme :

d2XH

d⌧ 2
+ !2XH = !2v0⌧ + �

où l’on exprimera les constantes ! et � en fonction de k, M , g, fs et fd.

III.C Étude du mouvement de crissement
La suite du mouvement du mobile se poursuit en alternant les étapes d’immobilité et de glisse-

ment ; le mouvement ainsi observé est périodique de pulsation ⌦ et il est la cause du bruit de

crissement, par exemple, de la craie sur un tableau.

On pourra se reporter au formulaire donné à la fin de cette partie.

o – 21. Déterminer les expressions de XH(⌧) et VH(⌧) en fonction de ⌧ , v0, ! et ↵ =
�

!v0
.

On note ⌧max le premier instant où VH atteint sa valeur maximale Vmax et ✓max = !⌧max.

o – 22. Sans nécessairement exprimer ⌧max, déterminer les expressions de cos(✓max) et sin(✓max)

en fonction de ↵. En déduire que Vmax = v0
⇣
1 +

p
1 + ↵2

⌘
.

Tracer l’allure de la courbe donnant VH(⌧) puis montrer alors que cette vitesse s’annule

à nouveau à un instant ⌧1 > 0 correspondant à l’angle ✓1 = !⌧1 dont on exprimera le

cosinus et le sinus en fonction de ↵. On admettra dans la suite que 0 < ↵ < 1.

La première mise en mouvement du mobile (⌃) correspond à l’intervalle 0 6 ⌧ 6 ⌧1. À l’issue

de cette phase, il s’immobilise alors pendant un laps de temps avant de rédémarrer par la suite.

On rappelle que longueur du ressort est donnée à chaque instant par ` = xA � xH .

o – 23. Déterminer l’expression de `(⌧) et en déduire la longueur du ressort `(0) à l’instant ⌧ = 0.

Montrer qu’à l’instant ⌧1 elle est devenue `(⌧1) = `(0)� 2↵v0/!.

En déduire la durée ⌧2 qui devra alors s’écouler avant que le mobile se remette en mou-

vement. Compléter alors le tracé de la question précédente en faisant apparaître une

période T complète du mouvement du mobile ; préciser sur ce schéma dans quelle phase

du mouvement il y a augmentation continue d’une contrainte et dans quelle phase il y a

relâchement subit de celle-ci.
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Exprimer ⌦ en fonction de ⌧1 et ⌧2 puis en fonction de !, ↵ et ✓1.

o – 24. Pour estimer les ordres de grandeur du phénomène, on prend ✓max = 5⇡/6 avec un frotte-

ment caractérisé par fs ' 1 et fd ' 0,6 pour une vitesse de traction du ressort v0 = 1 cm/s.
On prendra g ' 10m/s2. En déduire les valeurs numériques de ↵, puis de ⌦.

Quel lien existe-t-il entre cette pulsation et celle du son émis ?

Préciser et justifier le domaine fréquentiel du crissement.

Formulaire et données numériques
On donne ln(2) = 0,7 et ln(3) = 1,1.

Si t = tan ✓ alors cos2 ✓ =
1

1 + t2
et sin2 ✓ =

t2

1 + t2
.

On rappelle par ailleurs que cos(2✓) = cos2 ✓ � sin2 ✓ et sin(2✓) = 2 cos ✓ sin ✓.

On pourra prendre
p
3 ' 1,73,

1p
3
' 0,58, ⇡ ' 3,14 et 2/⇡ ' 0,64 ;

FIN DE L’ÉPREUVE
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Physique et chimie automobiles
Ce sujet aborde les principes de base du fonctionnement de certains éléments liés à la circulation
d’une automobile, comme la batterie d’accumulateurs électriques (partie I), le moteur thermique
(cas d’un moteur à essence, partie II) ou enfin le principe de la mesure de vitesse par les autorités
de contrôle (partie III).
Ces trois parties sont totalement indépendantes entre elles. Les données numériques et valeurs
des constantes physiques nécessaires sont regroupées en fin d’énoncé.
Pour les applications numériques demandées on se contentera de 2 chiffres significatifs.
Dans la partie III, outre i

2
= �1 on repère les scalaires complexes par une barre : T̄ 2 C.

I Batterie d’accumulateurs au plomb
Une batterie au plomb est constituée d’un certain nombre d’éléments accumulateurs logés dans
un bac en plastique fermé par un couvercle scellé (figure 1). Chacun de ces accumulateurs est
composé d’une électrode positive et d’une électrode négative, baignant toutes deux dans la
même solution aqueuse d’acide sulfurique H2SO4 (à la concentration c) et de sulfate de plomb
II (Pb2+ , SO2�

4
) (à la concentration c

0). Les électrodes sont formées d’une grille (chimiquement
inerte mais conduisant l’électricité) dont les alvéoles sont remplies d’une pâte poreuse ; cette
pâte est formée de peroxyde de plomb PbO2 pour une des électrodes et de plomb métallique Pb
pour l’autre. Les espèces en solution dans l’eau sont donc seulement H+ (qu’on pourra choisir
de noter H3O

+), Pb2+ et les ions HSO�
4

issus de l’acide sulfurique et SO2�
4

; Pb et PbO2 sont des
solides.

Figure 1 – Une batterie 12V, 65A·h fabriquée au Royaume–Uni par Yuasa©

o – 1. Laquelle des deux électrodes est l’électrode positive ?
Justifier et préciser, pour chacune des deux électrodes, l’équation-bilan de la réaction à
l’électrode en fonctionnement spontané (c’est-à-dire en régime de décharge de la batterie).

o – 2. Établir l’expression de la force électro-motrice E d’un tel accumulateur (à 25
�
C) en fonc-

tion des données et des seules concentrations [H+] (ou bien [H3O
+
]) et [Pb2+].

Supposant pour une batterie la concentration de sulfate de plomb II c
0
= [Pb2+] =

1,0mol/L, calculer le pH de la solution nécessaire pour obtenir E = 1,9V ; commenter.
En toute rigueur l’étude de l’accumulateur devrait être complétée à cause de la formation
d’un précipité solide de sulfate de plomb PbSO4 selon le bilan Pb2+ + SO2�

4
= PbSO4. La prise

en compte de cette réaction se traduit par une modification de la force électromotrice E des
accumulateurs au plomb par rapport au calcul précédent, qui devient de l’ordre de 2,0V. À part
cette modification numérique nous ne tiendrons pas compte du précipité de sulfate de plomb
dans ce qui suit.
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Les batteries d’accumulateurs automobiles ont une force électromotrice Et de l’ordre de 12V ;
la batterie étudiée ici est caractérisée par sa capacité Qt = 65A·h (on rappelle que la capacité
électrique d’une pile est la valeur de la charge électrique qui la traverse avant que la réaction
électrochimique de décharge s’arrête).

o – 3. Combien d’accumulateurs faut-il associer pour réaliser une batterie automobile ?
Représenter cette association sur un schéma.
Quelle est la capacité Q de chacun des accumulateurs ?
En déduire les quantités de matière totales nPb et nPbO2

contenues dans les grilles de
l’ensemble des électrodes contenues dans la batterie au complet (on admettra que ces
espèces Pb et PbO2 sont les seuls réactifs limitants).

Obtenir une valeur imposée du pH impose de pouvoir contrôler la concentration molaire volu-
mique c (ou, ce qui revient au même, la concentration massique cm) de l’acide sulfurique dans
l’accumulateur. On mesure en pratique cette concentration au moyen d’un pèse–acide, dispositif
qui évalue la masse volumique ⇢sol de la solution ou bien sa densité relativement à l’eau pure
d = ⇢sol/⇢0. Celle-ci dépend en effet simplement de la concentration totale c en formes sulfatées,
d = a+ b · c avec c = [H2SO4] + [HSO�

4
] + [SO2�

4
], a et b étant des constantes.

o – 4. Déduire des données les valeurs numériques de a et b.
D’après un site technique automobile, la densité de l’électrolyte d’une batterie scellée en
bon état doit être de l’ordre de 1,3. En déduire c et commenter.

Dans une solution aqueuse contenant de l’acide sulfurique à la concentration molaire volumique
c, on note x1 = [H2SO4]/c, x2 = [HSO�

4
]/c et x3 = [SO2�

4
]/c et les tracés de x1(pH), x2(pH) et

x3(pH) porte le nom de courbes de prédominance. Ces courbes sont tracées sur la figure 2.

Figure 2 – Diagramme de prédominance pour l’acide sulfurique

o – 5. Donner les expressions des constantes d’acidité Ka1 et Ka2 .
Reproduire rapidement sur votre copie ce diagramme, complété par l’identification des
trois courbes et préciser en les justifiant les graduations des axes horizontal et vertical.

o – 6. Déterminer les valeurs de c et cm dans un accumulateur au plomb à usage automobile ;
proposer un commentaire des valeurs numériques obtenues.

Les courbes de la figure 2 ont été tracées au moyen d’un script Python utilisant une fonction
dont l’en–tête est def Pred(pH): qui, pour une valeur donnée du pH, donne pour résultat le
triplet (x1, x2, x3).

o – 7. Déduire des expressions de Ka1 et Ka2 celles des xi et proposer le code Python de la
fonction Pred.
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II Un moteur à essence turbocompressé
Le moteur qui équipe les automobiles thermiques peut être décrit comme une machine ditherme
à air (on néglige la quantité de carburant et les gaz brûlés devant l’air au niveau des pistons)
fonctionnant de manière pseudo–cyclique (l’air rejeté par la ligne d’échappement n’est évidem-
ment pas le même que celui qui est admis dans le filtre à air, mais il est en même quantité).
On caractérise un tel moteur par les températures de la « source froide » Tf (en pratique c’est
celle de l’air ambiant et on prendra Tf = 27

�
C) et de la « source chaude » Tc (au moins égale

à celle du point le plus chaud du cycle, après la combustion du carburant).

II.A Rendement du moteur
o – 8. Définir le rendement ⌘ d’un tel moteur thermique ditherme.

Énoncer et démontrer avec soin le théorème de Carnot.

Certains véhicules sont mus par un moteur à essence à quatre temps ; le carburant utilisé est
de l’Eurosuper 95 produisant, par combustion totale, une énergie Wv = 3,6·107 J · L�1 (joules
produits par litre de carburant consommé). En circulant à la vitesse stabilisée v = 100 km · h�1

sur route horizontale, le moteur du véhicule étudié ici développe la puissance P = 18 kW (pour
vaincre essentiellement les frottements aérodynamiques) et consomme une quantité q égale à
5,4 litres de carburant pour parcourir 100 km.

o – 9. Déduire des données ci-dessus le rendement réel ⌘r du moteur.
Quelle inégalité concernant Tc peut-on déduire du théorème de Carnot ?
Cette inégalité est-elle vérifiée en pratique, sachant que dans le moteur étudié la tempé-
rature est Tc ' 2 000K ?

II.B Thermodynamique des gaz
Une quantité donnée de gaz est caractérisé par ses fonctions d’état énergie interne U et enthalpie

H et par leurs dérivées CV =

✓
@U

@T

◆

V

et CP =

✓
@H

@T

◆

P

qui sont les capacités thermiques du

gaz. On définit le rapport adiabatique � = CP/CV ; dans ce qui suit ce rapport � est supposé
constant.

o – 10. De quel(s) paramètre(s) thermodynamique(s) dépendent les fonctions U et H dans le
cadre du modèle du gaz parfait ?
En déduire les expressions de CP et CV en fonction de la quantité de matière n, du rapport
adiabatique � et d’une constante fondamentale.

On admettra l’expression de l’entropie molaire sm(T,V ) d’un gaz parfait de température T et
de volume V :

sm(T,V ) = sm(T0,V0) +
R

� � 1
ln

T

T0
+R ln

V

V0
(1)

o – 11. En déduire la relation de Laplace qui relie les variations de pression P et de volume V

d’un gaz parfait évoluant de manière isentropique depuis un état initial (P0, V0).

II.C Le cycle moteur à quatre temps
Le moteur à quatre temps a été décrit pour la première fois en ���� par l’ingénieur Alphonse
Beau. Ce cycle est décrit par l’air (pris à l’extérieur à la pression atmosphérique p0), assimilé
à un gaz parfait diatomique, qui évolue entre un volume minimal V1 et un volume maximal
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ln(P )

ln(V )
ln(V )1 ln(V )2

E A

DB

C

Figure 3 – Cycle moteur de Beau à quatre temps en échelle logarithmique

V2 = ↵V1 avec le taux de compression ↵ > 1. Il est représenté sur la figure 3 en échelle
doublement logarithmique dans le diagramme de Clapeyron.
Ce cycle comporte :

— Une phase d’admission EA de l’air extérieur dans les cylindres du moteur ;
— Une phase de compression adiabatique AB de l’air enfermé dans le piston (mélangé avec

un peu d’essence) suivie de la combustion BC quasiment instantanée provoquée par une
étincelle produite par le système électrique d’allumage ;

— Une phase motrice de détente adiabatique CD de l’air (et du combustible brûlé) jusqu’à
l’ouverture en D des soupapes d’échappement avec chute brutale DA de la pression ;

— Une phase d’échappement AE évacuant les gaz brûlés avant la reprise du cycle.
Dans toute la suite de l’étude les phases d’échappement AE et d’admission EA ne jouent aucun
rôle et on pourra donc les ignorer.

o – 12. On considère d’abord que toutes les évolutions au sein du cycle ABCDAEA sont réver-
sibles. Montrer que les transformations AB et CD sont décrites par deux droites parallèles
et déterminer leur pente commune prv < 0.

o – 13. Reproduire sur votre copie le diagramme de la figure 3 en y ajoutant les isothermes de
températures Tf (température minimale du cycle) et Tc (température maximale du cycle).

o – 14. Exprimer les transferts thermiques sur les phases AB, BC, CD et DA en fonction des
températures TA, TB, TC et TD aux divers points du cycle.
En déduire l’expression ⌘rv du rendement du cycle moteur de la figure 3 en fonction des
températures puis en déduire que ⌘rv = 1� ↵

1��.
o – 15. Pour le moteur étudié ici ↵ = 9 et on prendra pour l’air � = 1,4. Calculer ⌘rv et commenter.

En réalité l’hypothèse de réversibilité des transformations adiabatiques AB et CD n’est pas
réaliste ; pour s’approcher du rendement réel on la remplace par un modèle amélioré, toujours
adiabatique mais non réversible, dans lequel le cycle devient AB

0
C

0
D

0
A, mais on suppose tou-

jours que AB
0 et C

0
D

0 sont des droites de pentes (négatives) respectives p
0
comp et p

0
det pour la

compression AB
0 et la détente D

0
A.

o – 16. En application du second principe montrer que p
0
comp < prv < p

0
det.
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III Principe d’un cinémomètre radar
La plupart des dispositifs de mesure des vitesses v des véhicules sont basés sur l’effet Doppler :
une onde électromagnétique est émise en direction du véhicule à contrôler. Le décalage de
fréquence entre l’onde incidente et l’onde réfléchie est proportionnel à v/c (où c est la célérité
de la lumière dans le vide) et, même si cet écart est faible, un dispositif électronique approprié
permet de le mesurer.

III.A Transmission et réflexion d’une onde
Dans l’air, qui sera assimilé au vide, un émetteur E fixe dans le référentiel lié au sol émet une
onde électromagnétique qui se propage en direction du véhicule dont on souhaite mesurer la
vitesse v (figure 4). À la surface S d’abscisse zS du véhicule (on supposera une surface plane et
un véhicule métallique) le phénomène de réflexion engendre une onde transmise dans le métal
et une onde réfléchie, qui sera ultérieurement mesurée par le récepteur R.

z

E
onde

incidente

R
onde

réfléchie

vé
hi

cu
le

m
ét

al
liq

ue

v

S

Figure 4 – Onde électromagnétique dirigée vers un véhicule en mouvement

Les représentations complexes de l’onde incidente (dans le vide z < zS) et l’onde transmise
(dans le métal z > zS) seront respectivement cherchées sous les formes :

~Einc = E0 exp [i (!t� kz)]~ex
~Etr = T̄ E0 exp

⇥
i
�
!t� k̄z

�⇤
~ex (2)

où l’émetteur fixe les valeurs (supposées réelles positives) de E0 et !.

o – 17. Dans le vide, établir l’équation de propagation puis la relation de dispersion pour le champ
~Einc.
En déduire la relation liant la longueur d’onde dans le vide �0 et la fréquence f de l’onde.

Le métal étudié est de l’acier caractérisé par une densité volumique de charge nulle ⇢ = 0,
le lien entre le champ électrique et la densité volumique de courant est donné par la relation

�0
~E = ~j + ⌧

@~j

@t
où �0 ' 1,4·107 si et ⌧ = 1,0·10�14

s.

o – 18. Préciser la dimension de la grandeur �0 (on utilisera les notations l, m, t et i pour les
dimensions des longueur, masse, durée et intensité de courant) et la signification physique
de ⌧ .
Établir la relation de dispersion donnant k̄

2 en fonction de !, c, µ0, �0, ⌧ et !.

o – 19. On s’intéresse à la seule solution k̄ de partie réelle positive ; elle s’écrit k̄ =
2⇡

�
� i

�
où

� > 0 et � > 0. Quelles sont les interprétations de ces deux grandeurs ?
o – 20. A quelles conditions (que l’on traduira par des inégalités faisant intervenir !, c, µ0, �0, ⌧

et !) correspondent les 3 régimes de fréquences que l’on peut lire sur la figure 5 ?
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Figure 5 – Longueurs caractéristiques pour une onde dans un métal en échelle log-log

o – 21. Ici et dans toute la suite on se limitera au domaine radar (f ⇠ 25GHz). Justifier par le

calcul la forme limite des deux courbes ; préciser leur décalage. On notera ici d =

r
2

µ0�0!
.

Peut-on dire que le matériau étudié est un métal parfait ? Est-il opaque ou transparent
aux ondes radar ? Justifier, quantitativement, la réponse à ces deux questions.

III.B Réflexion métallique
On adopte maintenant une description simplifiée de la réflexion des ondes électromagnétiques
sur la surface du véhicule : on admet l’absence totale d’onde transmise (ce qui, dans l’équation
(2), correspond à ⌧̄ = 0). On rappelle que dans cette situation la surface z = zS du métal porte
éventuellement des charges �(t) et des courants ~is(t) surfaciques, donnés par les relations de
passage entre des milieux I et II :

~EII � ~EI =
�

"0
~nI!II

~BII � ~BI = µ0
~is ^ ~nI!II (3)

On se place d’abord dans le cas où le véhicule est immobile en zS = 0 m. En plus de l’onde inci-
dente décrite par l’équation (2), une onde réfléchie de même polarisation et de même fréquence
se propage dans le vide en sens inverse.

o – 22. Montrer l’absence de charge surfacique sur le métal et expliciter complètement le champ
électrique de l’onde réfléchie.

On considère maintenant que le véhicule est en zS = 0 m à t = 0 s et se dirige à vitesse v vers
l’émetteur de l’onde étudiée. Le plan de réflexion est donc zS = �vt et on cherche une onde
réfléchie de la forme ~Eref = E

0
0 exp [i (!

0
t+ k

0
z)]~ex.

o – 23. Quelles relations lient ! et k d’une part, !0 et k
0 d’autre part ?

Exprimer E
0
0 en fonction de E0 puis !

0 en fonction de !, v et c.
o – 24. Montrer l’existence de courants surfaciques sur la face zS = �vt du véhicule et préciser à

quelle pulsation !i ils oscillent.

Page 6/8



Physique II, année 2025 — filière MPI

III.C Effet Doppler et mesure de vitesse
Compte tenu de la condition évidente |v| ⌧ c les pulsations ! de l’onde incidente et !0 de l’onde

réfléchie sont assez proches ; toutefois leur écart relatif � =
|!0 � !|

!
peut être mesuré par un

dispositif électronique adapté, disposé au niveau de l’émetteur fixe en z = �`, qui permet
finalement de mesurer la vitesse du véhicule.

Un dispositif possible de mesure de � est ainsi constitué : un circuit multiplieur réalise en
temps réel le produit d’un signal s proportionnel au champ électrique émis au point z = �`

et d’un signal s0 proportionnel au champ électrique réfléchi reçu au même point. La sortie du
multiplieur est reliée à un filtre de fréquence de coupure fc ; enfin, un analyseur de spectre
mesure la fréquence fondamentale f1 du signal ainsi filtré (figure 6).

multiplieur filtre analyseur
•s(t)

•s
0
(t)

•f1

Figure 6 – Circuit de mesure de vitesse

o – 25. Exprimer � au premier ordre en v/c et proposer une application numérique raisonnable ;
commenter.
Montrer que la fréquence f1 est pratiquement proportionnelle à la vitesse v à mesurer,
sous réserve d’un choix pertinent de la nature du filtre et de fc, que l’on proposera.

Données numériques

Formule d’analyse vectorielle �!
rot

�!
rot ~V =

��!
grad div ~V ��~V .

Relation trigonométrique cos ✓ cos ✓
0
=

1
2 [cos(✓ + ✓

0
) + cos(✓ � ✓

0
)].

10
1/3

= 2,2 ; 102/3 = 4,6 ; 91/5 = 1,6 ; 92/5 = 2,4 ; log10(2⇡) = 0,80.

Facteurs de conversion, P �
= 1bar = 10

5
Pa ; 0�C = 273K ; 1m3

= 10
3
L. Concentration de

référence C
�
= 1mol/L. Masse volumique de l’eau liquide pure ⇢0 = 1,0 kg/L.

Constantes physiques :

Charge élémentaire e = 1,6·10�19
C

Célérité de la lumière dans le vide c = 3,0·108 m·s�1

Constante d’Avogadro NA = 6,0·1023 mol
�1

Constante de Faraday F = eNA = 9,6·104 C·mol
�1

Constante molaire des gaz parfaits R = 8,3 J·K�1·mol
�1

Constante de Nernst à 25
�
C

RT
F ln 10 = 0,059 ' 0,06V

Permittivité électrique du vide "0 = 8,9·10�12
F·m�1

Perméabilité magnétique du vide µ0 = 1,3·10�6
H·m�1

Quelques potentiels rédox standard à 25
�
C :

Couple oxydant/réducteur Pb2+ / Pb H2O / H2 O2 / H2O PbO2 / Pb2+

Potentiel standard E
� (V) �0,13 0 1,23 1,69
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L’acide sulfurique H2SO4 (masse molaire M = 98 g/mol ; masse volumique de l’acide sulfurique
liquide pur ⇢ = 1,8 kg/L) est un diacide :

Couple acide/base H2SO4 / HSO�
4

HSO�
4

/ SO2�
4

Constante d’acidité K
�
A pKa1 = �3,0 pKa2 = 1,9
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Fonctions spéciales
Ce sujet comporte trois parties indépendantes.
Bon nombre de problèmes rencontrés en physique peuvent être résolus à l’aide de « fonctions
spéciales » . Ces fonctions définies mathématiquement sont implémentées dans de nombreuses
bibliothèques informatiques (comme scipy) et peuvent être utilisées aussi simplement qu’une
fonction sinus ou racine carrée qui sont elles aussi d’une certaine manière des fonctions spéciales
et tout aussi analytiques . . .
On rencontre bien souvent des résolutions numériques de problèmes physiques alors que l’utili-
sation de ces fonctions spéciales permet une résolution complète et analytique. Ce problème se
propose d’illustrer l’intérêt de ces « fonctions spéciales » .

I La fonction de W de Lambert

I.A Tir d’un projectile sans frottements
Un projectile assimilé à un point matériel de masse m est lancé à partir
du sol en O avec une vitesse initiale ~v0 2 (O,~uy,~uz) et faisant un angle
✓0 avec l’horizontale dans le référentiel terrestre supposé galiléen.

o – 1. Rappeler la définition d’un référentiel galiléen. Dans quelle me-
sure le référentiel terrestre peut-il être supposé galiléen ?

o – 2. Établir les équations horaires du mouvement.
Montrer que le mouvement est plan.

o – 3. Établir l’équation de la trajectoire. Quelle est la forme de la
trajectoire ? Est-elle symétrique ?

Figure 1 – Tir d’un
projectile

o – 4. Déterminer les coordonnées du sommet S de la trajectoire. Définir la portée ` du tir et
établir son expression. Quel est l’angle ✓0 assurant un tir de portée maximale ?

I.B Tir d’un projectile avec frottements
On considère maintenant que le projectile est soumis à une force de frottements proportionnelle
à la vitesse : ~f = �↵~v avec ↵ > 0.

o – 5. Quelle est la dimension du coefficient ↵ ? Définir à partir de ↵ un temps caractéristique
⌧ . Le mouvement reste-t-il plan ?

o – 6. Établir, en fonction g, ⌧ , v0 = k~v0k, ✓0 et t, les nouvelles équations horaires du mouvement.

o – 7. Dans la situation où t ⌧ ⌧ , simplifier les équations horaires de la trajectoire et donner
l’allure du mouvement.

o – 8. Dans la situation où t � ⌧ , simplifier les équations horaires du mouvement en faisant
apparaitre une vitesse limite v1.
Où retombe le projectile ?

o – 9. Déduire des résultats précédents, l’allure globale de la trajectoire dans une situation où
le temps de vol est grand devant ⌧ , en séparant la trajectoire en trois phases.

o – 10. Tracer l’allure de la trajectoire pour un temps de vol de l’ordre de ⌧ .

Page 1/7



Physique I, année 2023 — filière MPI

I.C La portée maximale d’un tir avec frottement
o – 11. Dresser le tableau de variation de la fonction T : � 7! T (�) = �e

� et déterminer la valeur
� de son minimum global.
La fonction W de Lambert est définie comme étant la fonction réciproque de T sur
[�,+1[. Reproduire le graphe de T représenté sur la partie gauche de la figure 2 et
expliquer comment en déduire l’allure de W représenté sur la partie droite.

Figure 2 – Représentations graphiques de T (�) (à gauche) et W(�) (à droite)

o – 12. On peut montrer que : (�+ exp [W(�)])W0(�) = 1. Quelle est la valeur de W(0) ?
On souhaite appliquer le schéma d’Euler explicite avec un pas h = 0.0001 pour résoudre
cette équation différentielle. Donner le code python permettant d’obtenir une représenta-
tion graphique de W(�) sur l’intervalle [0 ; 2,5[.

La fonction W(�) est implémentée dans scipy. On peut l’appeler avec : from scipy.special
import lambertw.
On montre que si ad 6= 0, la solution de l’équation at+b+ce

dt = 0 pour l’inconnue t est donnée
par l’expression

t = � b

a
� 1

d
W

✓
cd

a
exp

✓
�bd

a

◆◆
.

o – 13. En déduire à quel instant t⇤ > 0 le projectile touche le sol. On posera u = �
⇣
1 + v0 sin ✓0

g⌧

⌘
.

o – 14. On rappelle que par définition W exp(W) = Id où Id est la fonction identité : � 7! �.
En déduire que la portée est donnée par ` = ⌧v0 cos ✓0 (1�W(ueu)/u).

En posant � = v0/v1, on montre que l’angle initial donnant la portée maximale est :

✓max =

8
>>>>>>>><

>>>>>>>>:

arcsin

0

BB@

�W

✓
�
2 � 1

e

◆

�2 � 1�W

✓
�
2 � 1

e

◆

1

CCA si � 6= 1

arcsin

✓
1

e� 1

◆
' 35,6� si � = 1

o – 15. À l’aide de la figure 2, déterminer la valeur numérique de l’angle assurant la portée
maximale pour v0 = 10m · s�1

, g = 9,8m · s�2 et ⌧ = 0,4 s.

Page 2/7



Physique I, année 2023 — filière MPI

II L’intégrale elliptique de première espèce

Dans toute cette partie on néglige les frottements de l’air.
On étudie un pendule simple constitué d’une masse ponctuelle m

et d’une tige rigide de longueur ` et de masse négligeable, astreint
à évoluer dans un plan vertical (O,~ux,~uy).
On repère sa position par l’angle ✓(t). À t = 0 on lâche le pendule
sans vitesse initiale avec ✓(t = 0) = ✓0 2]0,⇡/2[.

o – 16. Établir l’équation différentielle du mouvement vérifiée par la
fonction ✓(t). Figure 3 – Pendule

simple
o – 17. On fait l’approximation des petits angles tels que sin ✓ ⇠ ✓.

Établir dans ces conditions la période T0 des oscillations.

o – 18. Déterminer l’expression générale de
d✓

dt
sans faire l’approximation des petits angles.

En déduire que la période T des oscillations du pendule est donnée par :

T =
2T0

⇡

Z ✓0

0

d✓p
2 (cos ✓ � cos ✓0)

.

En effectuant le changement de variable sin ✓
2 = sin� sin ✓0

2 , on montre que :

T =
2T0

⇡
K
✓
sin2 ✓0

2

◆
avec K(�) =

Z ⇡
2

0

d�p
1� � sin2

�

.

On souhaite calculer l’intégrale K(�) par la méthode des rectangles médians pour un angle
✓0 = ⇡/3.

o – 19. Après avoir tracé le graphe de la fonction � 7! 1+
p
� pour � 2 [0; 9], illustrer le principe

de la méthode des rectangles médians pour calculer le réel I =
R 9

0 (
p
�+1)d� en utilisant

9 rectangles.
Si on double le nombre de rectangles utilisés qu’en est-il de la différence entre la valeur
exacte de I et la valeur approchée numériquement par la méthode des rectangles médians ?

o – 20. Recopier et compléter le code suivant permettant de calculer K(�) par la méthode des
rectangles médians.

Page 3/7



Physique I, année 2023 — filière MPI

La fonction � 7! K(�) est nommée intégrale elliptique complète de première espèce. La com-
mande from scipy.special import ellipk permet de l’appeler directement dans scipy.

o – 21. En utilisant la figure 4, pour un pendule tel que T0 = 1 s,
évaluer T lorsque ✓0 = 50�. Quel est le décalage temporel
induit par la prise en compte de l’approximation des
petits angles si l’on envisage de mesurer une heure ?

Au xvii
e siècle les puissances maritimes désiraient posséder

des instruments précis pour la mesure du temps afin de facili-
ter la navigation (notamment pour déterminer la longitude).
Les rois de France et d’Angleterre avaient offert des prix
importants à qui serait capable de réaliser un chronomètre
précis, fiable et utilisable en mer. Figure 4 – ✓0 7! T (✓0)/T0

Christiaan Huygens (1629-1695) motivé par ce problème étudia le pendule conique et le pen-
dule oscillant entre deux lames courbes. Il parvint à démontrer que des lames en forme de
cycloïde assurent l’isochronisme rigoureux des oscillations.

o – 22. Dans quelle situation courante rencontre-t-on la cycloïde ?

III La fonction d’erreur de Gauss : erf(�)

III.A Introduction au problème de Stefan
Un certain nombre de problèmes géologiques importants peuvent être modélisés par le chauffage
ou le refroidissement instantané d’un demi-espace semi-infini. Au milieu du xix

e siècle Lord
Kelvin a ainsi utilisé cette idée pour estimer l’âge de la Terre. Il supposa qu’à la surface le flux
d’énergie thermique résultait du refroidissement d’un flux initialement chaud de la Terre et a
conclu que l’âge de la Terre était environ 65 millions d’années. On retrouve ces phénomènes en
étudiant le refroidissement de la lithosphère océanique ou l’évolution d’une coulée de magma.

o – 23. Comment explique-t-on de nos jours le résultat erroné obtenu par Lord Kelvin ?
On étudie un milieu matériel semi-infini défini par y > 0 dont la surface subit un changement
instantané de température. Initialement à t = 0�, le demi-espace est à la température uniforme
T1 ; pour t > 0 , la surface y = 0 est maintenue à une température constante T0. Si T1 > T0, le
milieu matériel se refroidit et sa température diminue. La situation est représentée à la figure
5 pour le cas T1 > T0.

Figure 5 – Évolution de la température
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Le flux thermique élémentaire, défini comme la quantité d’énergie traversant une surface élé-
mentaire dS pendant dt, est noté ��Q.

o – 24. Rappeler la définition du vecteur ~jQ, densité de flux thermique. Quelle est sa dimension ?
Rappeler la loi de Fourier, ainsi que ses conditions d’application.
En déduire la dimension de la conductivité thermique .

On étudie une tranche mésoscopique de sol de masse m de masse volumique ⇢ et de capacité
thermique massique c comprise entre y et y + dy de surface S.

o – 25. Quelle est l’énergie thermique �Q reçue par cette tranche entre t et t+ dt ?
Pourquoi étudie-t-on une tranche « mésoscopique » ?

Établir l’expression de sa variation d’énergie interne dU en fonction de
@jQ

@y
, S, dy et dt

puis en fonction de ⇢, c, S,
@T

@t
, dy et dt.

En déduire l’équation de la chaleur à une dimension
@T

@t
= D

@
2
T

@y2
dans laquelle on

précisera l’expression et la dimension du coefficient D de diffusion thermique.
En déduire l’expression d’une longueur caractéristique L en fonction de D et du temps t.

On introduit la température adimensionnée

✓(y,t) =
T (y,t)� T1

T0 � T1
.

o – 26. Quelle est l’équation vérifiée par ✓(y,t) ?
Déterminer les valeurs de ✓(y > 0,t = 0), ✓(y = 0,t > 0) et ✓(y ! +1,t > 0).

On introduit une variable de similarité sans dimension ⌘ =
y

2
p
Dt

et on suppose que ✓ n’est

une fonction que de cette seule variable ⌘.
o – 27. Montrer que

d
2
✓(⌘)

d⌘2
+ 2⌘

d✓(⌘)

d⌘
= 0 .

o – 28. En utilisant la fonction '(⌘) =
d✓(⌘)

d⌘
, montrer que ✓(⌘) = 1� 2p

⇡

Z ⌘

0

e
�z2dz.

On donne
Z +1

0

e
�z2dz =

p
⇡

2
. En déduire une expression de T (y,t) faisant apparaître

une intégrale.

La fonction � 7! 2p
⇡

Z �

0

e
�z2dz est appelée fonction d’erreur de Gauss, elle est implémentée

dans scipy.
Elle est souvent notée erf(�). On peut l’appeler directement en utilisant la commande : from
scipy.special import erf.

III.B Formation d’une croûte de lave solide.
Dans cette dernière partie on s’intéresse à une coulée de lave en fusion et à la formation d’une
croûte solide à sa surface. On étudie alors l’augmentation de l’épaisseur de cette croûte en
fonction du temps.
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À la surface extérieure, en y = 0, la lave est en contact avec l’air à la température constante T0.
La lave en fusion à la température Tf est donc soudainement portée à la température T0 à t = 0.
Dans ces conditions, la couche superficielle de la lave se solidifie, et on note ys(t) l’épaisseur de
la couche de lave solide.

Nous devons donc résoudre l’équation de la chaleur dans l’espace 0 6 y 6 ys(t) avec comme
conditions aux limites T = T0 en y = 0, et T = Tf en y = ys(t), et comme condition initiale
ys = 0 à t = 0.

Figure 6 – Formation d’une croûte de lave solide

La position ys(t) de l’interface de transition de phase est une fonction a priori inconnue du
temps. Comme dans la situation précédente il n’y a pas d’échelle de longueur définie dans
ce problème. Pour cette raison, on travaillera également avec la variable de similarité sans
dimension ⌘ =

y

2
p
Dt

.

On utilisera également la température adimensionnée

✓(y,t) =
T (y,t)� T0

Tf � T0

.
La profondeur de l’interface de solidification ys(t) doit enfin s’adapter à la longueur caractéris-
tique de la diffusion thermique. Nous supposerons que celle-ci varie proportionnellement à la

racine carrée du temps, de telle sorte que : ⌘s =
ys(t)

2
p
Dt

= cte = �. Cette constante est inconnue

et reste à déterminer.

o – 29. En reprenant l’équation de la question 27, montrer que

✓(⌘) =
erf(⌘)

erf(�)
.

Afin d’obtenir l’expression puis la valeur de la constante �, nous allons étudier la solidification
d’une tranche de lave d’épaisseur dys entre les instants t et t+ dt

o – 30. Quelle est l’énergie �Q libérée par la solidification à la température Tf d’une tranche dys
de lave de surface S en fonction de la masse volumique ⇢ de la lave en fusion et l’enthalpie
de fusion massique : �hsol!liq.

o – 31. Toute l’énergie libérée par la solidification doit être évacuée par diffusion dans la lave
solide car la lave en fusion reste à la température Tf . Montrer que :

⇢�hsol!liq(Tf )
dys(t)

dt
= 

✓
@T

@y

◆

y=ys
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Figure 7 – Graphe de � 7! exp(��
2)

� erf(�)

o – 32. En déduire que

exp (��
2)

�erf(�)
=

p
⇡

c(Tf � T0)
�hsol!liq(Tf ) .

o – 33. Quel algorithme peut on utiliser pour
obtenir la constante � numérique-
ment ?
Expliquer en quelques mots son fonc-
tionnement.

On donne les valeurs numériques suivantes :

• �hsol!liq(Tf ) = 400 kJ · kg�1 • ⇢ = 2600 kg ·m�3

• c = 1kJ · kg�1 ·K�1 • D = 7⇥ 10�7 SI
• Tf � T0 = 1000K •

p
⇡ ⇠ 1,77

o – 34. À l’aide de la figure 7, estimer la valeur numérique de �.
En déduire l’épaisseur de la croûte de lave six mois après l’éruption.
Comparer votre résultat à ceux de la figure 8 tirés d’une expérience 1.

Figure 8 – Épaisseurs des croûtes de lave solides à la surface des lacs de lave dans les trois
cratères à fosse Kilauea lki (1959), Alae (1963) et Makaopuhi (1965) sur le volcan Kilauea,
Hawaii (Wright et al., 1976), et résultat théorique.

FIN DE L’ÉPREUVE

1. Wright, T. L., Peck, D. L., and Shaw, H. R. (1976). Kilauea lava lakes : Natural laboratories for study
of cooling, crystallization, and differentiation of basaltic magma. In The Geophysics of the Pacific Ocean Basin
and its Margin, eds. G. H. Sutton, M. H. Manghnani, R. Moberly, and E. U. McAfee, vol. 19 of Geophysical
Monograph Series, Washington, D.C. : American Geophysical Union, pp. 375–90

Page 7/7


