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Représentation matricielle Ae A

Soit n un entier naturel non nul et M n(C) l’espace vectoriel des matrices
carrées d’ordre n à coefficients complexes. On note In la matrice identité de
Mn(C). Une matrice N de Mn(C) est dite nilpotente d’indice p si p est le plus
petit entier strictement positif pour lequel N p = 0.

Pour A ∈ Mn(C), on appelle exponentielle de A, et on note exp(A) ou e A,

la matrice e A =
+∞∑
n=0

An

n!
· On admet que si deux matrices A et B de Mn(C) sont

telles que AB = B A, on a e A+B = e AeB . Enfin, on appelle bloc de Jordan d’ordre n
associé au nombre complexe λ, la matrice

Jn(λ) =



λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . . . . . . . . 0......

. . .. . .
. . .. . . 1

0 · · ·· · ·· · · 0 λ

 .

Si n et p sont deux entiers naturels non nuls on note Mn,p (C) l’espace vectoriel
des matrices à coefficients complexes comportant n lignes et p colonnes. On
notera indifféremment Mn,n(C) ou Mn(C).

A. Préliminaire sur la représentation zez dans C

1) Soit r et R des nombres réels strictement positifs, α et θ des nombres réels.
On note w = r e iα et z = Re iθ. Montrer que l’équation zez = w équivaut au
système : {

ReR cos(θ) = r

R sin(θ) =α−θ (modulo 2π).

On choisit dorénavant le réelα dans l’intervalle [2π,4π[. Soit alorsϕ l’application
de ]0,π[ dans R définie par la formule :

ϕ(θ) = α−θ
sin(θ)

exp
(
(α−θ)

cosθ

sinθ

)
.

2) Déterminer les limites de ϕ(θ) lorsque θ → 0+ et lorsque θ → π−. Que
peut-on en déduire sur les solutions de l’équationϕ(θ) = r pour r > 0 fixé ?

Soit D = {
Re iθ ; R > 0 et 0 < θ < π}∪ {0} et g l’application de D dans C définie

par g (z) = zez .

3) Déduire de ce qui précéde que g est surjective.
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B. Représentation Ae A d’un bloc de Jordan

Soit N ∈Mn(C) une matrice nilpotente d’indice n.

4) Montrer qu’il existe X ∈ Mn,1(C) telle que N n−1X 6= 0 et que la famille
{X , N X , . . . , N n−1X } est libre.

5) En déduire que N est semblable à Jn(0).

6) Montrer que e Jn (0) est inversible et que Jn(0)e Jn (0) est nilpotente d’indice n.

7) Montrer que si P ∈ Mn(C) est inversible, on a Pe Jn (0)P−1 = eP Jn (0)P−1
. En

déduire qu’il existe Ñ ∈Mn(C) telle que Jn(0) = Ñ e Ñ .

Soit λ un nombre complexe non nul.

8) Justifier l’existence d’un nombre complexe µ 6= −1 tel que λ = µeµ et
montrer que l’on peut écrire :

Jn(µ)e Jn (µ) =λIn + (µ+1)eµ Jn(0)+ (Jn(0))2p(Jn(0))

où p est un polynôme à coefficients complexes qui dépend de µ.

9) Montrer que (µ+1)eµ Jn(0)+ (Jn(0))2p(Jn(0)) est nilpotente d’indice n. En
déduire qu’il existe M ∈Mn(C) telle que Jn(λ) = MeM .

C. Forme de Jordan d’une matrice nilpotente

Soit N ∈ Mn(C) une matrice nilpotente d’indice p. On suppose dans un
premier temps que 1 < p < n.

10) Montrer qu’il existe B ∈ Mp,n−p (C) et C ∈ Mn−p,n−p (C) telles que N est
semblable à la matrice par blocs suivante :

A =
(

Jp (0) B
O C

)
où O est la matrice nulle de Mn−p,p (C).

Pour tout X ∈Mp,n−p (C), on définit la matrice par blocs TX suivante :

TX =
(

Ip X
O In−p

)
∈Mn(C).

11) Montrer que TX est inversible et calculer son inverse. Vérifier que A′ =
TX A T −1

X est de la forme

A′ =
(

Jp (0) Y
O Z

)
où l’on explicitera les matrices Y ∈Mp,n−p (C) et Z ∈Mn−p,n−p (C).
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12) Montrer que dans l’écriture de A′ de la question précédente, on peut choi-
sir X ∈ Mp,n−p (C) de telle sorte que toutes les lignes de Y , à l’exception
éventuelle de la dernière, soient nulles. (On pourra noter X(i ) la i ème
ligne de X pour i ∈ {1, . . . , p} et étudier l’effet sur les lignes de X de la
multiplication par Jp (0) dans le produit Jp (0)X .)

13) Justifier que A′ est nilpotente d’indice p. En déduire que si la matrice X est
choisie comme dans la question précédente, la matrice Y est nulle. (On
pourra raisonner par l’absurde en étudiant l’effet des endomorphismes
associés aux puissances de A′ sur les vecteurs de la base canonique de Cn .)

14) En déduire que lorsque 1 É p É n, la matrice nilpotente N est semblable à
une matrice diagonale par blocs de la forme :

Jp1 (0) (0)
Jp2 (0)

. . .
(0) Jpr (0)


où r et p1, p2, . . . , pr désignent des entiers naturels non nuls.

D. Représentation Ae A dans Mn(C)

Soit A ∈ Mn(C). On note λ1,λ2, . . . ,λs ses valeurs propres complexes dis-
tinctes, d’ordres de multiplicité respectifs α1,α2, . . . ,αs dans le polynôme ca-
ractéristique de A. Soit f l’endomorphisme de Cn dont la matrice dans la
base canonique de Cn est A et Fi le sous-espace vectoriel de Cn défini par
Fi = Ker

((
f −λi IdCn

)αi
)

pour tout i ∈ {1, . . . , s}.

15) Montrer que l’espace vectoriel Cn est la somme directe des espaces Fi . En
considérant une base de Cn adaptée à cette somme directe, montrer que
A est semblable à une matrice diagonale par blocs de la forme :

λ1Iα1 +N1 (0)
λ2Iα2 +N2

. . .
(0) λs Iαs +Ns


où N1, N2, . . . , Ns sont des matrices nilpotentes.

16) Montrer que l’application A 7→ Ae A de Mn(C) dans lui-même est surjec-
tive.

FIN DU PROBLÈME
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Opérateur de Volterra et équations différentielles

L’objectif de ce problème est l’étude d’un opérateur de Volterra appliqué
notamment à la résolution de certaines équations différentielles.

On considère l’espace vectoriel E des fonctions réelles définies et continues
sur l’intervalle [0, π2 ], muni du produit scalaire défini pour tous f , g dans E par :

〈 f , g 〉 =
∫ π

2

0
f (t )g (t ) dt .

On note ‖ f ‖ = √〈 f , f 〉 la norme associée à ce produit scalaire. Un endomor-
phisme V de l’espace E est dit symétrique défini positif si pour tous f , g dans E ,
on a 〈V ( f ), g 〉 = 〈 f ,V (g )〉 et si de plus, 〈V ( f ), f 〉 > 0 pour tout f ∈ E non nul.

Les parties A et B sont mutuellement indépendantes.

A. Opérateur de Volterra

On note V et V ∗ les endomorphismes de E défini par les formules :

V ( f )(x) =
∫ x

0
f (t )dt

V ∗( f )(x) =
∫ π

2

x
f (t )dt

pour tous f ∈ E et x ∈ [0, π2 ].

1) En observant que V ( f ) et −V ∗( f ) sont des primitives de f , montrer que
pour tous f , g dans E , on a 〈V ( f ), g 〉 = 〈 f ,V ∗(g )〉.

2) Montrer que l’endomorphisme V ∗ ◦V est symétrique défini positif. En
déduire que ses valeurs propres sont strictement positives.

Soit λ une valeur propre de V ∗ ◦V et fλ un vecteur propre associé à λ.

3) Montrer que fλ est de classe C 2 et est solution de l’équation différentielle :
y ′′+ 1

λ y = 0 avec les conditions y(π2 ) = 0 et y ′(0) = 0.

4) En déduire queλ est une valeur propre de V ∗◦V si et seulement s’il existe
n ∈N tel que λ= 1

(2n+1)2 . Préciser alors les vecteurs propres associés.
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B. Théorème d’approximation de Weierstrass

Soit n un entier strictement positif, x ∈ [0,1] et f : [0,1] → R une fonction
continue. On note X1, X2, ..., Xn des variables aléatoires mutuellement indépen-
dantes et distribuées selon la loi de Bernoulli de paramètre x. On note également
Sn = X1 +X2 + ...+Xn , Zn = Sn

n et Bn( f )(x) = E
(

f (Zn)
)
.

5) Rappeler, sans démonstration, la loi de Sn . En déduire, avec démonstra-
tion, les valeurs de l’espérance et de la variance de Sn en fonction de n et
de x.

6) En utilisant l’inégalité de Bienaymé-Tchebychev, montrer que pour tout
α> 0 : ∑

0ÉkÉn
| k

n −x|Êα

(
n

k

)
xk (1−x)n−k É 1

4nα2

7) Montrer que :

Bn( f )(x)− f (x) =
n∑

k=0

(
n

k

)
xk (1−x)n−k

(
f
(k

n

)− f (x)
)

et en déduire que la suite (Bn( f ))n∈N converge uniformément vers f
sur [0,1]. On pourra utiliser le résultat de la question précédente ainsi
que le théorème de Heine.

On a donc établi le théorème d’approximation de Weierstrass sur le segment [0,1] :
toute fonction continue sur [0,1] y est limite uniforme d’une suite de polynômes.
On en déduit aisément, et on l’admet, le théorème d’approximation de Weiers-
trass sur un segment quelconque [a,b].

C. Développement de V ∗ ◦V ( f ) en série trigonométrique

On considère maintenant l’espace vectoriel G des fonctions réelles définies
et continues sur l’intervalle [0,π], muni du produit scalaire défini pour tous f , g
dans G par :

〈 f , g 〉G =
∫ π

0
f (t )g (t ) dt .

On note ‖ f ‖G =√〈 f , f 〉G la norme associée à ce produit scalaire.
Pour n ∈ N, on définit la fonction cn ∈ G par la formule cn(t) = cos(nt)

et on note Fn = Vect(c0,c1, ...,cn) le sous-espace vectoriel de G engendré par
{c0,c1, ...,cn}. On note également PFn la projection orthogonale de G sur Fn .

8) Montrer que si p est un polynôme de degré n ∈N, la fonction t 7→ p(cos(t ))
définie sur [0,π] appartient à Fn .

3



9) Trouver une suite (αn)n∈N de nombres réels strictement positifs telle que
la suite (αncn)n∈N soit orthonormée. Déduire du théorème d’approxima-
tion de Weierstrass que la suite orthonormée (αncn)n∈N est totale.

10) Soit f ∈G . Démontrer que ‖ f −PFn ( f )‖G tend vers 0 lorsque n tend vers
l’infini. Si, de plus, la suite (PFn ( f ))n∈N converge uniformément sur [0,π]
vers une fonction g , montrer que g = f .

Pour tout x ∈ [0, π2 ], on définit la fonction gx sur [0,π] par la formule :

gx(t ) =
{
π
2 −max(x, t ) si 0 É t É π

2

−gx(π− t ) si π2 É t Éπ.

11) Soit n ∈N. Déterminer les coordonnées de PFn (gx ) sur la base (c0,c1, ...,cn)
de Fn . En déduire que pour tout t ∈ [0,π/2] :

π

2
−max(x, t ) = 4

π

+∞∑
n=0

cos
(
(2n +1)x

)
(2n +1)2

cos
(
(2n +1)t

)
.

12) Montrer que pour tous f ∈ E et x ∈ [0, π2 ] :

V ∗ ◦V ( f )(x) =
∫ π

2

0

(π
2
−max(x, t )

)
f (t )dt

et en déduire la suite des coefficients (an( f ))n∈N pour laquelle on a :

V ∗ ◦V ( f )(x) =
+∞∑
n=0

an( f ) cos
(
(2n +1)x

)
.

D. Équations différentielles du type Sturm-Liouville

Soit h ∈ E , λ ∈R et l’équation différentielle :

S

{
y ′′+λy +h = 0

y(π/2) = 0 et y ′(0) = 0

On définit ϕn ∈ E pour tout n ∈N par la formule ϕn(t ) = 2p
π

cos
(
(2n +1)t

)
.

13) Montrer que pour tous f ∈ E et n ∈N, 〈V ∗ ◦V ( f ),ϕn〉 = 1

(2n +1)2
〈 f ,ϕn〉.

14) Montrer que g est solution de l’équation différentielle S si et seulement si
g =λ ·V ∗◦V (g )+V ∗◦V (h) et que dans ce cas, on a les formules suivantes
pour tout n ∈N :(

1− λ

(2n +1)2

)
〈g ,ϕn〉 = 1

(2n +1)2
〈h,ϕn〉
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et

g =
+∞∑
n=0

〈g ,ϕn〉ϕn .

15) On suppose dans cette question que λ n’est pas égal au carré d’un entier
impair. Montrer que la série :

∑ 1

(2n +1)2 −λ〈h,ϕn〉ϕn

est normalement convergente. Exhiber alors une solution de S.

On suppose maintenant qu’il existe p ∈N tel que λ= (2p +1)2.

16) Montrer que si 〈h,ϕp〉 = 0 alors S a une infinité de solutions, puis exhiber
l’une d’entre elles. Que peut-on dire si 〈h,ϕp〉 6= 0 ?

FIN DU PROBLÈME
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Autour de l’inégalité de Hoffman-Wielandt

Dans tout le problème n désigne un entier supérieur ou égal à 2. SoitMn(R)
l’ensemble des matrices carrées d’ordre n à coefficients réels et A un sous ensemble
deMn(R). On dit qu’une matrice A ∈ Mn(R) est extrémale dans A si pour tous
M,N dans A et tout λ ∈]0, 1[, on a l’implication :

A = λM + (1− λ)N =⇒ A = M = N.

On note Bn l’ensemble des matrices bistochastiques de Mn(R), c’est-à-dire
l’ensemble des matrices A = (Ai,j)16i,j6n dont tous les coefficients sont positifs ou

nuls et tels que
n∑
j=1

Ai,j =
n∑
j=1

Aj,i = 1 pour tout i ∈ {1, 2, . . . , n}.

On note enfin Pn l’ensemble des matrices de permutation Mσ ∈ Mn(R) dont
les coefficients sont de la forme :

(Mσ)i,j =

1 si i = σ(j)
0 sinon,

pour tous i, j dans {1, 2, . . . , n}, où σ est une permutation de {1, 2, . . . , n}.

La partie A n’est pas indispensable à la résolution des parties suivantes.

A Un exemple
Soit J la matrice deMn(C) définie par

J =


0 1 0 . . . 0
0 0 1 . . . ...... . . . . . . . . . 0
0 . . . . . . 1
1 0 . . . 0 0


c’est-à-dire par Ji,j = 1 si j − i = 1 ou i− j = n− 1, et Ji,j = 0 sinon.

1. Montrer que J est une matrice de permutation. Calculer les valeurs propres
réelles et complexes de J , et en déduire que J est diagonalisable sur C.

2. Déterminer une base de Cn de vecteurs propres de J .
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Dans les trois questions suivantes n désigne un entier naturel impair > 3. Pour
tout m ∈ N, on note Xm une variable aléatoire à valeurs dans {0, 1, . . . , n − 1}
telle que

• X0 = 0 avec probabilité 1 ;

• si Xm = k, alors ou bien Xm+1 = k − 1 modulo n, ou bien Xm+1 = k + 1
modulo n, ceci avec équiprobabilité.

On note

Um =


P (Xm = 0)
P (Xm = 1)

...
P (Xm = n− 1)

 .

3. Déterminer U0 et une matrice A de Mn(R) telle que pour tout m ∈ N,
Um+1 = AUm. On exprimera A à l’aide de la matrice J .

4. Déterminer les valeurs propres de la matrice A et un vecteur propre de Rn

unitaire associé à la valeur propre de module maximal.

5. En déduire la limite de Um lorsque m→ +∞.

B Théorème de Birkhoff-Von Neumann
6. Montrer que l’ensemble Bn est convexe et compact. Est-il un sous espace

vectoriel deMn(R) ?

7. Montrer que Pn ⊂ Bn et que Pn est un sous-groupe multiplicatif de GLn(R).
Tout élément de Pn est-il diagonalisable sur C ? L’ensemble Pn est-il convexe ?

8. Montrer que toute matrice de Pn est extrémale dans Bn.

Dans toute la suite de cette partie, on considère une matrice bistochastique A =
(Ai,j)16i,j6n qui n’est pas une matrice de permutation.

9. Montrer qu’il existe un entier r > 0 et deux familles i1, i2, . . . , ir et j1, j2, . . . , jr
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d’indices distincts dans {1, 2, . . . , n} tels que pour tous k ∈ {1, 2, . . . , r},
Aik,jk ∈]0, 1[ et Aik,jk+1 ∈]0, 1[ avec jr+1 = j1.

10. En considérant la matrice B = (Bi,j)16i,j6n deMn(R) définie par :


Bik,jk = 1 k ∈ {1, 2, . . . , r}
Bik,jk+1 = −1 k ∈ {1, 2, . . . , r}
Bi,j = 0 dans les autres cas,

montrer que A n’est pas un élément extrémal de Bn. En déduire l’ensemble
des éléments extrémaux de Bn.

On dit qu’une matrice M = (Mi,j)16i,j6n de Mn(R+), à coefficients positifs
ou nuls, admet un chemin strictement positif s’il existe une permutation σ de
{1, 2, . . . , n} telle que Mσ(1),1Mσ(2),2 · · ·Mσ(n),n > 0.

On démontre par récurrence sur n, et on admet le résultat suivant : si M est
à coefficients positifs ou nuls et si toute matrice extraite de M ayant p lignes et q
colonnes avec p + q = n + 1 n’est pas la matrice nulle, alors M admet un chemin
strictement positif.

11. Montrer que A admet un chemin strictement positif.

On note σ une permutation de {1, 2, . . . , n} telle que Aσ(1),1Aσ(2),2 · · ·Aσ(n),n > 0
et on pose λ0 = min

j
(Aσ(j),j) et A0 = 1

1− λ0
(A − λ0Mσ) où Mσ est la matrice de

permutation associée à σ.

12. Montrer que A0 est bien définie, et que c’est une matrice bistochastique
contenant au moins un élément nul de plus que A.

13. En raisonnant par récurrence, démontrer que A s’écrit comme une combinai-
son linéaire d’un nombre fini de matrices de permutation M0,M1, . . . ,Ms :

A = λ0M0 + λ1M1 + · · ·+ λsMs

où les coefficients λi sont tous strictement positifs et de somme ∑s
i=0 λi = 1.
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14. Soit ϕ une forme linéaire de Mn(R). Montrer que inf
M∈Pn

ϕ(M) existe. En
déduire que inf

M∈Bn

ϕ(M) existe et est atteint en une matrice de permutation.

C Inégalité de Hoffman-Wielandt
Dans cette partie, on munit Mn(R) de la norme euclidienne ‖ · ‖ associée au

produit scalaire défini par 〈A,B〉 = tr(tA ·B). On note Sn(R) le sous-ensemble de
Mn(R) des matrices symétriques et On(R) celui des matrices orthogonales.

15. Montrer que pour tous A ∈Mn(R) et P,Q dans On(R), on a ‖PAQ‖ = ‖A‖.

Dans la suite de cette partie, A et B désignent deux matrices symétriques réelles.

16. Montrer qu’il existe deux matrices diagonales réelles DA,DB, et une matrice
orthogonale P = (Pi,j)16i,j6n telles que ‖A−B‖2 = ‖DAP − PDB‖2.

17. Montrer que la matrice R définie par Ri,j = (Pi,j)2 pour tous i, j dans
{1, 2, . . . , n} est bistochastique et que

‖A−B‖2 =
∑

16i,j6n
Ri,j|λi(A)− λj(B)|2

où λ1(A), . . . , λn(A) désignent les valeurs propres de A et λ1(B), . . . , λn(B)
celles de B.

18. En déduire que

min
σ

n∑
j=1
|λσ(j)(A)− λj(B)|2 6 ‖A−B‖2

où le minimum porte sur l’ensemble de toutes les permutations de {1, 2, . . . , n}.

Soit (Ω,A, P ) un espace probabilisé et V l’ensemble des variables aléatoires
définies sur cet espace admettant un moment d’ordre 2. Pour tout X de V , on
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note X ∼ PX si X suit la loi PX . Pour tout couple (P1, P2) de lois, on pose

d2(P1, P2) = inf
X,Y ∈V

X∼P1,Y∼P2

E(|X − Y |2).

Soit (a1, . . . , an) et (b1, . . . , bn) deux familles de réels. On note P1 la loi uniforme
sur {a1, . . . , an} et P2 la loi uniforme sur {b1, . . . , bn}.

19. Montrer que
d2(P1, P2) = 1

n

n∑
i=1
|a(i) − b(i)|2

où l’on a noté a(1) 6 · · · 6 a(n) et b(1) 6 · · · 6 b(n) les suites (a1, . . . , an)
et (b1, . . . , bn) ré-ordonnées par ordre croissant. En déduire que pour toutes
matrices symétriques réelles A,B de valeurs propres respectives (a1, . . . , an)
et (b1, . . . , bn), on a l’inégalité :

n d2(P1, P2) 6 ‖A−B‖2.

Fin du problème
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Étude d’un endormorphisme d’un espace de fonctions numériques

Soit I un intervalle de la forme [≠a, a] où a est un réel strictement positif. Dans
tout le problème, on considère les ensembles suivants :

• E le C-espace vectoriel constitué des applications de I dans C de classe C

Œ ;

• D la partie de E constituée de ses éléments développables en série entière sur
un voisinage de 0 ;

• P la partie de E constituée de ses éléments polynomiaux.

Pour tout n œ N, on note

W

n

=
⁄

fi/2

0
(sin t)n dt

et si f œ E , on note u(f) et v(f) les applications de I dans C définies par les
formules :

(’x œ I)

Y
_____]

_____[

u(f)(x) = 2
fi

⁄
fi/2

0
f(x sin t) dt

v(f)(x) = f(0) + x

⁄
fi/2

0
f

Õ(x sin t) dt.

Les candidats devront justifier leurs a�rmations.

A Préliminaires

1. Justifier que P et D sont des sous-espaces vectoriels de E .

2. Montrer que si f œ E , u(f) et v(f) sont bien définies et appartiennent à E ,
et que l’on définit ainsi des endomorphismes u et v de E .

3. Montrer que P est stable par u et par v.

4. Établir pour n œ N une relation simple entre W

n+2 et W

n

. En déduire que
pour tout n œ N,

W

n

W

n+1 = fi

2(n + 1) .

5. Montrer que la suite (W
n

)
nœN est strictement décroissante. Déterminer sa

limite et donner un équivalent de cette suite.
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B Étude de la continuité de u et v

On considère la norme M de E définie pour tout f œ E par la formule

M(f) = max
xœI

|f(x)|.

6. Vérifier que M est bien définie et montrer que u est une application continue
de l’espace vectoriel normé (E , M) dans lui-même.

7. L’application v est-elle continue de (E , M) dans lui-même ?

8. Vérifier que l’application N : E æ R définie par N(f) = M(f) + M(f Õ) est
une norme sur E , et montrer que v est continue de (E , N) dans (E , M). Les
normes M et N sont-elles équivalentes ?

9. Si f œ E et Á > 0, montrer qu’il existe p œ P tel que f(0) = p(0) et
|f Õ(x)≠p

Õ(x)| 6 Á pour tout x œ I. En déduire que P est dense dans l’espace
vectoriel normé (E , N).

C Étude de l’inversibilité de u et v

10. Déterminer les restrictions de u ¶ v et v ¶ u à P .

11. Déterminer (u ¶ v)(f) pour tout f œ E . Le réel 0 est-il valeur propre de
l’endomorphisme v ?

12. Déterminer également (v ¶ u)(f) pour tout f œ E . Conclure.

Applications.

13. Pour tout f œ E , donner une relation liant v(f) et u(f Õ). Calculer u(arctanÕ)
à l’aide du changement de variable z = tan t et en déduire u(argshÕÕ).

14. Montrer que f œ E est paire (respectivement impaire) si et seulement si u(f)
l’est. Qu’en est-il pour v ?

D Étude des valeurs et vecteurs propres de u et v

15. Montrer que ⁄ est une valeur propre de v si et seulement si 1
⁄

est une valeur
propre de u. Qu’en est-il des vecteurs propres correspondants ?

2



16. Montrer que D est stable par u. L’est-il par v ?

On considère une valeur propre ⁄ de u, de vecteur propre associé f œ E .

17. Vérifier que si n œ N, le nombre m

n

= max
tœI

|f (n)(t)| est bien défini, et
établir que pour tout x œ I,

|⁄| · |f (n)(x)| 6 2m

n

W

n

fi

En déduire que f œ P.

18. Déterminer les valeurs propres et les vecteurs propres de u et v.

19. L’espace vectoriel E admet-il une base de vecteurs propres de u ? de v ?
L’ensemble des valeurs propres de u (respectivement de v) est-il une partie
fermée de C ?

Fin du problème
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Espaces vectoriels d’endomorphismes nilpotents

Dans tout le sujet, on considère des R-espaces vectoriels de dimension finie. Soit

E un tel espace vectoriel et u un endomorphisme de E. On dit que u est nilpotent
lorsqu’il existe un entier p Ø 0 tel que u

p
= 0 ; le plus petit de ces entiers est

alors noté ‹(u) et appelé nilindice de u, et l’on remarquera qu’alors u
k

= 0 pour

tout entier k Ø ‹(u). On rappelle que u
0

= idE . L’ensemble des endomorphismes

nilpotents de E est noté N (E).

Un sous-espace vectoriel V de L(E) est dit nilpotent lorsque tous ses éléments

sont nilpotents, autrement dit lorsque V µ N (E).

Une matrice triangulaire supérieure est dite stricte lorsque tous ses coe�cients

diagonaux sont nuls. On note T
++
n (R) l’ensemble des matrices triangulaires supé-

rieures strictes de Mn(R).

L’objectif du problème est d’établir le théorème suivant, démontré par Murray

Gerstenhaber en 1958 :

Théorème de Gerstenhaber
Soit E un R-espace vectoriel de dimension n > 0, et V un sous-espace vectoriel

nilpotent de L(E). Alors, dim V Æ n(n≠1)
2 · Si en outre dim V =

n(n≠1)
2 alors il

existe une base de E dans laquelle tout élément de V est représenté par une matrice

triangulaire supérieure stricte.

Les trois premières parties du sujet sont largement indépendantes les unes des

autres. La partie I est constituée de généralités sur les endomorphismes nilpotents.

Dans la partie II, on met en évidence un mode de représentation des endomorphismes

de rang 1 d’un espace euclidien. Dans la partie III, on établit deux résultats généraux

sur les sous-espaces vectoriels nilpotents : une identité sur les traces (lemme A), et

une condition su�sante pour que les éléments d’un sous-espace nilpotent non nul

possèdent un vecteur propre commun (lemme B). Dans l’ultime partie IV, les résul-

tats des parties précédentes sont combinés pour établir le théorème de Gerstenhaber

par récurrence sur la dimension de l’espace E.
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I Généralités sur les endomorphismes nilpotents
Dans toute cette partie, on fixe un espace vectoriel réel E de dimension n > 0.

1. Soit u œ N (E). Montrer que tr u
k

= 0 pour tout k œ Nú
.

2. On fixe une base B de E. On note NB l’ensemble des endomorphismes de E

dont la matrice dans B est triangulaire supérieure stricte. Justifier que NB est

un sous-espace vectoriel nilpotent de L(E) et que sa dimension vaut
n(n≠1)

2 ·

3. Soit B une base de E. Montrer que

{‹(u) | u œ NB} = {‹(u) | u œ N (E)} = [[1, n]].

4. Soit u œ L(E). On se donne deux vecteurs x et y de E, ainsi que deux entiers

p Ø q Ø 1 tels que u
p
(x) = u

q
(y) = 0 et u

p≠1
(x) ”= 0. Montrer que la

famille (x, u(x), . . . , u
p≠1

(x)) est libre, et que si (u
p≠1

(x), u
q≠1

(y)) est libre

alors (x, u(x), . . . , u
p≠1

(x), y, u(y), . . . , u
q≠1

(y)) est libre.

5. Soit u œ N (E), de nilindice p. Déduire de la question précédente que si p Ø n≠1

et p Ø 2 alors Im u
p≠1

= Im u fl Ker u et Im u
p≠1

est de dimension 1.

II Endomorphismes de rang 1 d’un espace euclidien
On considère ici un espace vectoriel euclidien

!
E, (≠ | ≠)

"
. Étant donné a œ E

et x œ E, on notera a ¢ x l’application de E dans lui-même définie par :

’z œ E, (a ¢ x)(z) = (a | z).x

6. On fixe x œ E \ {0}. Montrer que l’application a œ E ‘æ a ¢ x est linéaire et

constitue une bijection de E sur {u œ L(E) : Im u µ Vect(x)}.

7. Soit a œ E et x œ E \ {0}. Montrer que tr(a ¢ x) = (a | x).

III Deux lemmes
On considère ici un R-espace vectoriel E de dimension n > 0. Soit V un sous-

espace vectoriel nilpotent de L(E) contenant un élément non nul. On note

p := max
uœV

‹(u),

appelé nilindice générique de V (cet entier est bien défini grâce à la question 3).

On notera que p Ø 2.

2



On introduit le sous-ensemble V•
de E formé des vecteurs appartenant à au

moins un des ensembles Im u
p≠1

pour u dans V ; on introduit de plus le sous-espace

vectoriel engendré

K(V) := Vect(V•
).

Enfin, étant donné x œ E, on pose

Vx := {v(x) | v œ V}.

L’objectif de cette partie est d’établir les deux résultats suivants :

Lemme A. Soit u et v dans V. Alors tr(u
k
v) = 0 pour tout entier naturel k.

Lemme B. Soit x dans V• \ {0}. Si K(V) µ Vect(x) + Vx, alors v(x) = 0 pour tout

v dans V.

Dans les questions 8 à 11, on se donne deux éléments arbitraires u et v de V.

8. Soit k œ Nú
. Montrer qu’il existe une unique famille (f

(k)
0 , . . . , f

(k)
k ) d’endo-

morphismes de E telle que

’t œ R, (u + tv)
k

=

kÿ

i=0
t
i
f

(k)
i .

Montrer en particulier que f
(k)
0 = u

k
et f

(k)
1 =

k≠1q
i=0

u
i
vu

k≠1≠i
.

9. Montrer que

p≠1q
i=0

u
i
vu

p≠1≠i
= 0.

10. Étant donné k œ N, donner une expression simplifiée de tr(f
(k+1)
1 ), et en

déduire la validité du lemme A.

11. Soit y œ E. Démontrer que f
(p≠1)
1 (y) œ K(V). À l’aide d’une relation entre

u(f
(p≠1)
1 (y)) et v(u

p≠1
(y)), en déduire que v(x) œ u(K(V)) pour tout x œ Im u

p≠1
.

12. Soit x œ V• \ {0} tel que K(V) µ Vect(x) + Vx. On choisit u œ V tel que

x œ Im u
p≠1

.

Étant donné y œ K(V), montrer que pour tout k œ N il existe yk œ K(V) et

⁄k œ R tels que y = ⁄k x + u
k
(yk). En déduire que K(V) µ Vect(x) puis que

v(x) = 0 pour tout v œ V.

IV Démonstration du théorème de Gerstenhaber
Dans cette ultime partie, nous démontrons le théorème de Gerstenhaber par

récurrence sur l’entier n. Le cas n = 1 est immédiat et nous le considérerons comme

acquis. On se donne donc un entier naturel n Ø 2 et on suppose que pour tout

espace vectoriel réel E
Õ

de dimension n ≠ 1 et tout sous-espace vectoriel nilpotent
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V Õ
de L(E

Õ
), on a dim V Õ Æ (n≠1)(n≠2)

2 , et si en outre dim V Õ
=

(n≠1)(n≠2)
2 alors il

existe une base de E
Õ
dans laquelle tout élément de V Õ

est représenté par une matrice

triangulaire supérieure stricte.

On fixe un espace vectoriel réel E de dimension n, ainsi qu’un sous-espace vec-

toriel nilpotent V de L(E). On munit E d’un produit scalaire (≠ | ≠), ce qui en fait

un espace euclidien.

On considère, dans un premier temps, un vecteur arbitraire x de E \ {0}. On

pose,

H := Vect(x)
‹

, Vx := {v(x) | v œ V} et W := {v œ V : v(x) = 0}.

On note fi la projection orthogonale de E sur H. Pour u œ W, on note u l’endomor-

phisme de H défini par

’z œ H, u(z) = fi(u(z)).

On considère enfin les ensembles

V := {u | u œ W} et Z := {u œ W : u = 0}.

13. Montrer que Vx, W, V et Z sont des sous-espaces vectoriels respectifs de E,

V, L(H) et V.

14. Montrer que

dim V = dim(Vx) + dim Z + dim V.

15. Montrer qu’il existe un sous-espace vectoriel L de E tel que

Z =
)
a ¢ x | a œ L

*
et dim L = dim Z,

et montrer qu’alors x œ L
‹

.

16. En considérant u et a ¢ x pour u œ V et a œ L, déduire du lemme A que

Vx µ L
‹

, et que plus généralement u
k
(x) œ L

‹
pour tout k œ N et tout

u œ V.

17. Justifier que ⁄x ”œ Vx pour tout ⁄ œ Rú
, et déduire alors des deux questions

précédentes que

dim Vx + dim L Æ n ≠ 1.

18. Soit u œ W. Montrer que (u)
k
(z) = fi(u

k
(z)) pour tout k œ N et tout z œ H.

En déduire que V est un sous-espace vectoriel nilpotent de L(H).

19. Démontrer que

dim V Æ n(n ≠ 1)

2
·

Dans toute la suite du problème, on suppose que dim V =
n(n≠1)

2 ·

4



20. Démontrer que

dim V =
(n ≠ 1)(n ≠ 2)

2
, dim(Vect(x) ü Vx) + dim L = n

et

L
‹

= Vect(x) ü Vx.

En déduire que Vect(x) ü Vx contient v
k
(x) pour tout v œ V et tout k œ N.

21. En appliquant l’hypothèse de récurrence, montrer que le nilindice générique

de V est supérieur ou égal à n ≠ 1, et que si en outre Vx = {0} alors il existe

une base de E dans laquelle tout élément de V est représenté par une matrice

triangulaire supérieure stricte.

Compte tenu du résultat de la question 21, il ne nous reste plus qu’à établir que

l’on peut choisir le vecteur x de telle sorte que Vx = {0}.

On choisit x dans V• \{0} (l’ensemble V•
a été défini dans la partie III). On note

p le nilindice générique de V, et l’on fixe u œ V tel que x œ Im u
p≠1

. On rappelle que

p Ø n ≠ 1 d’après la question 21.

22. Soit v œ V tel que v(x) ”= 0. Montrer que Im v
p≠1 µ Vect(x) ü Vx. On pourra

utiliser les résultats des questions 5 et 20.

23. On suppose qu’il existe v0 dans V tel que v0(x) ”= 0. Soit v œ V. En considérant

v + tv0 pour t réel, montrer que Im v
p≠1 µ Vect(x) ü Vx.

24. Conclure.

Fin du problème
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Points fixes et opérateurs à noyau

On considère un espace réel E de Banach, c’est-à-dire un espace vectoriel
sur R muni d’une norme notée ‖ ‖ et complet pour cette norme. Si A est une
partie de E , on note A son adhérence,

◦
A son intérieur, ∂A = A \

◦
A sa frontière,

et d(x, A) = infy∈A ‖x − y‖ sa distance à un point x ∈ E . On note respectivement

B(x,r ) = { y ∈ E ; ‖y −x‖ < r } et B(x,r ) = { y ∈ E ; ‖y −x‖ É r } les boules ouverte
et fermée de centre x et de rayon r .

Étant données deux parties A et B de E , et une application f : A → B , on
rappelle que x ∈ E est un point fixe de f si c’est une solution de l’équation
x = f (x). L’application f est dite contractante si elle est k-lipschitzienne de
rapport k ∈ [0,1[, c’est-à-dire si pour tous x, y ∈ A, il existe un réel k < 1 tel que

‖ f (x)− f (y)‖ É k‖x − y‖.

On rappelle qu’une application lipschitzienne est continue.
Dorénavant et dans tout le problème, A désigne une partie fermée non vide

de E .

A. Théorème du point fixe

Dans cette partie préliminaire, on établit le

Théorème (Picard). Toute application contractante f : A → A admet un unique
point fixe x ∈ A.

Soit donc f : A → A une application contractante.

1) Montrer que si f admet un point fixe x, celui-ci est unique.

Soit x0 ∈ A et (xn)n∈N la suite d’éléments de A définie par la relation de récur-
rence xn+1 = f (xn) pour tout entier naturel n.

2) Montrer que la suite (xn)n∈N est de Cauchy.

3) Conclure.

B. Invariance par homotopie

Soit f : A → E et g : A → E deux applications contractantes. On suppose que
f et g sont homotopes, c’est-à-dire qu’il existe une application h : A× [0,1] → E
telle que pour tout x ∈ A, on a h(x,0) = f (x) et h(x,1) = g (x), et qui vérifie en
outre les trois propriétés suivantes :
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a il existe k ∈ [0,1[ tel que pour tous x, y ∈ A et tout t ∈ [0,1], on a

‖h(x, t )−h(y, t )‖ É k‖x − y‖ ;

b il existe un réel k ′ > 0 tel que pour tout x ∈ A et tous t ,u ∈ [0,1],

‖h(x, t )−h(x,u)‖ É k ′|t −u| ;

c pour tous t ∈ [0,1] et x ∈ ∂A, on a x 6= h(x, t ).

On suppose en outre que f admet un point fixe dans A et on pose

T = {
t ∈ [0,1] ; ∃x ∈ A, x = h(x, t )

}
.

4) Vérifier que T n’est pas vide.

Soit (tn)n∈N une suite d’éléments de T qui converge vers un réel t ∈ [0,1]. On
choisit une suite (xn)n∈N d’éléments de A tels que pour tout entier naturel n, on
a la relation xn = h(xn , tn).

5) Vérifier qu’une telle suite (xn)n∈N existe et que pour tous entiers naturels n
et m, on a

‖xn −xm‖ É k ′

1−k
|tn − tm |.

6) Montrer alors que la suite (xn)n∈N est de Cauchy et en déduire que T est
fermée.

Soit encore t ∈ T et x ∈ A tels que x = h(x, t ).

7) Vérifier que d(x,∂A) > 0.

Soit r et ε deux nombres réels strictement positifs tels que ε É (1−k)r

k ′ et r <
d(x,∂A), et soit u ∈ [0,1] tel que |t −u| < ε.

8) Montrer que pour tout y ∈B(x,r )∩ A, on a ‖x −h(y,u))‖ É r .

9) En déduire, en utilisant le théorème de Picard ci-dessus, que l’application
y 7→ h(y,u) possède un point fixe intérieur à A.

10) En déduire que T est un ouvert relatif à [0,1]. Conclure alors que g pos-
sède un unique point fixe intérieur à A (on pourra considérer une borne
supérieure de T ).

Une application. On ne suppose plus que l’application contractante f : A → E
admet un point fixe, mais on fait les trois hypothèses suivantes :

d le vecteur nul 0 est intérieur à A ;

e l’image f (A) de A par f est bornée ;

f pour tout x ∈ ∂A et tout t ∈ [0,1], on a x 6= t f (x).

11) Montrer que f possède un unique point fixe intérieur à A.
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C. Étude de certains opérateurs à noyau

Soit a < b deux réels et f : [a,b]×R→R une application continue. On sup-
pose qu’il existe un sous-ensemble D ⊂R contenant 0 et un réel K0 > 0 vérifiant
pour tous (t ,u) et (t , v) dans [a,b]×D ,

| f (t ,u)− f (t , v)| É K0|u − v |.

L’espace de Banach C ([a,b]) des fonctions continues ϕ : [a,b] →R est muni de
la norme ‖ϕ‖ = supt∈[a,b] |ϕ(t )|.

Soit K : [a,b]× [a,b] →R une fonction continue. On définit l’application F
de C ([a,b]) dans lui-même par la formule :

F (ϕ)(t ) =
∫ b

a
K (t , x) f (x,ϕ(x))dx

et on pose α= sup
t∈[a,b]

∫ b

a
|K (t , x)|dx.

12) Pour toutes fonctions y, z ∈ C ([a,b]) telles que pour tout t ∈ [a,b], on a
y(t ) ∈ D et z(t ) ∈ D , démontrer l’inégalité

‖F (y)−F (z)‖ ÉαK0‖y − z‖.

Soit A une partie fermée et bornée de C ([a,b]) contenant la fonction nulle dans
son intérieur et telle que pour tous ϕ ∈ A et t ∈ [a,b], on a ϕ(t ) ∈ D . On suppose
en outre que αK0 < 1 et que pour tous ϕ ∈ ∂A et λ ∈ [0,1], on a ϕ 6=λF (ϕ).

13) Montrer que F admet un unique point fixe intérieur à A.

D. Une généralisation

Soit C une partie convexe fermée de E contenant A. On considère une appli-
cation continue f : A →C , pas nécessairement contractante, telle que

g le vecteur nul 0 est intérieur à A ;

h l’ensemble f (A) est compact ;

i pour tout x ∈ ∂A et tout t ∈ [0,1], on a x 6= t f (x).

On pose
X = {

x ∈ A ; ∃t ∈ [0,1] ; x = t f (x)
}
.
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14) Montrer que X est non vide et fermé. En déduire que la fonction µ : A →
[0,1] définie par la formule

µ(x) = d(x,∂A)

d(x,∂A)+d(x, X )

est bien définie et continue. Déterminer µ(x) lorsque x ∈ X et lorsque
x ∈ ∂A.

On définit une fonction g : C →C par :

g (x) =
{
µ(x) f (x) si x ∈ A

0 si x ∈C \ A.

15) Montrer que g est continue sur C et que g (C ) est compact.

On admet le

Théorème (Schauder). Si C est une partie convexe fermée de E, toute application
f : C →C continue telle que f (C ) est compact possède au moins un point fixe.

16) Conclure, à l’aide du théorème de Schauder, que f admet un point fixe
intérieur à A.

E. Application aux intégrales de Fredholm

On considère dans cette partie l’espace de Banach E = C ([0,1]) des fonc-
tions ϕ : [0,1] →R continues muni de la norme ‖ϕ‖0 = supt∈[0,1] |ϕ(t )|. On note
également L2 l’espace des fonctions ϕ : [0,1] →R continues muni de la norme

‖ϕ‖2 =
(∫ 1

0 |ϕ(t )|2 dt
)1/2.

Soit g : [0,1]×R→ R, h : [0,1] → R et K : [0,1]× [0,1] → R des fonctions
continues. On pose, pour tout ϕ ∈ E et t ∈ [0,1] :

F (ϕ)(t ) = h(t )+
∫ 1

0
K (t , x)g (x,ϕ(x))dx.

On fait les hypothèses suivantes :

j pour tout réel r Ê 0, il existeµr ∈ L2 tel que |y | É r implique |g (x, y)| Éµr (x)
pour tout x ∈ [0,1].

k la fonction Kt définie pour tout t ∈ [0,1] par la formule Kt (x) = K (t , x) est
dans L2, et l’application t 7→ Kt est continue de [0,1] dans L2.

On suppose en outre qu’il existe un réel M > 0 tel que pour tout λ ∈ [0,1] et toute
solution ϕ de l’équation ϕ(t ) =λF (ϕ)(t ), on a ‖ϕ‖0 6= M .
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17) Déterminer pour chaque ϕ ∈ E , une constante cϕ telle que pour tous
t ,u ∈ [0,1],{

|F (ϕ)(t )| É ‖h‖0 + cϕ · sups∈[0,1] ‖Ks‖2

|F (ϕ)(t )−F (ϕ)(u)| É |h(t )−h(u)|+ cϕ · ‖Kt −Ku‖2.

18) En déduire que F est une application de E dans E .

On note A =B(0, M) et on considère une suite (ϕn)n∈N d’éléments de A.

19) Montrer que siϕn →ϕ dans E quand n →+∞, on a la convergence simple
F (ϕn) → F (ϕ) sur [0,1].

20) Montrer que pour tout réel ε> 0, il existe un réel δ> 0 tel que pour tout
n ∈N et tous t ,u ∈ [0,1], |t −u| < δ implique |F (ϕn)(t )−F (ϕn)(u)| < ε.

On rappelle que pour tout δ> 0, il existe une famille finie t1, t2, . . . , tN ∈ [0,1] telle
que le segment [0,1] soit inclus dans la réunion des intervalles ]ti −δ, ti +δ[ pour
i ∈ {1,2, . . . , N }.

21) Montrer que si la suite (F (ϕn))n∈N converge simplement sur [0,1], alors
elle converge dans E . En déduire que F est continue sur A.

22) Soit (ϕn)n∈N une suite de A. Montrer que la suite (F (ϕn))n∈N admet une
sous-suite qui converge simplement sur [0,1] (on pourra commencer par
établir la convergence simple sur une partie dense de [0,1]).

23) Conclure : F admet un point fixe de norme strictement inférieure à M .

FIN DU PROBLÈME
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Norme d’une matrice aléatoire

L’objectif de ce problème est d’étudier une inégalité de concentration pour
la norme opérationnelle d’une matrice aléatoire dont les coefficients sont mu-
tuellement indépendants et « uniformément sous-gaussiens ».

Soit n un entier strictement positif. On identifie Rn à l’espace M n,1(R) des
vecteurs colonnes à n coordonnées réelles. Pour tout x = t (x1, . . . , xn) dans Rn

on note :

‖x‖ =
√

n∑
i=1

(xi )2

La sphère unité de Rn est notée Sn−1 = {
x ∈Rn , ‖x‖ = 1

}
. On identifie une ma-

trice carrée M ∈Mn(R) à l’endomorphisme de Rn canoniquement associé et on
note σ(M) l’ensemble de ses valeurs propres réelles.

Les parties A, B et C sont mutuellement indépendantes.

A. Norme d’opérateur d’une matrice

Soit M ∈Mn(R).

1) Montrer que Sn−1 est un compact de Rn et en déduire l’existence de :

‖M‖op = max
{‖M x‖ ; x ∈ Sn−1}.

2) Montrer que l’application qui à M ∈Mn(R) associe ‖M‖op est une norme
sur Mn(R). Montrer en outre que pour tous x et y dansRn , on a l’inégalité
‖M x −M y‖ É ‖M‖op ‖x − y‖.

3) Si M est symétrique, établir l’égalité ‖M‖op = max
{|λ| ; λ ∈ σ(M)

}
. On

pourra commencer par le cas où M est diagonale.

On note Jn la matrice de Mn(R) dont tous les coefficients sont égaux à 1.

4) Déterminer les valeurs propres et les espaces propres de Jn en précisant
la dimension des espaces propres. En déduire la valeur de ‖Jn‖op.

Soit M = (Mi , j )1Éi , jÉn ∈Mn(R).

5) Démontrer l’inégalité ‖M‖op Ê max
{|Mi , j | ; 1 É i , j É n

}
.

6) Etablir que :

‖M‖op É
√√√√ n∑

i=1

n∑
j=1

(Mi , j )2

et donner une condition nécessaire et suffisante sur le rang de M pour
que cette inégalité soit une égalité.
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On note Σn l’ensemble des matrices M = (Mi , j )1Éi , jÉn de Mn(R) telles que
|Mi , j | É 1 pour tous i , j dans {1, . . . ,n}.

7) Montrer que pour tout M ∈Σn , ‖M‖op É n. Caractériser et dénombrer les
matrices M de Σn pour lesquelles ‖M‖op = n.

B. Variables aléatoires sous-gaussiennes

Dans toute la suite du problème, toutes les variables aléatoires considérées sont
réelles et discrètes, définies sur un espace probabilisé (Ω,A ,P ) . Soit α> 0. On
dit que la variable aléatoire X est α-sous-gaussienne si :

∀t ∈R, E
(
exp(t X )

)É exp
(α2t 2

2

)
.

On rappelle la notation : ch(t ) = exp(t )+exp(−t )

2
.

8) Montrer que pour tout t ∈R, on a ch(t ) É exp
( t 2

2

)
. On pourra au préalable

établir le développement de la fonction ch en série entière sur R.

9) Soit t ∈R. Démontrer que si x ∈ [−1,1], on a l’inégalité de convexité :

exp(t x) É 1+x

2
exp(t )+ 1−x

2
exp(−t ).

10) Soit X une variable aléatoire réelle bornée par 1 et centrée. Montrer que
X est 1-sous-gaussienne. En déduire que, si X est une variable aléatoire
bornée par α> 0 et centrée, alors elle est α-sous-gaussienne.

11) Soit X1, . . . , Xn des variables aléatoires mutuellement indépendantes etα-
sous-gaussiennes, et µ1, . . . ,µn des nombres réels tels que

∑n
i=1(µi )2 = 1.

Montrer que la variable aléatoire
n∑

i=1
µi Xi est α-sous-gaussienne.

12) Soit X une variable aléatoire α-sous-gaussienne et λ> 0. Montrer que
pour tout t > 0 :

P (X Êλ) É exp
(α2t 2

2
− tλ

)
En déduire que :

P (|X | Êλ) É 2exp
(
− λ2

2α2

)
.

Dans la suite du problème, on admet qu’une variable aléatoire X à valeurs
dans N est d’espérance finie si et seulement si la série

∑
P (X Ê k) converge et

que, dans ce cas :

E(X ) =
+∞∑
k=1

P (X Ê k).
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13) Si X est une variable aléatoire à valeurs dans R+, montrer que X est
d’espérance finie si et seulement si la série de terme général P (X Ê k)
converge et que, dans ce cas :

+∞∑
k=1

P (X Ê k) ÉE(X ) É 1+
+∞∑
k=1

P (X Ê k).

On pourra pour cela considérer la partie entière bX c.

Pour tout s ∈]1,+∞[, on note ζ(s) =
+∞∑
k=1

k−s .

14) Soit X une variable aléatoire α-sous-gaussienne et β> 0. Montrer que
pout tout entier k > 0 :

P

(
exp

(β2X 2

2

)
Ê k

)
É 2k−η

où on a posé η=α−2β−2. En déduire que si αβ< 1, la variable aléatoire

exp
(β2 X 2

2

)
est d’espérance finie majorée par 1+2ζ

(
η
)
.

En particulier, en prenant αβ= 1p
2

et en utilisant l’inégalité 1+2ζ(2) É 5 (que

l’on ne demande pas de justifier), on obtient immédiatement, et on l’admet, que
si X est une variable aléatoire α-sous-gaussienne, on a l’inégalité d’Orlicz :

E

(
exp

( X 2

4α2

))
É 5 .

C. Recouvrements de la sphère

Si a ∈Rn , on note Ba,r =
{

x ∈Rn ; ‖x −a‖ É r
}

la boule fermée de centre a et de
rayon r . Soit K une partie compacte non vide de Rn , et soit ε> 0.

15) Montrer que l’on peut trouver un sous-ensemble fini A de K tel que :

K ⊂ ⋃
a∈A

Ba, ε2

On pourra raisonner par l’absurde en utilisant le théorème de Bolzano-
Weierstrass.

16) Soit Λ un sous-ensemble de K tel que pour tous x, y distincts dans Λ,
‖x−y‖ > ε. Montrer queΛ est fini et que son cardinal est majoré par celui
d’un ensemble A du type considéré à la question précédente. Si de plus
Λ est de cardinal maximal, montrer que :

K ⊂ ⋃
a∈Λ

Ba,ε

4



On admet l’existence d’une fonction µ, appelée volume, définie sur l’ensemble
des parties compactes de Rn et vérifiant les propriétés suivantes.

(i) Pour tout vecteur a de Rn et tout nombre réel r > 0, µ
(
Ba,r

)= r n .

(ii) Pour toute famille finie K1, . . . ,Km de compacts de Rn deux à deux dis-
joints, on a :

µ
( m⋃

i=1
Ki

)
=

m∑
i=1

µ(Ki ).

(iii) Pour tous compacts K ,K ′ de Rn , K ⊂ K ′ implique µ(K ) Éµ(K ′).

SoitΛune partie finie de Sn−1 telle que pour tous x,y distincts dansΛ, ‖x −y‖ > ε.

17) Vérifier que les boules Ba, ε2
pour a ∈Λ sont toutes contenues dans B0,1+ ε

2
.

Montrer alors que le cardinal deΛ est majoré par
(2+ε

ε

)n
.

18) Justifier l’existence d’une partie finie Λn de Sn−1, de cardinal majoré
par 5n , et telle que :

Sn−1 ⊂ ⋃
a∈Λn

Ba, 1
2

D. Norme d’une matrice aléatoire

On fixe un nombre réel α> 0 et on pose γ= 1

4α2
.

Soit n un entier strictement positif. On définit une famille de variables aléa-
toires réelles M (n)

i , j , indexées par i , j ∈ {1,2, . . . ,n}, mutuellement indépendantes

et α-sous-gaussiennes. On note M (n) la matrice aléatoire
(
M (n)

i , j

)
1Éi , jÉn .

Si x ∈ Sn−1, on note y = M (n)x qui est ainsi un vecteur aléatoire dont les
composantes y1, . . . , yn sont des variables aléatoires réelles.

19) Montrer que pour tout i ∈ {1, . . . ,n}, la variable aléatoire yi est α-sous-
gaussienne. En déduire que E

(
exp(γ‖y‖2)

) É 5n et que pour tout réel
r > 0 :

P
(‖y‖ Ê r

p
n

)É (
5 e−γr 2)n .

20) Soit Λn une partie de Sn−1 vérifiant les conditions de la question 18).
Pour tout réel r > 0, montrer que ‖M (n)‖op Ê 2r

p
n implique l’existence

d’un a ∈Λn tel que ‖M (n)a‖ Ê r
p

n. En déduire que :

P
(‖M (n)‖op Ê 2r

p
n

)É (
25 e−γr 2)n .

FIN DU PROBLÈME
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Théorème taubérien de Hardy–Littlewood-Karamata

Dans tout le problème, I désigne l’intervalle ]0,+∞[.

A Une intégrale à paramètre
Pour tout x ∈ R on pose, sous réserve d’existence,

F (x) =
∫ +∞

0

e−u

√
u(u+ x) du et K =

∫ +∞

0

e−u

√
u
du.

1. Montrer que la fonction ψ : u 7→ e−u

√
u

est intégrable sur I.

2. Déterminer les valeurs de x pour lesquelles F (x) est définie.

3. Montrer que la fonction F est de classe C1 sur I et exprimer F ′(x) sous forme
intégrale.

4. En déduire que pour tout x ∈ I, xF ′(x)− (x− 1
2)F (x) = −K.

5. Pour tout x ∈ I, on pose G(x) =
√
x e−xF (x). Montrer qu’il existe une

constante réelle C telle que pour tout x ∈ I, G(x) = C −K ·
∫ x

0

e−t

√
t
dt.

6. Déterminer les limites de G en 0 et +∞, et en déduire la valeur de K.

B Étude de deux séries de fonctions

Dans toute cette partie, on pose f(x) =
+∞∑
n=1

e−nx

√
n

et g(x) =
+∞∑
n=0

√
ne−nx.

7. Montrer que f et g sont définies et continues sur I.

8. Montrer que pour tout x ∈ I,
∫ +∞

1

e−ux

√
u
du 6 f(x) 6

∫ +∞

0

e−ux

√
u
du. En

déduire un équivalent de f(x) lorsque x→ 0.

9. Montrer que la suite
( n∑

k=1

1√
k
− 2
√
n
)

n>1
converge.
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10. Démontrer que pour tout x > 0, la série
∑
n>1

( n∑
k=1

1√
k

)
e−nx converge et expri-

mer sa somme h(x) en fonction de f(x) pour tout x ∈ I.

11. En déduire un équivalent de h(x) lorsque x→ 0. Montrer alors que g(x) est

équivalent à
√
π

2x3/2 lorsque x→ 0.

C Séries de fonctions associées à des ensembles
d’entiers

À tout ensemble A ⊆ N on associe la suite (an) définie par

an =

1 si n ∈ A,
0 sinon.

Soit IA l’ensemble des réels x > 0 pour lesquels la série
∑
n>0

ane−nx converge. On

pose fA(x) =
+∞∑
n=0

ane−nx pour tout x ∈ IA. Enfin, sous réserve d’existence, on pose

Φ(A) = lim
x→ 0

x fA(x) et on note S l’ensemble des parties A ⊆ N pour lesquelles
Φ(A) existe.

12. Quel est l’ensemble IA si A est fini ? Si A est infini, montrer que l’on peut
extraire une suite (bn) de la suite (an) telle que pour tout n ∈ N, bn = 1.
Déterminer IA dans ce cas.

13. Soit A ∈ S et (an) la suite associée. Pour tout entier naturel n, on note A(n)
l’ensemble des éléments de A qui sont 6 n. Vérifier que pour tout x > 0 la
série

∑
n>0

Card(A(n)) e−nx converge et que

+∞∑
n=0

Card(A(n)) e−nx = fA(x)
1− e−x

.

Dans la question suivante, A = A1 désigne l’ensemble des carrés d’entiers naturels
non nuls.

14. Montrer que si x > 0, fA1(x)
1− e−x

=
+∞∑
n=0
b
√
nce−nx où b·c désigne la partie entière.

En déduire un encadrement de
+∞∑
n=0

√
ne−nx− fA1(x)

1− e−x
, puis un équivalent de

fA1 en 0. Prouver alors que A1 ∈ S et donner Φ(A1).
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Dans la question suivante, A = A2 désigne l’ensemble constitué des entiers qui
sont la somme des carrés de deux entiers naturels non nuls. On admet que A2 ∈ S,
et on désire majorer Φ(A2).

Soit v(n) le nombre de couples d’entiers naturels non nuls (p, q) pour lesquels
n = p2 + q2.

15. Montrer que pour tout réel x > 0, la série ∑n>0 v(n)e−nx converge et établir
que +∞∑

n=0
v(n)e−nx = (fA1(x))2.

Montrer alors que pour tout x > 0, fA2(x) 6 (fA1(x))2. En déduire un
majorant de Φ(A2).

D Un théorème taubérien
Soit (αn)n>0 une suite de nombres réels positifs tels que pour tout réel x > 0,

la série ∑n>0 αne−nx converge. On suppose que

lim
x→ 0

(
x

+∞∑
n=0

αne−nx
)

= ` ∈ [0,+∞[.

On note F l’espace vectoriel des fonctions de [0, 1] dans R, E le sous-espace de F des
fonctions continues par morceaux et E0 le sous-espace de E des fonctions continues
sur [0, 1]. On munit E de la norme ‖ ‖∞définie par la formule ‖ψ‖∞ = sup

t∈[0,1]
|ψ(t)|.

Si ψ ∈ E, on note L(ψ) l’application qui à x > 0 associe

(L(ψ))(x) =
+∞∑
n=0

αne−nxψ(e−nx).

16. Montrer que L(ψ) est bien définie pour tout ψ ∈ E et que l’application L est
une application linéaire de E dans F . Vérifier que, pour tous ψ1, ψ2 dans E,
ψ1 6 ψ2 entraîne L(ψ1) 6 L(ψ2).

On note E1 l’ensemble des ψ ∈ E pour lesquels lim
x→ 0

x (L(ψ))(x) existe et si ψ ∈ E1,
on pose

∆(ψ) = lim
x→ 0

x (L(ψ))(x).

17. Vérifier que E1 est un sous-espace vectoriel de E et que l’application ∆ est
une forme linéaire continue de (E1, ‖ ‖∞).

18. Montrer que pour tout p ∈ N, ep : t ∈ [0, 1] 7→ tp appartient à E1 et calculer
∆(ep). En déduire que E0 ⊆ E1 et calculer ∆(ψ) pour tout ψ ∈ E0.
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Pour tous a, b ∈ [0, 1] tel que a < b, on note 1[a,b] : [0, 1]→ {0, 1} la fonction définie
par

1[a,b](x) =

1 si x ∈ [a, b]
0 sinon.

Soit a ∈]0, 1[ et ε ∈]0,min(a, 1− a)[. On note

g−(x) =


1 si x ∈ [0, a− ε]
a− x
ε

si x ∈]a− ε, a[
0 si x ∈ [a, 1]

et

g+(x) =


1 si x ∈ [0, a]
a+ ε− x

ε
si x ∈]a, a+ ε[

0 si x ∈ [a+ ε, 1].

19. Vérifier que g− et g+ appartiennent à E0 et calculer ∆(g−) et ∆(g+). Montrer
alors que 1[0,a] ∈ E1 et calculer ∆(1[0,a]). En déduire que E1 = E et donner
∆(ψ) pour tout ψ ∈ E.

On considère maintenant la fonction ψ définie sur [0, 1] par la formule :

ψ(x) =


0 si x ∈ [0, 1

e [

1
x

si x ∈ [1e , 1].

20. Calculer (L(ψ))( 1
N

) pour tout entier N > 0 et en déduire la limite

lim
N→+∞

1
N

N∑
k=0

αk

(théorème taubérien).

On rappelle que v(n) est le nombre de couples d’entiers naturels non nuls (p, q)
tels que n = p2 + q2.

21. Si A ∈ S, que vaut lim
n→+∞

1
n

Card(A(n)) ? Déterminer alors lim
n→+∞

1
n

n∑
k=1

v(k).

Fin du problème
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Majoration du rayon spectral de la matrice de Hilbert

Soit n un entier   1. L’espace vectoriel Rn
est muni de sa structure eucli-

dienne canonique. La norme euclidienne associée est notée k k. On note M n(R)

l’ensemble des matrices carrées d’ordre n à coefficients réels, et on identi-

fiera Rn
à l’ensemble Mn,1(R) des matrices colonnes à coefficients réels. On

note
t
X = (x0 x1 · · ·xn°1) 2 M1,n(R) la matrice ligne transposée de la matrice

colonne

X =

0

BBB@

x0

x1

.

.

.

xn°1

1

CCCA 2Mn,1(R).

Enfin, on note eX la fonction polynomiale définie sur R par la formule

eX (t ) =
n°1X

k=0

xk t
k

.

L’objet du problème est l’étude de quelques propriétés de la matrice de

Hilbert Hn =
°
h

(n)

j ,k

¢
0… j ,k…n°1

2Mn,n(R) définie par

Hn =

0

BBBBBBB@

1
1

2
. . .

1

n

1

2

1

3
. . .

1

n+1

.

.

.
. . .

.

.

.

1

n

1

n+1
. . .

1

2n°1

1

CCCCCCCA

.

On a donc h
(n)

j ,k
= 1

j+k+1
pour tous j ,k 2 {0,1, . . . ,n °1}.

A. Une propriété de Perron-Frobenius

1) Montrer que la matrice Hn est symétrique réelle et définie positive. On

pourra s’aider du calcul de l’intégrale

Z
1

0

° eX (t )
¢

2
d t .

On note V le sous-espace propre de Hn associé à la plus grande valeur propre

Ωn de Hn .

2) Montrer que X 2 V si et seulement si
t
X Hn X = ΩnkX k2

.

1



Soit X0 =

0

BBB@

x0

x1

.

.

.

xn°1

1

CCCA un vecteur non nul de V . On note |X0| =

0

BBB@

|x0|
|x1|

.

.

.

|xn°1|

1

CCCA.

3) Établir l’inégalité
t
X0 Hn X0 … t|X0|Hn |X0| et en déduire que |X0| 2 V .

4) Montrer que Hn |X0|, puis que X0, n’a aucune coordonnée nulle.

5) En déduire la dimension du sous-espace propre V .

B. Inégalité de Hilbert

Soit X =

0

BBB@

x0

x1

.

.

.

xn°1

1

CCCA un vecteur de Rn
et P un polynôme à coefficients réels.

6) En s’aidant du calcul de l’intégrale

Zº

0

P (e
iµ

)e
iµ

dµ, montrer l’inégalité

ØØØØ
Z

1

°1

P (t )dt

ØØØØ…
Zº

0

ØØP (e
iµ

)
ØØdµ, puis l’inégalité

t
X Hn X …

Zº

0

ØØ eX (e
iµ

)
ØØ2

dµ.

7) En déduire que
t
X Hn X …ºkX k2

.

8) Montrer que la suite (Ωn)n 1 est croissante et convergente.

C. Un opérateur intégral

Dans la suite du problème, pour tout entier n > 0 et tout réel x, on pose

Kn(x) =
n°1X

k=0

x
k

.

Soit E l’espace vectoriel des fonctions à valeurs réelles, continues et intégrables

sur [0,1[ et Tn : E ! E l’application définie par

Tn( f )(x) =
Z

1

0

Kn(t x) f (t )dt .

9) Montrer que Tn est un endomorphisme de E , dont 0 est valeur propre.

(On rappelle que ∏ 2C est valeur propre de Tn s’il existe f 2 E non nulle

telle que Tn( f ) =∏ f .)

10) Pour tout X 2Rn
, calculer Tn( eX ). En déduire que Tn et Hn ont les mêmes

valeurs propres non nulles.
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On note A l’ensemble des fonctions ' 2 E à valeurs strictement positives

sur ]0,1[ telles que
1

' admette un prolongement continu sur [0,1]. On rappelle

que Ωn est la plus grande valeur propre de Hn .

11) En utilisant un vecteur propre associé à Ωn , montrer que

Ωn … inf
'2A

sup

x2]0,1[

1

'(x)

Z
1

0

Kn(t x)'(t )dt

En utilisant la partie A, montrer que l’on a égalité dans l’inégalité précé-

dente.

D. Une majoration explicite des rayons spectraux

Soit ' 2A et n 2N. Dans la suite du problème, on pose, pour tout x 2 ]0,1[ :

rn(x) = 1

'(x)

Z
1

0

Kn(t x)'(t )dt ,

Jn(x) =
Z

1

0

t
n'(t )

1° t x
dt ,

©n(x) = x
n

Jn(x)

'(x)
.

La fonction Gamma d’Euler est définie sur R§
+ par la formule

°(x) =
Z+1

0

t
x°1

e
°t

dt .

On admet, et on pourra utiliser sans démonstration, les formules suivantes :

°(x +1) = x °(x) pour tout x > 0.

°(n) = (n °1)! pour tout entier n > 0.

°(Æ)°(Ø)

°(Æ+Ø)
=

Z
1

0

t
Æ°1

(1° t )
Ø°1

dt pour tous réels Æ> 0,Ø> 0.

12) Montrer que Jn est dérivable sur ]0,1[ et que l’on a l’égalité

x J
0
n

(x) =
Z

1

0

t
n'(t )

(1° t x)2
dt ° Jn(x).

On suppose dorénavant que' 2A est de classe C
1

sur [0,1[ et que (1°t )'(t ) !
0 lorsque t ! 1

°
.
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13) Montrer que

n Jn(x) = c +n Jn°1(x)+ (x °1)

Z
1

0

t
n'(t )

(1° t x)2
dt +

Z
1

0

t
n

(1° t )'0
(t )

1° t x
dt

où c est un coefficient à déterminer et où '0
désigne la dérivée de '. (On

pourra traiter à part le cas n = 0, où l’on considère que n Jn°1(x) = 0 et où

l’on montrera que c ='(0).)

14) Déduire des deux questions précédentes que

x(1°x)J
0
n

(x) = c+(n+1)(x°1)Jn(x)+n

Z
1

0

t
n°1'(t )dt+

Z
1

0

t
n

(1° t )'0
(t )

1° t x
dt .

15) Soit ∞ 2 R. Résoudre l’équation différentielle (1° t)y
0 = °∞y sur l’inter-

valle [0,1[. À quelles conditions une solution y(t) de cette équation

différentielle vérifie-t-elle les hypothèses faites sur '?

On suppose désormais ces conditions réalisées et que la fonction ' est la solu-

tion de cette équation différentielle telle que '(0) = 1.

16) Montrer que la fonction©n est dérivable sur ]0,1[ et que l’on a :

©0
n

(x) =°(∞+1)
©n(x)

x
+ cn

x
n°1

(1°x)1+∞

où l’on donnera l’expression de la constante cn en fonction de n et de ∞.

17) En déduire que pour tout x 2 ]0,1[,

©n(x) = cn

x1+∞

Z
x

0

t
n+∞

(1° t )1+∞ dt .

18) En déduire que pour n   1,

Ωn … inf

Æ 2 ]0,1[
sup

x2]0,1[

1

x1°Æ

Z
x

0

1°µn t
n

tÆ(1° t )1°Æ dt

où l’on a posé µn = n!

(1°Æ)(2°Æ) . . . (n °Æ)
.

Un calcul montre, et on l’admet, que l’inégalité précédente implique l’inégalité :

Ωn … inf
Æ2]0,1[

µ(1°Æ)/n

n

Zµ°1/n
n

0

dt

tÆ(1° t )1°Æ .

19) En déduire que Ωn … 2!n arcsin

≥
1

!n

¥
, où l’on a posé !n = 2

µ
(n!)

2

(2n)!

∂1/2n

.

20) Donner un équivalent de !n °1, puis un équivalent de º°2!n arcsin
1

!n

lorsque n !+1.

FIN DU PROBLÈME
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Nombre de sites visités par une marche aléatoire

Dans tout le texte, d est un élément de Nú
. On note 0d le d-uplet dont toutes les

coordonnées valent 0, c’est-à-dire le vecteur nul de Rd
.

On considère une variable aléatoire X à valeurs dans Zd
, (Xk)kœNú une suite

de variables aléatoires mutuellement indépendantes suivant chacune la loi de X et

définies sur un même espace probabilisé. La suite de variables aléatoires (Sn)nœN est

définie par S0 = 0d et

’n œ Nú, Sn =

nÿ

k=1
Xk.

La suite (Sn)nœN est une marche aléatoire de pas X, à valeurs dans Zd
.

On note R la variable aléatoire à valeurs dans Nú fi {+Œ} définie par

R =

I
min {n œ Nú, Sn = 0d} si {n œ Nú, Sn = 0d} ”= ÿ,

+Œ sinon.

Autrement dit, R est égal à +Œ si la marche aléatoire (Sn)nœN ne revient jamais en

0d, au premier instant auquel cette marche aléatoire revient en 0d sinon.

Pour n dans N, soit Nn le cardinal du sous-ensemble

{Sk, k œ {0, . . . , n}}

de Zd
. Le nombre Nn est donc le nombre de points de Zd

visités par la marche

aléatoire (Sn)nœN après n pas.

Le but du problème est d’étudier asymptotiquement l’espérance E(Nn) de la

variable aléatoire Nn.

La partie D est indépendante des parties précédentes.

A. Préliminaires

Les cinq questions de cette partie sont indépendantes et utilisées dans les parties

C et E.

1. Soit n œ N. En utilisant la factorisation

(X + 1)
2n

= (X + 1)
n

(X + 1)
n,

montrer que

nÿ

k=0

A
n

k

B2
=

A
2n

n

B

.

1



2. Rappeler la formule de Stirling, puis déterminer un nombre réel c > 0 tel que

A
2n

n

B

≥
næ+Œ

c
4

n

Ô
n

·

3. Si – est un élément de ]0, 1[, montrer, par exemple en utilisant une comparaison

série-intégrale, que
nÿ

k=1

1

k–
≥

næ+Œ

n1≠–

1 ≠ –
·

Si – est un élément de ]1, +Œ[, montrer de même que

+Œÿ

k=n+1

1

k–
≥

næ+Œ

1

(– ≠ 1) n–≠1 ·

4. Pour x œ [2, +Œ[, on pose

I(x) =

⁄ x

2

dt

ln(t)
·

Justifier, pour x œ [2, +Œ[, la relation

I(x) =
x

ln(x)
≠ 2

ln(2)
+

⁄ x

2

dt

(ln(t))2 ·

Établir par ailleurs la relation

⁄ x

2

dt

(ln(t))2 =
xæ+Œ

o (I(x)) .

En déduire finalement un équivalent de I(x) lorsque x tend vers +Œ.

5. Pour – œ R, rappeler, sans donner de démonstration, le développement en

série entière de (1 + x)
–

sur ] ≠ 1, 1[.

Justifier la formule :

’x œ] ≠ 1, 1[,
1Ô

1 ≠ x
=

+Œÿ

n=0

!2n
n

"

4n
xn.

B. Marches aléatoires, récurrence

On considère les fonctions F et G définies par les formules

’x œ] ≠ 1, 1[, F (x) =

+Œÿ

n=0
P (Sn = 0d) xn

;

’x œ [≠1, 1], G(x) =

+Œÿ

n=1
P (R = n) xn.

2



6. Montrer que les séries entières définissant F et G ont un rayon de convergence

supérieur ou égal à 1. Justifier alors que les fonctions F et G sont définies et

de classe CŒ
sur ] ≠ 1, 1[.

Montrer que G est définie et continue sur [≠1, 1] et que

G(1) = P (R ”= +Œ).

7. Si k et n sont des entiers naturels non nuls tels que k Æ n, montrer que

P ((Sn = 0d) fl (R = k)) = P (R = k) P (Sn≠k = 0d).

En déduire que

’n œ Nú, P (Sn = 0d) =

nÿ

k=1
P (R = k) P (Sn≠k = 0d).

8. Montrer que

’x œ] ≠ 1, 1[, F (x) = 1 + F (x) G(x).

Déterminer la limite de F (x) lorsque x tend vers 1
≠

, en discutant selon la

valeur de P (R ”= +Œ).

9. Soit (ck)kœN une suite d’éléments de R+
telle que la série entière

ÿ
ckxk

ait

un rayon de convergence 1 et que la série

ÿ
ck diverge. Montrer que

+Œÿ

k=0
ck xk ≠æ

xæ1≠
+Œ.

L’élément A de R+ú
étant fixé, on montrera qu’il existe – œ]0, 1[ tel que

’x œ]1 ≠ –, 1[,
+Œÿ

k=0
ckxk > A.

10. Montrer que la série

ÿ
P (Sn = 0d) est divergente si et seulement si

P (R ”= + Œ) = 1.

11. Pour i œ Nú
, soit Yi la variable de Bernoulli indicatrice de l’événement

1
Si /œ {Sk, 0 Æ k Æ i ≠ 1}

2
.

Montrer que, pour i œ Nú
:

P (Yi = 1) = P (R > i).

En déduire que, pour n œ Nú
:

E(Nn) = 1 +

nÿ

i=1
P (R > i).

3



12. Conclure que

E(Nn)

n
≠æ

næ+Œ
P (R = +Œ).

On pourra admettre et utiliser le théorème de Cesàro : si (un)nœNú est une

suite réelle convergeant vers le nombre réel ¸, alors

1

n

nÿ

k=1
uk ≠æ

næ+Œ
¸.

C. Les marches de Bernoulli sur Z

Dans cette question, d est égal à 1 et on note donc simplement 0d = 0. Par

ailleurs, p est un élément de ]0, 1[, q = 1 ≠ p et la loi de X est donnée par

P (X = 1) = p et P (X = ≠1) = q.

13. Pour n œ N, déterminer P (S2n+1 = 0) et justifier l’égalité :

P (S2n = 0) =

A
2n

n

B

(pq)
n.

14. Pour x œ] ≠ 1, 1[, donner une expression simple de G(x).

Exprimer P (R = +Œ) en fonction de |p ≠ q|.

Déterminer la loi de R.

15. On suppose que

p = q =
1

2
·

Donner un équivalent simple de P (R = 2n) lorsque n tend vers +Œ. En

déduire un équivalent simple de E(Nn) lorsque n tend vers +Œ.

D. Un résultat asymptotique

Soient (an)nœN et (bn)nœN deux suites d’éléments de R+ú
. On suppose que (an)nœN

est décroissante et que

’n œ N,
nÿ

k=0
ak bn≠k = 1.

On pose, pour n œ N.

Bn =

nÿ

k=0
bk.
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16. Soient m et n deux entiers naturels tels que m > n. Montrer que

an Æ 1

Bn
et 1 Æ an Bm≠n + a0 (Bm ≠ Bm≠n).

17. On suppose dans cette question qu’il existe une suite (mn)nœN vérifiant mn > n
pour n assez grand et

Bmn≠n ≥
næ+Œ

Bn et Bmn ≠ Bmn≠n ≠æ
næ+Œ

0.

Montrer que

an ≥
næ+Œ

1

Bn
·

18. On suppose dans cette question qu’il existe C > 0 tel que

bn ≥
næ+Œ

C

n
·

En utilisant la question 17 pour une suite (mn)nœN bien choisie, montrer que

an ≥
næ+Œ

1

C ln(n)
·

E. La marche aléatoire simple sur Z2 : un théorème d’Erdös et
Dvoretzky

19. Soit n œ Nú
. Montrer que

1 =

nÿ

k=0
P (Sk = 0d) P (R > n ≠ k).

Dans les questions 20 et 21, on suppose que d = 2 et que la loi de X est donnée par

P (X = (0, 1)) = P (X = (0, ≠1)) = P (X = (1, 0)) = P (X = (≠1, 0)) =
1

4
·

20. Soit n œ N. Établir l’égalité

P (S2n = 02) =

A!2n
n

"

4n

B2
·

21. Donner un équivalent simple de E(Nn) lorsque n tend vers +Œ.

Fin du problème
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Lemme de Fekete et théorème de Erdös-Szekeres

Le but de ce problème est d’étudier quelques applications probabilistes du

lemme de sous-additivité de Fekete et du théorème de Erdös-Szekeres.

Dans tout le problème, (≠,A ,P ) désigne un espace probabilisé. On note

P (A) la probabilité d’un événement A et on note E(X ) l’espérance (si elle existe)

d’une variable aléatoire réelle discrète X définie sur (≠,A ,P ).

A. Préliminaires

Les deux questions de cette partie sont indépendantes.

Soit n un entier naturel non nul.

1) Montrer que pour toute variable aléatoire X réelle à valeurs dans {1, . . . ,n}

et pour tout m 2 {1, . . . ,n},

E(X ) … m °1+n P (X   m).

2) À l’aide d’une comparaison entre une somme et une intégrale, montrer

que

n ln(n)°n +1 …
nX

k=1

ln(k).

En déduire l’inégalité ≥n
e

¥n
… n!

B. Le lemme de sous-additivité de Fekete

Soit u = (un)n2N§ une suite réelle bornée. Pour tout n 2 N§
, on note Un =

{uk ; k   n}. On définit les suites u = (un)n2N§ et u = (un)n2N§ par les formules

un = inf(Un) et un = sup(Un).

3) Justifier que u et u sont bien définies. Montrer qu’elles sont monotones

puis qu’elles convergent.

Pour toutes suites réelles v = (vn)n2N§ et w = (wn)n2N§ , on dit que v est plus
petite que w , et on note v π w , si pour tout n 2 N§

, on a vn … wn . De façon

équivalente, on dit aussi que w est plus grande que v .

1



4) Montrer que u est la plus petite suite (au sens de π) qui est décroissante

et plus grande que u. Montrer de même que u est la plus grande suite (au

sens de π) qui est croissante et plus petite que u.

Dans toute la suite du problème, on appelle limite inférieure lim et limite supé-

rieure lim les limites suivantes :

lim

n!+1
un = lim

n!+1
un et lim

n!+1
un = lim

n!+1
un

5) Si v = (vn)n2N§ est une autre suite réelle bornée plus grande que u, com-

parer les limites de u et de v .

6) Montrer que u et u sont adjacentes si et seulement si u converge. En ce

cas, que peut-on dire des limites des trois suites u, u et u ?

On dit qu’une suite réelle u = (un)n2N§ est sous-additive si pour tous i , j dansN§
,

on a ui+ j … ui +u j .

Dans le reste de cette partie on ne suppose plus que la suite u est bornée, mais on
suppose que u est positive et sous-additive.

7) Soit m et n deux entiers naturels non nuls tels que m   2n. On note q le

quotient et r le reste de la division euclidienne de m par n. Montrer que

um … (q °1)un +un+r

et en déduire l’inégalité

um

m
… m °n ° r

m
· un

n
+ max{un ,un+1, . . . ,u2n°1}

m
.

8) En déduire que la suite

≥um

m

¥

m2N§
est bornée, puis que pour tout n 2N§

,

lim
m!+1

um

m
… un

n
.

9) En conclure que la suite

≥un

n

¥

n2N§
converge.

C. Une application probabiliste

Soit x un nombre réel et (Xn)n2N§ une suite de variables aléatoires réelles mutuel-

lement indépendantes et de même loi. Pour tout n 2N§
on note Yn la variable

aléatoire réelle définie par

Yn = 1

n

nX

k=1

Xk .

2



10) Montrer que si P (X1 < x) = 1, alors pour tout n 2N§
, P (Yn < x) = 1 et que

si P (X1   x) > 0, alors pour tout n 2N§
, P (Yn   x) > 0.

11) Soit m et n deux entiers naturels non nuls. Montrer l’inclusion d’événe-

ments suivante :

≥©
Ym   x

™
\

n
1

n

m+nX

k=m+1

Xk   x
o¥

Ω
©
Ym+n   x

™

et en déduire l’inégalité

P (Ym+n   x)   P (Ym   x)P (Yn   x).

12) Démontrer la convergence de la suite

≥°
P (Yn   x)

¢ 1

n
¥

n2N§

D. Le théorème de Erdös-Szekeres

Si r est un entier naturel non nul, on note `= (`1, . . . ,`r ) une liste de nombres

réels de longueur r ; cette liste est croissante si `1 … `2 … · · · … `r , décroissante
si `1   `2   · · ·   `r . Une liste `0 de longueur p 2 {1, . . . ,r } est extraite de ` s’il

existe p indices strictement croissants i1 < i2 < ·· · < ip dans {1, . . . ,r } tels que

`0 = (`i1
, . . . ,`ip ).

Soit p et q deux entiers naturels non nuls et a = (a1, a2, . . . , apq+1) une liste

de longueur pq +1 de nombres réels deux-à-deux distincts qui représentent les

valeurs de pq +1 jetons numérotés 1,2, . . . , pq +1.

On range successivement les jetons en piles de gauche à droite par le procédé

suivant :

• le jeton n°1 de valeur a1 débute la première pile ;

• si a2 > a1, alors on pose le jeton n°2 de valeur a2 sur le jeton n°1 ;

sinon on crée une nouvelle pile avec ce jeton n°2, située à droite de la

première pile ;

• lors des étapes suivantes, disposant du jeton n°k de valeur ak , on le dé-

pose sur la première pile en partant de la gauche telle que ak est supérieur

à la valeur du jeton au sommet de la pile, si une telle pile existe ;

sinon on crée une nouvelle pile avec ce jeton, située à droite des précé-

dentes.

En suivant ce procédé avec tous les jetons, on obtient plusieurs piles de

jetons, chaque pile ayant des valeurs rangées dans l’ordre croissant du bas vers

le haut.
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Par exemple, avec la liste

a = (1,4,2,3,7,6,5,9,10,8)

dans cet ordre, on obtient de gauche à droite les trois piles suivantes :

10

9 8

7 6

4 3

1 2 5

13) À l’aide d’un raisonnement par récurrence sur le nombre s de piles, mon-

trer qu’à l’issue du processus, pour tout jeton de valeur z de la dernière

pile, il existe une liste b = (b1, . . . ,bs) de réels extraite de la liste a vérifiant :

• b est décroissante et de longueur s ;

• pour tout i 2 {1, . . . , s} le jeton n°i de valeur bi est dans la i -ème pile

en partant de la gauche ;

• bs = z.

Par exemple, avec la liste a = (1,4,2,3,7,6,5,9,10,8) on a une liste extraite

b = (7,6,5).

14) En déduire que la liste a admet au moins une liste extraite croissante de

longueur p +1 ou une liste extraite décroissante de longueur q +1.

E. Comportement asymptotique d’une suite aléatoire

Soit n un entier naturel supérieur ou égal à 2. On note Sn l’ensemble des

permutations de {1,2, . . . ,n}. Chaque élément æ 2 Sn est noté par la liste de ses

n images (æ(1),æ(2), . . . ,æ(n)).

Soit B une variable aléatoire à valeurs dans Sn de loi uniforme, c’est-à-dire

que pour tout æ 2 Sn , on a P (B = æ) = 1/Card(Sn). On définit la variable aléa-

toire A à valeurs dans Sn en posant, pour tout ! 2≠,

A(!) =
°
B(!)(1), . . . ,B(!)(n)

¢
.

On note également, pour tout k 2 {1, . . . ,n}, Ak (!) = B(!)(k). Enfin, on considère

les variables aléatoires réelles Cn et Dn définies par :

• Cn est la longueur de la plus longue liste croissante extraite de A ;

• Dn est la longueur de la plus longue liste décroissante extraite de A.

15) Les variables aléatoires réelles A1, A2, . . . , An sont-elles mutuellement

indépendantes ?
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16) Soit k 2 {1, . . . ,n} et s = (s1, . . . , sk ) une liste croissante de longueur k d’élé-

ments de {1, . . . ,n}. On note As
l’événement : « la liste (As1

, . . . , Ask ) est

croissante ». Montrer que P (As
) = 1

k !
.

17) Démontrer que Cn et Dn ont la même loi. Démontrer alors, à l’aide du

résultat de la question 14, que :

E(Cn)  
p

n
2

.

18) Démontrer que pour tout k 2 {1, . . . ,n},

P (Cn   k) …
°n

k

¢

k !
.

19) Soit n un entier naturel non nul et Æ un réel strictement supérieur à 1.

Justifier qu’il existe un entier naturel non nul k tel que k °1 <Æe
p

n … k.

À l’aide du résultat de la question 2, déduire de la question précédente

que

P (Cn  Æe
p

n) …
µ

1

Æ

∂
2Æe

p
n

.

20) En déduire qu’il existe une suite ("n)n2N§ tendant vers 0 telle que, pour

tout n 2N§
,

E(Cn)
p

n
…

°
1+n°1/4

¢
e +"n .

En conclure que lim
n!+1

E(Cn)
p

n
existe et que lim

n!+1
E(Cn)
p

n
… e.

FIN DU PROBLÈME
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Comportement asymptotique de sommes de séries entières
et application à l’équation d’Airy

Soit p un entier naturel non nul et r un nombre réel. On considère la fonction

définie sur C par la série entière

Sr,p(z) =

+Œÿ

n=1

(pn)
r

(pn)!
zpn.

L’objectif, dans les parties A et B du problème, est d’établir l’équivalence suivante

quand x æ +Œ :

Sr,p(x) ≥
xæ+Œ

xr ex

p
. (Hr,p)

Cet énoncé est noté (Hr,p). Dans la partie C, on applique ce résultat à l’étude

asymptotique d’une solution particulière de l’équation d’Airy.

1. Question préliminaire. Justifier que la série entière
ÿ

n>1

(pn)
r

(pn)!
zn

a pour

rayon de convergence +Œ. Qu’en est-il de la série entière
ÿ

n>1

(pn)
r

(pn)!
zpn

?

A Équivalence entre (Hr,p) et (Hr,1) lorsque r > 0
On suppose dans cette partie que p > 2 et r > 0, et on se propose de montrer

que les énoncés (Hr,p) et (Hr,1) sont équivalents. Pour tous n œ N et x œ Rú
+, on

pose

un(x) =
nr

n!
xn.

2. Pour x > 0 fixé, étudier le signe de la fonction

Ïx : t œ [1, +Œ[ ‘æ t1≠r
(t ≠ 1)

r ≠ x.

En déduire que Ïx s’annule en un unique élément de [1, +Œ[ que l’on note tx.

Montrer que la suite finie

1
un(x)

2

06n6ÂtxÊ
est croissante et que la suite infinie

1
un(x)

2

n>ÂtxÊ
est décroissante, où ÂxÊ désigne la partie entière du nombre

réel x.
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L’ensemble {un(x) ; n œ N} admet donc un maximum égal à uÂtxÊ(x). Dans la

suite de cette partie, ce maximum sera noté Mx.

3. Pour tout – œ R, déterminer la limite de Ïx(x + –) quand x tend vers +Œ.

En déduire que tx ≠x≠r tend vers zéro lorsque x æ +Œ. (On pourra s’aider

de la définition d’une limite.)

4. Montrer que pour tout entier relatif k, uÂxÊ+k(x)≥uÂxÊ(x) lorsque x æ +Œ.

En déduire que pour tout n œ N et pour tout x au voisinage de +Œ,

ÂxÊÿ

i=ÂxÊ≠n

ui(x) > n uÂxÊ(x).

5. En déduire que pour tout entier relatif k,

uÂxÊ+k(x) = o(xrex
)

quand x æ +Œ. Montrer alors que

Mx = o(xrex
).

(On pourra d’abord démontrer que, pour x assez grand, Mx = uÂxÊ+i(x) pour

un entier i compris entre ÂrÊ ≠ 1 et ÂrÊ + 2.)

6. Soit z un nombre complexe tel que |z| = 1 et z ”= 1. Pour tout entier naturel

n non nul, on pose

Dn =

n≠1ÿ

k=0
zk.

Pour tout nombre réel x > 0, comparer Sr,1(zx) à la somme

+Œÿ

n=1
Dn

1
un≠1(x) ≠ un(x)

2
.

En déduire que pour tout x au voisinage de +Œ,

---Sr,1(zx)

--- 6 4 Mx

|1 ≠ z| et

conclure que lorsque x æ +Œ,

Sr,1(zx) = o(xrex
).

7. On pose ’ = exp

1
2ifi
p

2
. Pour tout réel x, montrer que

p≠1ÿ

k=0
Sr,1(’

kx) = p Sr,p(x)

et en déduire que les énoncés (Hr,p) et (Hr,1) sont équivalents.
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B Une démonstration probabiliste
On admet dans cette partie qu’il existe, sur un certain espace probabilisé

(�, A, P), une famille (Xx)xœRú
+

de variables aléatoires à valeurs dans N telle que

Xx suive la loi de Poisson de paramètre x pour tout réel x > 0. On fixe de telles

données dans l’intégralité de cette partie.

Soit un réel r > 0. On pose

Zx =
Xx

x
et on se propose de démontrer que E(Zr

x) æ 1 lorsque x æ +Œ.

8. Pour tout réel – > 0, montrer que P
1
|Xx≠x| > – x2/3

2
æ 0 quand x æ +Œ.

9. Montrer que, pour tout réel x > 1, les variables aléatoires

Ax = 1(Zx<1≠x≠1/3) Zr
x et Bx = 1(|Zx≠1|6x≠1/3) Zr

x

sont d’espérance finie et trouver les limites de E(Ax) et de E(Bx) lorsque

x æ +Œ.

Soit N un entier naturel strictement positif.

10. Montrer que pour tout réel x > 0, la variable aléatoire

YN,x = 1(Xx>x+x2/3)

N≠1Ÿ

k=0
(Xx ≠ k)

est d’espérance finie et que

xN P
1
Xx > x + x2/3 ≠ N

2
= E(YN,x).

Déduire alors de la question 8 que E(YN,x) = o(xN
) quand x æ +Œ.

11. Montrer qu’il existe des réels a1, . . . , aN tels que pour tout réel x > 0,

1(Xx>x+x2/3) XN
x =

Nÿ

k=1
ak Yk,x

et en déduire la limite de E
1
1(Zx>1+x≠1/3) ZN

x

2
lorsque x æ +Œ.

12. Démontrer que E
1
1(Zx>1+x≠1/3) Zr

x

2
æ 0 quand x æ +Œ. En déduire que

E(Zr
x) æ 1 quand x æ +Œ et conclure à la validité de l’énoncé Hr,1.
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En combinant les résultats des deux parties précédentes, nous concluons à la

validité de (Hr,p) pour tout entier naturel p > 0 et tout réel r > 0. Dans la suite

du sujet, nous aurons besoin du résultat classique suivant, que nous admettrons :

Lemme de comparaison asymptotique des séries entières. Soit (an)nœN et

(bn)nœN deux suites à termes réels. On suppose que :

(i) la série entière
q
n

bnzn
a pour rayon de convergence +Œ ;

(ii) les suites (an)nœN et (bn)nœN sont équivalentes ;

(iii) il existe un rang n0 œ N tel que pour tout n > n0, on a bn > 0.

Alors la série entière
q
n

anzn
a pour rayon de convergence +Œ et

+Œÿ

n=0
anxn ≥

xæ+Œ

+Œÿ

n=0
bnxn.

Soit un entier naturel p > 0 et un nombre réel r.

13. En remarquant que pour tout réel x > 0,

Sr,p(x) = xp
+Œÿ

n=0

(p(n + 1))
r

(p(n + 1))!
xnp,

déduire du lemme de comparaison asymptotique des séries entières que

Sr,p(x) ≥
xæ+Œ

xp Sr≠p,p(x).

En déduire que (Hr,p) implique (Hr≠p,p) et conclure à la validité de (Hr,p).

C Application à l’équation d’Airy
L’équation di�érentielle d’Airy (Ai) est définie par

xÕÕ
(t) = t x(t). (Ai)

14. Question préliminaire. Soit un réel x > 0. Pour tout entier n > 0, on pose

vn =
qn

k=1 ln k + x ln n ≠ qn
k=0 ln(x + k). Établir la convergence de la sérieq

(vn ≠vn≠1), et en déduire l’existence d’un réel �(x) > 0 vérifiant la formule
d’Euler :

nŸ

k=0
(x + k) ≥

næ+Œ

nx n!

�(x)
.

15. Justifier qu’il existe une unique solution f de (Ai) sur R vérifiant f(0) = 1

et f Õ
(0) = 0.

4



16. Expliciter une suite (an)nœN telle que pout tout réel t, f(t) =

+Œÿ

n=0
an tn

.

17. Démontrer que a3n≥
�(

2
3) n1/3

9n (n!)2 puis que a3n≥n≠1/6 �(
2
3)Ô
fi

3
2

3

42n 1

(2n)!
lorsque

n æ +Œ.

18. En déduire une constante C, que l’on exprimera à l’aide de �(
2
3), telle que

f(t) ≥
tæ+Œ

C t≠1/4
exp

3
2

3
t3/2

4
.

Fin du problème
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Théorème de De Moivre-Laplace

Notations
Dans tout le problème :

- Par convention 00 = 1.

- Si i et j sont des entiers naturels tels que i ≤ j, on note Ji, jK l’ensemble des entiers
k tels que i ≤ k ≤ j.

- a et b sont des réels tels que a < b.

- Si x est un réel, on définit :

bxc = max{k ∈ Z , k ≤ x} et dxe = min{k ∈ Z , x ≤ k}

- p est un réel de ]0, 1[ et q = 1− p.

- ζ est la fonction de ]− 1,+∞[ dans R définie par :

ζ(x) = (x+ 1) ln(x+ 1).

- Φ est la fonction de R dans R définie par :

Φ(t) = 1√
2π
e−

t2
2 .

- (Ω,A, P ) est un espace probabilisé.

- (Xn)n∈N∗ est une suite de variables aléatoires définies sur (Ω,A, P ) telle que, pour
tout n ∈ N∗, Xn suit la loi binomiale de paramètres n et p, ce que l’on note
Xn ↪→ B(n, p).

Résultats préliminaires
1 . Rappeler la formule de Stirling. En déduire l’existence d’une suite réelle (εn)n∈N∗

convergeant vers 0 telle que :

∀n ∈ N∗, n! =
√

2πn
(n
e

)n(
1 + εn).

2 . Soit λ ∈ R∗+ et µ ∈ R. Démontrer que :

bλx+ µc ∼
x→+∞

λx et dλx+ µe ∼
x→+∞

λx.
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3 . Prouver que l’intégrale
∫ +∞

−∞
Φ(t)dt converge.

4 . Démontrer que :

ζ(x) =
x→0

x+ x2

2 + o(x2).

Étude asymptotique d’une suite
Dans cette partie, si n ∈ N∗, on note xn le nombre entier dnp− qe et pn le réel

P (Xn = xn).

5 . Justifier que pn est le plus grand élément de
{
P (Xn = k) , k ∈ J0, nK

}
.

6 . Vérifier que lim
n→+∞

xn = +∞ et lim
n→+∞

(n− xn) = +∞.

Établir alors :
√
n p q pn ∼

n→+∞

nn pxn qn−xn

√
2π xxn

n (n− xn)n−xn
·

7 . Montrer que, pour tout entier n > max
{
p

q
,
q

p

}
:

nn pxn qn−xn

xxn
n (n− xn)n−xn

= e
−npζ

(
xn−np

np

)
−nqζ

(
np−xn

nq

)
.

8 . Montrer que la suite
(√
n p q pn

)
n∈N∗ converge.

Convergence en loi

Dans toute la suite, pour tout n ∈ N∗, on note Yn = 1
√
n p q

(
Xn − n p

)
et on définit

les réels τn,k par la relation :

∀ k ∈ Z, τn,k = k − n p
√
n p q

.

9 . Soit n ∈ N∗. Déterminer la loi de Yn et vérifier que Yn est une variable aléatoire
centrée réduite.

10 . Justifier l’existence d’un élément N ∈ N∗ tel que :

pour tout entier n ≥ N, [a, b] ⊂ [τn,0, τn,n] et 1
√
n p q

≤ b− a.
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On définit les suites
(
kn
)
n∈N∗ ,

(
en
)
n∈N∗ et

(
fn
)
n∈N∗ , de fonctions de R dans R de la

façon suivante : pour tout n ∈ N∗, pour tout t ∈ R,

kn(t) = b√npq t+ npc , en(t) = τn,kn(t), fn(t) = √n p q P
(
Yn = en(t)

)
.

11 . Démontrer que pour tout n ∈ N∗, en est une fonction en escalier croissante véri-
fiant :

∀ t ∈ R, en(t) ≤ t < en(t) + 1
√
npq
·

Démontrer que
(
en
)
n∈N∗ converge simplement vers une fonction e que l’on préci-

sera.

12 . Montrer que : ∫ τn,kn(b)+1

τn,kn(a)

Φ(t)dt −−−−−→
n→+∞

∫ b

a
Φ(t)dt,

puis vérifier que

P
(
en(a) ≤ Yn ≤ en(b)

)
=
∫ τn,kn(b)+1

τn,kn(a)

fn(t)dt.

13 . Prouver que, pour tout n ∈ N∗, pour tout k ∈ J1, n− 1K :

fn(τn,k) = 1√
2π

√
p q n2

k (n− k)
pk qn−k(

k
n

)k (n−k
n

)n−k 1 + εn
(1 + εk)(1 + εn−k)

,

où
(
εn
)
n∈N∗ est la suite définie à la question 1.

14 . Justifier que, pour tout t ∈ [a, b] :√
p q n2

kn(t) (n− kn(t)) −−−−−→n→+∞
1 et 1 + εn

(1 + εkn(t))(1 + εn−kn(t))
−−−−−→
n→+∞

1.

15 . Montrer que pour tout n ∈ N∗ et pour tout k ∈ J0, nK tels que
max

{√
q
np ,
√

p
nq

}
× |τn,k| < 1 :

pk qn−k(
k
n

)k (n−k
n

)n−k = e
−npζ

(√
q

np
τn,k

)
−nqζ

(
−
√

p
nq
τn,k

)
.

16 . Démontrer que :

pkn(t) qn−kn(t)(kn(t)
n

)kn(t) (n−kn(t)
n

)n−kn(t) −−−−−→n→+∞
e−

t2
2 .
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17 . En conclure que :
∀ t ∈ [a, b], fn(t) −−−−−→

n→+∞
Φ(t),

puis que : ∫ b

a
fn(t)dt −−−−−→

n→+∞

∫ b

a
Φ(t)dt.

18 . Déduire de tout ce qui précède que :

P
(
en(a) ≤ Yn ≤ en(b)

)
−−−−−→
n→+∞

∫ b

a
Φ(t)dt,

puis que :

P
(
a ≤ Yn ≤ b

)
−−−−−→
n→+∞

∫ b

a
Φ(t)dt.

Applications
19 . Montrer que :

∀T ∈ R∗+,
∫ T

−T
Φ(t)dt ≥ 1− 1

T 2 ,

puis en déduire la valeur de
∫ +∞

−∞
Φ(t)dt.

20 . Les suites
(
P (Yn ≤ b)

)
n∈N∗ et

(
P (Yn ≥ a)

)
n∈N∗ sont-elles convergentes ? En pré-

ciser les limites éventuelles.

Généralisation
Soit ϕ une fonction de R dans R, de classe C1 et telle que ϕ′ ne s’annule pas sur R.
Pour tout n ∈ N∗, on note Zn = ϕ ◦ Yn.

21 . Montrer que, si ϕ(R) = R, il existe une unique fonction Ψ continue sur R telle
que :

pour tout (α, β) ∈ R2
, si α ≤ β, alors P (α ≤ Zn ≤ β) −−−−−→

n→+∞

∫ β

α
Ψ(t)dt,

où R désigne l’ensemble constitué des réels, de −∞ et de +∞.

Que dire si l’on ne suppose plus ϕ(R) = R ?

Fin du problème
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Théorème de stabilité de Liapounov

Dans tout le problème, n désigne un entier naturel non nul. On note h.|.i le produit scalaire usuel
de Kn, K pouvant être R ou C, et }.} la norme euclidienne associée.
Si u et v sont deux applications linéaires pour lesquelles la notation u ˝ v a un sens, alors on note
uv l’application u ˝ v. De plus, si u est un endomorphisme d’un espace vectoriel E et k est un entier
naturel non nul, uk désigne l’application u˝¨ ¨ ¨˝u, où u apparaît k fois dans l’écriture. Par convention
u0 “ idE .

On s’intéresse au système différentiel suivant :
"

y1 = 'pyq
yp0q = x0

,

avec x0 P Rn et ' est une application de classe C1 de Rn à valeurs dans Rn, telle que 'p0q “ 0. Cela
entraîne que si x0 “ 0, alors la solution de ce système est la fonction nulle, et donc 0 est un point
d’équilibre. Notons d'p0q l’application différentielle de ' en 0. L’objectif de ce problème est d’établir
une condition suffisante sur le spectre de d'p0q pour assurer la stabilité de l’équilibre en ce point, et
d’obtenir des informations quant à la dynamique des solutions au voisinage de ce point d’équilibre.
Plus précisément, on établit le résultat suivant :

Théorème de Liapounov :
Soit le système différentiel suivant :

"
y1 = 'pyq

yp0q = x0
,

avec x0 P Rn et ' est une application de classe C1 de Rn à valeurs dans Rn, telle que 'p0q “ 0 et
telle que toutes les valeurs propres complexes de d'p0q aient une partie réelle strictement négative.
Alors il existe trois constantes ↵̃, C et � strictement positives telles que :

@x0 P Bp0, ↵̃q, @t P R`, }fx0ptq} § Ce´�t}x0},
où fx0 est l’unique solution du système différentiel et Bp0, ↵̃q désigne la boule ouverte, pour la norme
}.}, de centre 0 et de rayon ↵̃.

Dans une première partie, on étudie une norme sur les endomorphismes des sous-espaces vecto-
riels de Kn. Dans la seconde partie, on établit des résultats sur le système différentiel linéaire, en se
servant des résultats de la partie A. Enfin, la troisième partie est consacrée à la démonstration du
théorème de Liapounov. Cette dernière partie est très largement indépendante des deux premières,
à l’exception du résultat obtenu à la fin de la partie B.

A.. Etude d’une norme sur LpEq
Soit E un sous-espace vectoriel de Kn. Soit u un endomorphisme de E.

1 ô Après avoir justifié l’existence des bornes supérieures, montrer que :

sup
xPE
x‰0

}upxq}
}x} “ sup

xPE
}x}“1

}upxq}.

1



2 ô On note ~u~ “ sup
xPE
x‰0

}upxq}
}x} . Montrer que ~.~ est une norme sur LpEq.

3 ô Montrer qu’il s’agit d’une norme sous-multiplicative, c’est-à-dire que :

@pu, vq P LpEq2, ~uv~ § ~u~.~v~,

et en déduire une majoration de ~uk~, pour tout entier naturel k, en fonction de ~u~ et de
l’entier k.

B.. Etude de la stabilité en 0 du système linéaire

Dans cette partie, a désigne un endomorphisme de Cn.

4 ô Montrer qu’il existe un entier naturel non nul r, des nombres complexes distincts �1, �2, ...,
�r, ainsi que des entiers naturels non nuls m1, m2, ..., mr, tels que :

Cn “
rà

i“1

Ei,

où pour i P J1; rK, Ei “ Kerpa ´ �iidCnqmi .

D’après la question précédente, si x est un élément de Cn, il existe un unique r-uplet px1, . . . , xrq P
E1 ˆ ¨ ¨ ¨ ˆ Er tel que x “

rÿ

i“1

xi. Fixons à présent i P J1; rK. On définit alors les endomorphismes :

pi :

ˇ̌
ˇ̌ Cn Ñ Ei

x fiÑ xi
et qi :

ˇ̌
ˇ̌ Ei Ñ Cn

xi fiÑ xi
.

Par ailleurs, on note ~.~i la norme sur LpEiq introduite à la partie A, à savoir

@u P LpEiq, ~u~i “ sup
xPEi
x‰0

}upxq}
}x} .

On utilisera la notation ~.~c pour LpCnq. Enfin, on notera ai l’endomorphisme piaqi.

5 ô Montrer que, pour tout i P J1; rK, il existe une constante Ci ° 0 telle que :

@u P LpEiq, ~qiupi~c § Ci~u~i.

6 ô Montrer que, pour i P J1; rK, Ei est stable par a.

2



7 ô Soient pi, jq P J1; rK2. Exprimer piqj puis
rÿ

i“1

qipi en fonction des endomorphimes idCn et idEj .

8 ô Montrer que : a “
rÿ

i“1

qiaipi.

9 ô En déduire que :

@t P R, eta “
rÿ

i“1

qie
taipi.

10 ô Montrer par ailleurs que :

@i P J1; rK, @t P R, ~etai~i § |et�i |
mi´1ÿ

k“0

|t|k
k!

~ai ´ �iidEi~k
i .

11 ô En déduire l’existence d’un polynôme P à coefficients réels tel que :

@t P R, ~eta~c § P p|t|q
rÿ

i“1

etRep�iq,

où Repzq désigne la partie réelle d’un nombre complexe z.

12 ô Pour toute matrice A P MnpRq, on notera uA l’endomorphisme canoniquement associé à A
dans Rn et vA l’endomorphisme de Cn canoniquement associé à A, vue comme une matrice de
MnpCq . On conservera la notation ~.~c pour la norme introduite à la partie A sur LpCnq et
on utilisera ~.~r sur LpRnq. Montrer qu’il existe C ° 0 telle que :

@A P MnpRq, @t P R, ~etuA ~r § C~etvA ~c.

Dans la suite de cette partie, on considère u un endomorphisme de Rn, et A P MnpRq sa matrice
dans la base canonique. On notera par ailleurs, SppAq le spectre complexe de A. Notons gx0 l’unique
solution de classe C1 sur R` de : "

y1 = upyq
yp0q = x0

.

13 ô Montrer que :

@x0 P Rn, lim
tÑ`8

}gx0ptq} “ 0 ñ SppAq Ä R˚
´ ` iR.

14 ô On se place dans cette question dans le cas où toutes les valeurs propres de A ont une partie
réelle strictement négative. Montrer alors qu’il existe deux constantes C2 et ↵ strictement
positives telles que :

@t P R`, ~etu~r § C2e
´↵t,

et en déduire une majoration de }gx0ptq} pour t P R`.

3



C.. Démonstration du théorème de Liapounov

On considère dans cette partie une application ' de Rn dans Rn de classe C1 telle que 'p0q “ 0,
et en notant a “ d'p0q, telle que toutes les valeurs propres de a aient une partie réelle strictement
négative.
Soit x0 P Rn. On s’intéresse au système différentiel suivant :

"
y1 = 'pyq

yp0q = x0
.

On admettra l’existence d’une solution de ce système définie sur R`, que l’on notera fx0 .

15 ô Montrer que la fonction

b :

ˇ̌
ˇ̌
ˇ̌
Rn ˆ Rn Ñ R

px, yq fiÑ
ª `8

0

⌦
etapxq|etapyq↵ dt

est bien définie et qu’elle définit un produit scalaire sur Rn.

On notera q la forme quadratique associée à b, c’est-à-dire que pour tout x P Rn, qpxq “ bpx, xq.

16 ô Démontrer alors que :

@x P Rn, dqpxqpapxqq “ 2bpx, apxqq “ ´}x}2.

Pour toute fonction y définie sur R`, on associe la fonction "pyq définie par :

"pyq :
ˇ̌
ˇ̌ R` Ñ Rn

t fiÑ 'pyptqq ´ apyptqq .

17 ô Vérifier l’égalité

@t P R`, qpfx0q1ptq “ ´}fx0ptq}2 ` 2bpfx0ptq, "pfx0ptqqq.

18 ô Prouver l’existence de deux nombres réels ↵ et � strictement positifs tels que, pour tout t P R`,
on ait :

qpfx0ptqq § ↵ ñ ´}fx0ptq}2 ` 2bpfx0ptq, "pfx0qptqq § ´�qpfx0ptqq.

On fixe un tel couple p↵,�q pour la suite de ce problème.

19 ô Montrer alors que :

qpx0q † ↵ ñ @t • 0, qpfx0qptq § e´�tqpx0q.

4



20 ô En déduire l’existence de trois constantes ↵̃, C et � strictement positives telles que :

@x0 P Bp0, ↵̃q, @t P R`, }fx0ptq} § Ce´�
2 t}x0},

où Bp0, ↵̃q désigne la boule ouverte, pour la norme }.}, de centre 0 et de rayon ↵̃.

Fin du problème

5
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Généralisation d’une intégrale de Dirichlet et application

Le but de ce sujet est de calculer l’intégrale de Dirichlet généralisée

⁄ +Œ

0

1 ≠
1

cos(t)
22p+1

t2 dt

et d’utiliser ce calcul pour évaluer une espérance.

Partie I : Calcul d’une intégrale
Dans tout ce qui suit, x est un élément de ]0; 1[ fixé.

1 Û Montrer que pour tout ◊ œ]≠fi ; fi[, la fonction f définie par

f : ]0 ; +Œ[ ≠æ C

t ‘≠æ tx≠1

1 + tei◊

est définie et intégrable sur ]0; +Œ[.

Soit r la fonction définie par

r : ] ≠ fi ; fi[ ≠æ C

◊ ‘≠æ
⁄ +Œ

0

tx≠1

1 + tei◊ dt.

2 Û Montrer que la fonction r est de classe C1
sur ]≠fi ; fi[ et que :

’◊ œ] ≠ fi; fi[, rÕ
(◊) = ≠iei◊

⁄ +Œ

0

tx

(1 + tei◊)2 dt.

Indication : soit — œ]0; fi[, montrer que pour tout ◊ œ [≠—; —] et t œ [0, +Œ[,
|1 + tei◊|2 Ø |1 + tei—|2 = (t + cos(—))

2
+ (sin(—))

2.

Soit g la fonction définie par

g : ] ≠ fi; fi[ ≠æ C

◊ ‘≠æ eix◊
⁄ +Œ

0

tx≠1

1 + tei◊ dt.

1



3 Û Montrer que la fonction g est de classe C1
sur ]≠fi; fi[ et que pour tout ◊ œ]≠fi; fi[,

gÕ
(◊) = ieix◊

⁄ +Œ

0
hÕ

(t) dt,

où h est la fonction définie par

h : ]0; +Œ[ ≠æ C

t ‘≠æ tx

1 + tei◊ ·

Calculer h(0) et

lim
tæ+Œ

h(t).

En déduire que la fonction g est constante sur ] ≠ fi; fi[.

4 Û Montrer que pour tout ◊ œ]0; fi[,

g(◊) sin(x◊) =
1

2i

1
g(≠◊)eix◊ ≠ g(◊)e≠ix◊

2
= sin(◊)

⁄ +Œ

0

tx

t2 + 2t cos(◊) + 1
dt.

5 Û En déduire que :

’◊ œ]0; fi[, g(◊) sin(◊x) =

⁄ +Œ

cotan(◊)

1
u sin(◊) ≠ cos(◊)

2x

1 + u2 du,

où cotan(◊) =
cos(◊)

sin(◊)
.

6 Û Montrer, en utilisant le théorème de convergence dominée, que :

lim
◊æfi≠

g(◊) sin(x◊) =

⁄ +Œ

≠Œ

du

1 + u2 ·

7 Û En déduire que ⁄ +Œ

0

tx≠1

1 + t
dt =

fi

sin(fix)
·

Partie II : Une expression (utile) de la fonction sinus
On rappelle que x est un élément de ]0; 1[ fixé.

8 Û Montrer que ⁄ +Œ

0

tx≠1

1 + t
dt =

⁄ 1

0

3
tx≠1

1 + t
+

t≠x

1 + t

4
dt.

2



9 Û Montrer que :
⁄ 1

0

tx≠1

1 + t
dt =

+Œÿ

k=0

(≠1)
k

k + x
·

10 Û Établir l’identité

⁄ +Œ

0

tx≠1

1 + t
dt =

+Œÿ

n=0

(≠1)
n

n + x
+

+Œÿ

n=0

(≠1)
n

n + 1 ≠ x
·

11 Û En déduire que l’on a

fi

sin(fix)
=

1

x
≠

+Œÿ

n=1

2(≠1)
nx

n2 ≠ x2 ·

12 Û En déduire enfin que :

’y œ]0 ; fi[,
+Œÿ

n=1

2(≠1)
ny sin(y)

y2 ≠ n2fi2 = 1 ≠ sin(y)

y
·

Partie III : Calcul d’une intégrale de Dirichlet généralisée
13 Û Montrer que l’intégrale

⁄ +Œ

0

1 ≠
1

cos(t)
22p+1

t2 dt

converge et que :

⁄ +Œ

0

1 ≠
1

cos(t)
22p+1

t2 dt = (2p + 1)

⁄ +Œ

0

1
cos(t)

22p sin(t)

t
dt.

14 Û Montrer que pour tout n œ Nú
:

⁄ fi
2 +nfi

fi
2 +(n≠1)fi

1
cos(t)

22p sin(t)

t
dt =

⁄ fi
2

0

1
cos(t)

22p 2(≠1)
nt sin(t)

t2 ≠ n2fi2 dt.

15 Û En déduire que :

⁄ +Œ

fi
2

1
cos(t)

22p sin(t)

t
dt =

⁄ fi
2

0

1
cos(t)

22p
3 +Œÿ

n=1

2(≠1)
nt sin(t)

t2 ≠ n2fi2

4
dt.

16 Û En déduire que :

⁄ +Œ

0

1
cos(t)

22p sin(t)

t
dt =

⁄ fi
2

0

1
cos(t)

22p
dt.

Dans le cas p = 0, cette intégrale est communément appelée “Intégrale de Dirichlet”.
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17 Û Montrer que :

(cos(t))2p
=

1

22p

Q

a
A

2p

p

B

+ 2

p≠1ÿ

k=0

A
2p

k

B

cos(2(p ≠ k)t)

R

b .

Indication : On pourra développer

1
eit+e≠it

2

22p
.

18 Û En déduire que :

⁄ +Œ

0

1 ≠
1

cos(t)
22p+1

t2 dt =
fi

2

(2p + 1)!

22p.(p!)2 ·

Partie IV : Calcul de E
3
|Sn|

4

Toutes les variables aléatoires sont définies sur un même espace probabilisé (�, A, P ).

Soient (Xk)kœNú des variables aléatoires indépendantes, de même loi donnée par :

P (X1 = ≠1) = P (X1 = 1) =
1

2
·

Pour tout n œ Nú
, on note Sn =

nq

k=1
Xk.

19 Û Déterminer, pour tout n œ Nú, E(Sn) et V (Sn).

Soient S et T deux variables aléatoires indépendantes prenant toutes deux un nombre

fini de valeurs réelles. On suppose que T et ≠T suivent la même loi.

20 Û Montrer que :

E
1

cos(S + T )

2
= E

1
cos(S)

2
E

1
cos(T )

2
.

21 Û En déduire que pour tout n œ Nú
, et pour tout t œ R :

E
1

cos(tSn)

2
=

1
cos(t)

2n
.

4



22 Û Soient a, b œ R tels que a ”= 0 et |b| Æ |a|. Montrer que

|a + b| = |a| + signe(a) b

où signe(x) = x/|x| pour x réel non nul. En déduire que :

’n œ Nú, E
1
|S2n|

2
= E

1
|S2n≠1|

2
.

23 Û Montrer que pour tout s œ R
⁄ +Œ

0

1 ≠ cos(st)

t2 dt =
fi

2
|s|.

24 Û En déduire que pour tout n œ Nú
:

E
1
|Sn|

2
=

2

fi

⁄ +Œ

0

1 ≠
1

cos(t)
2n

t2 dt.

25 Û Conclure que :

’n œ Nú, E
1
|S2n|

2
= E

1
|S2n≠1|

2
=

(2n ≠ 1)!

22n≠2
1
(n ≠ 1)!

22 ·

Fin du problème
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Inégalités de Khintchine

Notations et résultats admis
— Dans tout le sujet, n est un entier naturel fixé non nul.

— Dans tout le sujet, (Ω,P(Ω),P) est un espace probabilisé fini.

— On note L0(Ω) le R-espace vectoriel des variables aléatoires réelles definies sur
Ω. On notera que si X ∈ L0(Ω), X(Ω) est une partie finie de R. On confondra
systématiquement variable aléatoire nulle et variable aléatoire presque sûrement
nulle.

— Si X ∈ L0(Ω), on note E(X) son espérance.

— Une variable aléatoire X ∈ L0(Ω) suit une loi de Rademacher si :

X(Ω) = {−1, 1} et P (X = 1) = P (X = −1) = 1
2 .

— Si p ∈ [1,+∞[ et X ∈ L0(Ω), on note ∥X∥p = (E (|X|p))1/p. On admet que
l’application X 7→ ∥X∥p est alors une norme sur L0(Ω).

— Sim ∈ N⋆, p ∈ [1,+∞[ et (x1, . . . , xm) ∈ Rm, on définit la quantité ∥(x1, . . . , xm)∥Rm

p

par :

∥(x1, . . . , xm)∥Rm

p =
(

m∑
i=1

|xi|p
)1/p

.

On admet que l’application (x1, . . . , xm) ∈ Rm 7→ ∥(x1, . . . , xm)∥Rm

p est une norme
sur Rm.

— On note R(N) l’ensemble des suites de R nulles à partir d’un certain rang. On
admet alors que l’application ⟨·, ·⟩ définie par

∀u, v ∈ R(N), ⟨u, v⟩ =
+∞∑
i=0

uivi

est un produit scalaire sur R(N).

1



Inégalité de Hölder

Soient p, q ∈]1,+∞[ tels que 1
p

+ 1
q

= 1. Soient X, Y ∈ L0(Ω) que l’on suppose toutes
les deux positives.

1 ▷ Montrer que
∀x, y ∈ R+, xy ≤ xp

p
+ yq

q
.

2 ▷ En déduire l’inégalité suivante (inégalité de Hölder) :

E(XY ) ≤ (E (Xp))1/p (E (Y q))1/q .

On pourra commencer par traiter le cas où E (Xp) = E (Y q) = 1.

3 ▷ Quelle inégalité retrouve-t-on lorsque p = q = 2 ? En donner alors une preuve
directe.

Une inégalité de déviation
Soit (Xi)i∈[[1,n]] une suite de variables aléatoires indépendantes suivant toutes une loi

de Rademacher.

4 ▷ Montrer que
∀t ∈ R, ch (t) ≤ et2/2 .

5 ▷ Montrer que : pour tout t ≥ 0, pour tout (c1, . . . , cn) ∈ Rn,

E
(

exp
(
t

n∑
i=1

ciXi

))
≤ exp

(
t2

2

n∑
i=1

c2
i

)
.

6 ▷ En déduire que : pour tout t ≥ 0, pour tout x ≥ 0 et pour tout (c1, . . . , cn) ∈ Rn,

P
(

exp
(
x

∣∣∣∣∣
n∑

i=1
ciXi

∣∣∣∣∣
)
> etx

)
≤ 2 e−tx exp

(
x2∑n

i=1 c
2
i

2

)
.

On pourra utiliser l’inégalité de Markov.

7 ▷ Montrer que : pour tout t ≥ 0 et pour tout (c1, . . . , cn) ∈ Rn non nul,

P
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2∑n
i=1 c

2
i

)
.
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Inégalités de Khintchine
Soit p ∈ [1,+∞[. Soit (Xi)i∈[[1,n]] une suite de variables aléatoires indépendantes suivant

toutes une loi de Rademacher. Soit (c1, . . . , cn) ∈ Rn.

8 ▷ Soit X une variable aléatoire réelle positive et finie. Soit FX la fonction définie
pour tout t ≥ 0, par

FX (t) = P (X > t) .

Montrer que l’intégrale
∫ +∞

0
tp−1FX (t) dt converge, puis que

E (Xp) = p
∫ +∞

0
tp−1FX (t) dt.

9 ▷ On suppose dans cette question que
n∑

i=1
c2

i = 1. Montrer que l’intégrale
∫ +∞

0
t3e−t2/2dt

converge, puis que

E

( n∑
i=1

ciXi

)4
 ≤ 8

∫ +∞

0
t3e−t2/2dt.

10 ▷ Montrer que

E

( n∑
i=1

ciXi

)2
 =

n∑
i=1

c2
i .

11 ▷ En déduire qu’il existe un réel βp > 0 tel que

E
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣
p)1/p

≤ βpE

( n∑
i=1

ciXi

)2
1/2

.

12 ▷ On suppose p ≥ 2. Montrer que

E

( n∑
i=1

ciXi

)2
1/2

≤ E
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣
p)1/p

.

Dans les questions numérotées de 13 ▷ à 15 ▷, on suppose 1 ≤ p < 2.

13 ▷ Justifier qu’il existe θ ∈ ]0, 1[ tel que 1
2 = θ

p
+ 1 − θ

4 .

3



14 ▷ Montrer que

E

( n∑
i=1

ciXi

)2
 ≤ E

(∣∣∣∣∣
n∑

i=1
ciXi

∣∣∣∣∣
p)2θ/p

E

∣∣∣∣∣
n∑

i=1
ciXi

∣∣∣∣∣
4
(1−θ)/2

.

15 ▷ Montrer qu’il existe α̃p > 0 tel que

α̃pE

( n∑
i=1

ciXi

)2
1/2

≤ E
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣
p)1/p

.

16 ▷ En déduire qu’il existe un réel αp tel que

αpE

( n∑
i=1

ciXi

)2
1/2

≤ E
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣
p)1/p

.

Une première conséquence
Soit (Xi)i∈N une suite de variables aléatoires indépendantes qui suivent toutes une loi

de Rademacher.

17 ▷ Montrer que l’application φ définie sur (L0(Ω))2 par

∀X, Y ∈ L0(Ω), φ(X, Y ) = E(XY )

est un produit scalaire sur L0(Ω).

18 ▷ Soit l’application ψ : u ∈ R(N) 7→
+∞∑
i=0

uiXi. Montrer que ψ prend ses valeurs dans

L0(Ω), puis que ψ conserve le produit scalaire.

19 ▷ On note R = ψ
(
R(N)

)
. Montrer que pour tous p, q ∈ [1,+∞[, les normes ∥·∥p et

∥·∥q sont équivalentes sur R.

Une deuxième conséquence
Dans cette partie, on suppose que n est une puissance de 2 : on écrit n = 2k avec

k ∈ N⋆.
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20 ▷ Soit (a1, . . . , ak) ∈ Rk. Montrer que

α1n ∥(a1, . . . , ak)∥Rk

2 ≤
∑

(ε1,...,εk)∈{−1,1}k

∣∣∣∣∣
k∑

i=1
εiai

∣∣∣∣∣ ≤ β1n ∥(a1, . . . , ak)∥Rk

2 .

On pourra utiliser les questions 11 et 16.

21 ▷ En déduire qu’il existe un sous-espace vectoriel F de dimension k de Rn tel que :

∀x ∈ F, α1
√
n ∥x∥Rn

2 ≤ ∥x∥Rn

1 ≤ β1
√
n ∥x∥Rn

2 .

En ordonnant les n éléments de {−1, 1}k de manière arbitraire, on pourra utiliser

l’application T définie sur Rk par T (a1, . . . , ak) =
(

k∑
i=1

aiεi

)
(ε1,...,εk)∈{−1,1}k

.

Fin du problème
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Sous-groupes compacts du groupe linéaire

Soit E un espace vectoriel euclidien de dimension n > 0 dont le produit scalaire
est noté È , Í et la norme euclidienne associée est notée Î Î. On note L(E) l’espace
vectoriel des endomorphismes de E et GL(E) le groupe des automorphismes de E.
Pour tout endomorphisme u de E, on note ui l’endomorphisme u ¶ u ¶ · · · ¶ u (i
fois) avec la convention u0 = Id

E

(identité). L’ensemble vide est noté ?.

On rappelle qu’un sous-ensemble C de E est convexe si pour tous x, y dans C
et tout ⁄ œ [0, 1], on a ⁄x + (1 ≠ ⁄)y œ C. De plus, pour toute famille a1, ...., a

p

d’éléments de C convexe et tous nombres réels positifs ou nuls ⁄1, ...., ⁄
p

dont la

somme égale 1, on a
pÿ

i=1
⁄

i

a
i

œ C.

Si F est un sous-ensemble quelconque de E, on appelle enveloppe convexe de
F , et on note Conv(F ), le plus petit sous-ensemble convexe de E (au sens de
l’inclusion) contenant F . On note H l’ensemble des (⁄1, ..., ⁄

n+1) œ (R+)n+1 tels

que
n+1ÿ

i=1
⁄

i

= 1 et on admet que Conv(F ) est l’ensemble des combinaisons linéaires

de la forme
n+1ÿ

i=1
⁄

i

x
i

où x1, . . . , x
n+1 œ F et (⁄1, ...., ⁄

n+1) œ H.

L’espace vectoriel des matrices à coe�cients réels ayant n lignes et m colonnes
est noté M

n,m

(R). On notera en particulier M
n

(R) = M
n,n

(R). La matrice trans-
posée d’une matrice A à coe�cients réels est notée AT . La trace de A œ M

n

(R)
est notée Tr(A).

On note GL
n

(R) le groupe linéaire des matrices de M
n

(R) inversibles et O
n

(R)
le groupe orthogonal d’ordre n.

Les parties A, B et C sont indépendantes.

A Préliminaires sur les matrices symétriques

On note S
n

(R) le sous-espace vectoriel de M
n

(R) formé des matrices symé-
triques. Une matrice S œ S

n

(R) est dite définie positive si et seulement si pour
tout X œ M

n,1(R) non nul, on a XT SX > 0. On note S++
n

(R) l’ensemble des
matrices symétriques définies positives.

1. Montrer qu’une matrice symétrique S œ S
n

(R) est définie positive si et seule-
ment si son spectre est contenu dans Rú+.

2. En déduire que pour tout S œ S++
n

(R), il existe R œ GL
n

(R) tel que S =
RT R. Réciproquement montrer que pour tout R œ GL

n

(R), RT R œ S++
n

(R).
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3. Montrer que l’ensemble S++
n

(R) est convexe.

B Autres préliminaires

Les trois questions de cette partie sont mutuellement indépendantes.

4. Soit K un sous-ensemble compact de E et Conv(K) son enveloppe convexe.
On rappelle que H est l’ensemble des (⁄1, ..., ⁄

n+1) œ (R+)n+1 tels queq
n+1
i=1 ⁄

i

= 1. Définir une application „ de Rn+1 ◊ En+1 dans E telle que
Conv(K) = „(H ◊ Kn+1). En déduire que Conv(K) est un sous-ensemble
compact de E.

5. On désigne par g un endomorphisme de E tel que pour tous x, y dans E,
Èx, yÍ = 0 implique Èg(x), g(y)Í = 0.

Montrer qu’il existe un nombre réel positif k tel que pour tout x œ E,
Îg(x)Î = kÎxÎ. (On pourra utiliser une base orthonormée (e1, e2, ..., e

n

) de
E et considérer les vecteurs e1 + e

i

et e1 ≠ e
i

pour i œ {2, . . . , n}.)

En déduire que g est la composée d’une homothétie et d’un endomorphisme
orthogonal.

6. On se place dans l’espace vectoriel euclidien M
n

(R) muni du produit scalaire
défini par ÈA, BÍ = Tr(AT B). (On ne demande pas de vérifier que c’est bien
un produit scalaire.)

Montrer que le groupe orthogonal O
n

(R) est un sous-groupe compact du
groupe linéaire GL

n

(R).

C Quelques propriétés de la compacité

Soit (x
n

)
nœN une suite d’éléments de E pour laquelle il existe un réel Á > 0 tel

que pour tous entiers naturels n ”= p, on ait Îx
n

≠ x
p

Î > Á.

7. Montrer que cette suite n’admet aucune suite extraite convergente.

Soit K un sous-ensemble compact de E. On note B(x, r) la boule ouverte de centre
x œ E et de rayon r.

8. Montrer que pour tout réel Á > 0, il existe un entier p > 0 et x1, . . . , x
p

éléments de E tels que K ™
p€

i=1
B(x

i

, Á). (On pourra raisonner par l’absurde.)

On considère une famille (�
i

)
iœI

de sous-ensembles ouverts de E, I étant un en-

2



semble quelconque, telle que K ™ €

iœI

�
i

.

9. Montrer qu’il existe un réel – > 0 tel que pour tout x œ K, il existe i œ I tel
que B(x, –) soit contenue dans l’ouvert �

i

. (On pourra raisonner par l’ab-
surde pour construire une suite d’éléments de K n’ayant aucune suite extraite
convergente.) En déduire qu’il existe une sous-famille finie (�

i1 , ....�
ip) de la

famille (�
i

)
iœI

telle que K ™
p€

k=1
�

ik
.

Soit (F
i

)
iœI

une famille de fermés de E contenus dans K et d’intersection vide :u
iœI

F
i

= ?.

10. Montrer qu’il existe une sous-famille finie (F
i1 , ...., F

ip) de la famille (F
i

)
iœI

telle que u
p

k=1 F
ik

= ?.

D Théorème du point fixe de Markov-Kakutani

Soit G un sous-groupe compact de GL(E) et K un sous-ensemble non vide,
compact et convexe de E. Pour tout x œ E, on pose N

G

(x) = sup
uœG

Îu(x)Î.

11. Montrer que N
G

est bien définie, et que c’est une norme sur E.

12. Montrer en outre que N
G

vérifie les deux propriétés suivantes :

• pour tous u œ G et x œ E, N
G

(u(x)) = N
G

(x) ;

• pour tous x, y dans E avec x non nul, N
G

(x + y) = N
G

(x) + N
G

(y) si
et seulement si ⁄x = y où ⁄ œ R+.

Pour la deuxième propriété on pourra utiliser le fait que si z œ E, l’applica-
tion qui à u œ G associe ||u(z)|| est continue.

On considère un élément u de L(E) et on suppose que K est stable par u, c’est-
à-dire que u(K) est inclus dans K. Pour tout x œ K et n œ Nú, on pose x

n

=
1
n

n≠1ÿ

i=0
ui(x). Enfin, on appelle diamètre de K le nombre réel ”(K) = sup

x,yœK

Îx ≠ yÎ
qui est bien défini car K est borné.

13. Montrer que la suite (x
n

)
nœNú est à valeurs dans K et en déduire qu’il en

existe une suite extraite convergente vers un élément a de K. Montrer par
ailleurs que pour tout n œ Nú, Îu(x

n

)≠x
n

Î 6 ”(K)
n

. En déduire que l’élément
a de K est un point fixe de u.
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On suppose maintenant que le compact non vide convexe K est stable par tous les
éléments de G. Soit r un entier > 1, u1, u2, ...., u

r

des éléments de G et u = 1
r

rÿ

i=1
u

i

.

14. Montrer que K est stable par u et en déduire l’existence d’un élément a œ K
tel que u(a) = a.

15. Montrer que N
G

11
r

rÿ

i=1
u

i

(a)
2

= 1
r

rÿ

i=1
N

G

1
u

i

(a)
2
. En déduire que pour tout

j œ {1, . . . , r}, on a N
G

3
u

j

(a) +
rÿ

i=1
i”=j

u
i

(a)
4

= N
G

1
u

j

(a)
2

+ N
G

3
rÿ

i=1
i”=j

u
i

(a)
4

.

16. En déduire, pour tout j œ {1, . . . , r}, l’existence d’un nombre réel ⁄
j

> 0 tel
que u(a) = ⁄

j

+ 1
r

u
j

(a).

17. Déduire de la question précédente que a est un point fixe de tous les endo-
morphismes u

i

où i œ {1, . . . , r}.

18. En utilisant le résultat de la question 10, montrer qu’il existe a œ K tel que
pour tout u œ G, u(a) = a.

E Sous-groupes compacts de GLn(R)
On se place à nouveau dans l’espace vectoriel euclidien M

n

(R) muni du produit
scalaire défini par ÈA, BÍ = Tr(AT B). On rappelle que GL

n

(R) désigne le groupe
linéaire et O

n

(R) le groupe orthogonal d’ordre n.
Soit G un sous-groupe compact de GL

n

(R). Si A œ G, on définit l’application
fl

A

de M
n

(R) dans lui-même par la formule fl
A

(M) = AT MA. On vérifie facilement,
et on l’admet, que pour tout M œ M

n

(R), l’application qui à A œ G associe fl
A

(M)
est continue.

On note H = {fl
A

| A œ G}, � = {AT A | A œ G} et K = Conv(�).

19. Montrer que fl
A

œ GL(M
n

(R)) et que H est un sous-groupe compact de
GL(M

n

(R)).

20. Montrer que � est un compact contenu dans S++
n

et que K est un sous-
ensemble compact de S++

n

(R) qui est stable par tous les éléments de H.

21. Montrer qu’il existe M œ K tel que pour tout A œ G, fl
A

(M) = M . En
déduire l’existence de N œ GL

n

(R) tel que pour tout A œ G, NAN≠1 œ
O

n

(R). En déduire enfin qu’il existe un sous-groupe G1 de O
n

(R) tel que
G = N≠1G1N = {N≠1BN ; B œ G1}.
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Soit K un sous-groupe compact de GL
n

(R) qui contient O
n

(R), et N œ GL
n

(R)
tel que NKN≠1 ™ O

n

(R). On désigne par g l’automorphisme de Rn de matrice N
dans la base canonique de Rn, par P un hyperplan de Rn et par ‡

P

la symétrie
orthogonale par rapport à P .

22. Montrer que g ¶ ‡
p

¶ g≠1 est une symétrie, puis que c’est un endomorphisme
orthogonal de Rn. En déduire que g¶‡

P

¶g≠1 = ‡
g(P ). Montrer que g conserve

l’orthogonalité et en déduire K.

Fin du problème
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Racines carrées de matrices complexes : existence et calcul numérique

Dans ce problème, on étudie l’existence de racines carrées d’une matrice

complexe, puis on introduit l’algorithme de Newton pour calculer numérique-

ment l’une de ces racines carrées, avec des considérations sur la convergence et

la stabilité de l’algorithme.

Soit n un entier supérieur ou égal à 2. On note Mn(C) l’ensemble des ma-

trices carrées d’ordre n à coefficients complexes. La matrice identité de Mn(C)

est notée In . On appelle racine carrée de A 2 Mn(C) toute matrice X 2 Mn(C)

solution de l’équation X 2 = A.

On note eC l’ensemble des nombres complexes non nuls qui ne sont pas des

nombres réels négatifs.

A. Quelques exemples

1) Montrer que la matrice A = I2 admet une infinité de racines carrées (on

pourra utiliser la notion de symétrie). Lesquelles sont des polynômes

en A ?

2) Montrer que A =

0

@
0 0 1

0 0 0

0 0 0

1

A admet une infinité de racines carrées et

qu’aucune d’entre elles n’est un polynôme en A.

Dans la question suivante, A 2Mn(R) est une matrice symétrique réelle qui est

définie positive, c’est-à-dire que ses valeurs propres sont strictement positives.

3) Montrer que A admet une unique racine carrée symétrique réelle définie

positive.

(On pourra montrer que deux racines carrées de ce type possèdent les

mêmes valeurs et sous-espaces propres.)

B. Existence et calcul d’une racine carrée

Dans cette partie A 2Mn(C) désigne une matrice inversible quelconque.

4) Soit T = (ti , j )1…i , j…n et U = (ui , j )1…i , j…n 2 Mn(C) deux matrices com-

plexes triangulaires supérieures. On suppose que T est inversible. Mon-

1



trer que l’équation U 2 = T est équivalente au système d’équations sui-

vant :

8
><

>:

u2

i ,i = ti ,i (1 … i … n)

(ui ,i +u j , j )ui , j = ti , j °
j°1X

k=i+1

ui ,k uk, j (1 … i < j … n).

Montrer que T étant donnée, on peut résoudre ce système en choisissant

une solution U telle que ui ,i +u j , j 6= 0 pour tous i , j 2 {1,2, . . . ,n}. (On

pourra considérer les parties réelles et imaginaires des ui ,i .)

5) En déduire que A admet une racine carrée. Si en outre, les valeurs propres

de A appartiennent à eC, montrer que A admet une racine carrée dont les

valeurs propres sont de partie réelle strictement positive.

On admet qu’une telle racine carrée est unique et on la notera
p

A dans
toute la suite du problème.

C. Algorithme de Newton

Pour tout A = (ai , j )1…i , j…n 2Mn(C) on pose

kAk=
s

nX

i=1

nX

j=1

|ai , j |2

et on admet que k ·k définit une norme sur Mn(C). On note B(X ,r ) et B(X ,r ) les

boules, respectivement ouverte et fermée, de centre X 2Mn(C) et de rayon r .

Soit A et B deux matrices quelconques de Mn(C).

6) Montrer que kABk … kAkkBk.

On note mA le polynôme minimal de A.

7) Montrer que la matrice mA(B) est inversible si et seulement si A et B
n’ont aucune valeur propre commune.

En déduire que s’il existe une matrice M 2 Mn(C) non nulle telle que

AM = MB , alors A et B ont au moins une valeur propre commune.

8) Réciproquement, si A et B ont au moins une valeur propre commune,

montrer qu’il existe une matrice M 2 Mn(C) non nulle telle que AM =
MB .

(On pourra considérer une matrice de la forme X Y T
où X et Y sont deux

matrices colonnes bien choisies).

2



Soit F : Mn(C) !Mn(C) l’application définie par la formule F (X ) = X 2 ° A.

9) Montrer que la différentielle dFX de F en X 2Mn(C) est donnée par

8H 2Mn(C), dFX (H) = X H +H X .

Déduire des deux questions précédentes une condition nécessaire et

suffisante pour que dFX soit inversible. Montrer que cette condition

implique que X est inversible.

Dans toute la suite du problème, A désigne une matrice inversible de Mn(C) dont
les valeurs propres appartiennent à eC. On pose X § =

p
A (la matrice

p
A a été

définie à la question 5).

On définit, sous réserve d’existence, une suite (Xk )k2N d’éléments de Mn(C)

par :

(N)

(
X0 2Mn(C)

8k 2N, Xk+1 = Xk ° (dFXk )
°1

°
F (Xk )

¢
.

Dans les questions suivantes, on étudie l’existence et la convergence de la suite

(Xk )k2N.

10) Montrer que dFX § est inversible et qu’il existe r > 0 tel que dFX soit

inversible pour tout X 2B(X §
,r ).

Pour tout Y 2B(X §
,r ) on pose G(Y ) = Y ° (dFY )

°1
°
F (Y )

¢
.

11) Calculer G(X §
) et montrer que pour tout H 2 B(0,r ),

G(X §+H)°G(X §
) = (dFX §+H )

°1
(H 2

)

où °
dFX §+H

¢°1 =
°
I d + (dFX §)

°1 ±dFH
¢°1 ± (dFX §)

°1
.

12) En déduire qu’il existe une constante C > 0 telle que pour tout X de

B(X §
,r ), kG(X )°X §k …CkX °X §k2

. (On pourra utiliser le résultat de la

question 6.)

13) Montrer qu’il existe Ω > 0 tel que pour tout X0 2 B(X §
,Ω) la suite (Xk )k2N

soit bien définie et vérifie, pour tout k 2N,

kXk °X §k … (Ω
p

C )
2

k

C
.

Que peut-on en conclure ?
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D. Forme équivalente

Dans cette partie, on étudie deux algorithmes équivalents à celui de Newton.

On rappelle que A désigne une matrice inversible de Mn(C) dont les valeurs

propres appartiennent à eC. Soit U0 et V0 deux matrices de Mn(C). Sous réserve

d’existence, on note (Uk )k2N la suite de matrices de Mn(C) définie par

(I)

8
>><

>>:

U0 2Mn(C)

Uk+1 =Uk +Hk où Hk 2Mn(C) vérifie

Uk Hk +HkUk = A°U 2

k pour tout k   0

et (Vk )k2N la suite de matrices de Mn(C) définie par

(II)

(
V0 2Mn(C)

Vk+1 = 1

2
(Vk +V °1

k A) pour tout k   0.

14) Si la suite (Xk )k2N est bien définie par (N) et U0 = X0, montrer que la suite

(Uk )k2N est bien définie par (I) et égale à (Xk )k2N. Réciproquement si

la suite (Uk )k2N est bien définie par (I) et X0 =U0, montrer que la suite

(Xk )k2N est bien définie par (N) et égale à (Uk )k2N.

On suppose dorénavant ces conditions vérifiées.

15) On suppose que U0 =V0 commute avec A. Montrer que la suite (Vk )k2N
est bien définie par (II) et que pour tout k 2N, Uk =Vk commute avec A.

(On pourra d’abord montrer que Uk est inversible pour tout k 2 N et

considérer la matrice Gk = 1

2

°
U°1

k A°Uk
¢
.)

On rappelle qu’une matrice symétrique réelle est définie positive si ses valeurs

propres sont strictement positives, et qu’une telle matrice admet une unique

racine carrée définie positive (question 3).

Dans la suite du problème, A désigne une matrice symétrique réelle définie positive.

On considère la suite (Vk )k2N définie par la relation (II) avec V0 = µIn et

µ > 0. On fixe une matrice orthogonale P de sorte que A = PDP T
où D est

une matrice diagonale dont les éléments diagonaux sont les valeurs propres

∏1, . . . ,∏n de A, ordonnées par ordre croissant. On note e1, . . . ,en les vecteurs

propres correspondants.

Soit k 2N et ` 2 {1, . . . ,n} quelconques.

16) Montrer que Vk est symétrique réelle définie positive de mêmes vecteurs

propres e1, . . . ,en que A dont on notera ∏k,1,. . . , ∏k,n les valeurs propres

correspondantes. Trouver une relation entre ∏k+1,` et ∏k,` .
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17) Montrer que

∏k+1,`°
p
∏`

∏k+1,`+
p
∏`

=
√
µ°

p
∏`

µ+
p
∏`

!
2

k+1

.

18) Déterminer la limite de la suite (Vk )k2N.

E. Stabilité

On considère la suite (Vk )k2N définie par la relation (II) avec V0 =
p

A. Soit

"> 0 et i , j deux indices distincts de {1, . . . ,n}. On note C1, . . . , Cn les colonnes de

la matrice orthogonale P définie dans la partie précédente et on pose¢= "Ci C T
j .

Soit cV0 =V0 +¢. La matrice cV1 est calculée par la relation (II) à partir de cV0

et on pose ¢1 = cV1 °V1. Ensuite cV2 est calculé à partir de cV1 par la relation (II),

puis cV3, cV4 . . . de la même manière.

19) Montrer les relations suivantes :

(
(V0 +¢)

°1 =V °1

0
°V °1

0
¢V °1

0

¢1 = 1

2

°
¢°V °1

0
¢V °1

0
A

¢
.

20) Déterminer la valeur de ¥ 2R telle que pour tout k 2N,

cVk =
p

A+¥k¢.

21) On appelle conditionnement de A le rapport entre sa plus grande valeur

propre et sa plus petite. Que doit vérifier le conditionnement de A pour

que la suite (cVk )k 0 converge ?

FIN DU PROBLÈME
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Fonctions de matrices symétriques, continuité et convexité

Dans ce problème, on propose de définir la notion d’image d’une matrice réelle symétrique
par une fonction d’une variable réelle, puis d’étudier quelques propriétés de cette notion
(en particulier, relativement à la continuité et à la convexité). Ces notions présentent un
intérêt en sciences physiques (statistique ou quantique).

Notations
Dans tout le problème :

— n désigne un entier naturel non nul ;

— si p et q sont des entiers naturels, l’ensemble des entiers k tels que p ≤ k ≤ q est
noté Jp, qK ;

— si i et j sont des entiers naturels, alors δi,j = 1 si i = j et δi,j = 0 sinon ;

— Bn désigne l’ensemble des bijections de J1, nK dans lui-même ;

— I est un intervalle de R qui n’est ni vide ni réduit à un singleton ;

— C0(I,R) désigne l’ensemble des fonctions continues de I dans R ;

— une fonction ϕ de I dans R est dite polynomiale s’il existe P un polynôme réel tel
que, pour tout x ∈ I, ϕ(x) = P (x) ;

— Mn(R) (respectivement Dn(R), resp. Sn(R), resp. On(R)), désigne l’ensemble des
matrices carrées (resp. diagonales, resp. symétriques, resp. orthogonales) d’ordre n
à coefficients réels, et on confond un élément deM1(R) avec son unique coefficient ;

— on note Tr l’application trace définie surMn(R) ;

— si M ∈ Mn(R), on note tM sa transposée, on note Sp(M) son spectre réel, et si
(i, j) ∈ J1, nK2, [M ]i,j est le coefficient deM situé à la i-ème ligne et j-ème colonne ;

— on munitMn(R) de sa norme infinie, notée || · || et définie par :

∀M ∈Mn(R), ||M || = max {|[M ]i,j | , 1 ≤ i, j ≤ n} ;

— Sn(I) désigne l’ensemble des matrices de Sn(R) dont le spectre réel est inclus
dans I ;
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— si u = (ui)1≤i≤n ∈ Rn, on dit que ce n-uplet est croissant si pour tout (i, j) ∈
J1, nK2,

(i ≤ j) =⇒ (ui ≤ uj) ;

— si i0 ∈ J1, nK, on appelle nombre d’occurrences de ui0 dans u le cardinal de l’en-
semble {i ∈ J1, nK ; ui = ui0} ;

— enfin Diag
(
(ui)1≤i≤n

)
désigne l’élément D de Dn(R) tel que :

∀ i ∈ J1, nK , [D]i,i = ui

on pourra noter cet élément en extension D = Diag(u1, . . . , un).

Matrices de permutations
Le but de cette partie est d’étudier l’action sur les matrices diagonales de la conjugai-

son par des matrices de permutations. On considère l’application ω de Bn dansMn(R)
définie par :

∀σ ∈ Bn, ∀ (i, j) ∈ J1, nK2 , [ω(σ)]i,j = δi,σ(j).

1 . Démontrer que pour tout (σ, σ′) ∈ B2
n, ω(σ ◦ σ′) = ω(σ)ω(σ′).

2 . Démontrer que ω(Bn) ⊂ On(R).

3 . Soit σ ∈ Bn et (di)1≤i≤n ∈ Rn. Vérifier que :

Diag
(
(di)1≤i≤n

)
ω(σ) = ω(σ)Diag

(
(dσ(i))1≤i≤n

)
.

4 . En déduire l’équivalence suivante concernant deux éléments D et D′ de Dn(R),

i) D et D′ ont le même ensemble de coefficients diagonaux, chacun ayant le
même nombre d’occurrences dans D et D′.

ii) il existe M ∈ ω(Bn) telle que D′ = tMDM .

Fonctions de matrices symétriques
Cette partie a pour objectif de définir une correspondance entre l’espace des fonctions

de I dans R et l’espace des fonctions de Sn(I) dans Sn(R), puis d’en démontrer quelques
propriétés. Dans cette partie, f est une fonction de I dans R.
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5 . Soit S ∈ Sn(I). Justifier l’existence de Ω ∈ On(R) et de (si)1≤i≤n ∈ In tels que :

S = tΩDiag
(
(si)1≤i≤n

)
Ω.

6 . Pour tout (si)1≤i≤n ∈ In, justifier l’existence d’un élément P de R[X] tel que :

∀ i ∈ J1, nK , P (si) = f(si).

Soit S ∈ Sn(I). On suppose que l’on dispose des deux écritures :

S = tΩDiag
(
(si)1≤i≤n

)
Ω et S = tΩ′Diag

(
(s′i)1≤i≤n

)
Ω′,

avec Ω, Ω′ ∈ On(R) et (si)1≤i≤n, (s′i)1≤i≤n ∈ In.

7 . Montrer que l’on a alors :

tΩ′Diag
((
f(s′i)

)
1≤i≤n

)
Ω′ = tΩDiag

((
f(si)

)
1≤i≤n

)
Ω,

puis que tΩDiag
((
f(si)

)
1≤i≤n

)
Ω ∈ Sn(R).

Dans la suite du problème, on note u l’application qui, à toute fonction ϕ de I dans
R, associe u(ϕ) la fonction de Sn(I) dans Sn(R) définie par :

∀S ∈ Sn(I), u(ϕ)(S) = tΩDiag
((
ϕ(si)

)
1≤i≤n

)
Ω,

où S = tΩDiag
(
(si)1≤i≤n

)
Ω, avec Ω ∈ On(R) et (si)1≤i≤n ∈ In.

Cette fonction est bien définie puisque, d’après la question précédente, u(ϕ)(S) ne
dépend pas du choix des matrices Ω ∈ On(R) et D = Diag

(
(si)1≤i≤n

)
avec (si)1≤i≤n ∈

In, tel que S = tΩDΩ.
Enfin, on désigne par v l’application Tr ◦u.

8 . Vérifier que u et v sont linéaires, puis calculer, pour toute fonction ϕ de I dans R
et pour tout x ∈ I, u(ϕ)(xIn).

9 . Étudier l’injectivité et la surjectivité de u.

10 . On suppose que f est polynomiale ; montrer qu’il existe P ∈ R[X] tel que pour
tout S ∈ Sn(I), u(f)(S) = P (S).

Réciproquement, est-il vrai que, s’il existe P ∈ R[X] tel que pour tout S ∈ Sn(I),
u(f)(S) = P (S), alors f est polynomiale ?
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11 . Démontrer que, si (ϕk)k∈N est une suite de fonctions de I dans R qui converge
simplement sur I vers une fonction ϕ, alors les suites

(
u(ϕk)

)
k∈N et

(
v(ϕk)

)
k∈N

convergent simplement sur Sn(I).

Y a-t-il convergence uniforme sur Sn(I) si l’on suppose que (ϕk)k∈N converge
uniformément sur I ?

Norme et convexité
L’objectif de cette partie est de munir Sn(R) d’une nouvelle norme qui permettra de

compléter l’étude des fonctions de matrices symétriques.

12 . On note Σ =
{
X ∈Mn,1(R) ; tXX = 1

}
. Démontrer que si S ∈ Sn(R) on a :

min
(
Sp(S)

)
= min

{ tX SX ; X ∈ Σ
}
et max

(
Sp(S)

)
= max

{ tX SX ; X ∈ Σ
}
.

13 . Montrer finalement que Sn(I) est une partie convexe de Sn(R) et que l’application
ρ, de Sn(R) dans R, qui à toute matrice M ∈ Sn(R) associe

max
{
|λ| ; λ ∈ Sp(M)

}
,

est une norme sur Sn(R).

Continuité des fonctions de matrices symétriques
Dans cette partie, à l’aide de la norme précédemment introduite, on démontre quelques

résultats relatifs à la continuité des fonctions de matrices symétriques. On suppose dé-
sormais Sn(R) muni de la norme ρ et on appelle χ l’application de Sn(R) dans R[X]
qui, à tout élément de Sn(R), associe son polynôme caractéristique.
On définit aussi l’application, notée Sp↑, qui à toute matrice S ∈ Sn(R), associe son

spectre croissant (c’est-à-dire le n-uplet croissant des valeurs propres de S dans lequel le
nombre d’occurrences de chaque valeur propre coïncide avec son ordre de multiplicité).

14 . Démontrer que χ est continue.

On souhaite maintenant prouver que Sp↑ est continue. À cet effet, on introduit un
élément M de Sn(R) et une suite (Mk)k∈N à valeurs dans Sn(R) qui converge vers M .
Si k ∈ N, on note Λk = Sp↑(Mk).

15 . Démontrer que la suite (Λk)k∈N admet une valeur d’adhérence croissante.
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16 . Montrer que, si α est une application strictement croissante de N dans N telle que
la suite (Λα(k))k∈N converge, alors : Λα(k) −−−−→

k→+∞
Sp↑(M).

17 . En déduire que Sp↑ est continue.

18 . Démontrer que On(R) est une partie compacte deMn(R).

19 . Démontrer que, si ϕ ∈ C0(I,R), alors u(ϕ) et v(ϕ) sont continues.

Convexité des fonctions de matrices symétriques
On démontre maintenant quelques résultats relatifs à la convexité des fonctions de

matrices symétriques. Dans cette partie, f est une fonction de I dans R.

20 . On suppose ici que f est convexe sur I et que S ∈ Sn(I). On note

US =
{ tΩS Ω ; Ω ∈ On(R)

}
.

Justifier que pour tout U ∈ US , pour tout k ∈ J1, nK, [U ]k,k ∈ I.

Démontrer alors que :

max
{

n∑
k=1

f
(
[U ]k,k

)
; U ∈ US

}
= v(f)(S).

21 . En déduire que, si f est convexe sur I, pour tout (A,B) ∈ Sn(I)2, pour tout
t ∈ [0, 1], on a :

v(f)
(
(1− t)A+ tB

)
≤ (1− t) v(f)(A) + t v(f)(B).

On dit qu’une fonction ψ de Sn(I) dans R est convexe sur Sn(I) si elle vérifie la
relation :

∀ (A,B) ∈ Sn(I)2, ∀ t ∈ [0, 1], ψ
(
(1− t)A+ tB

)
≤ (1− t)ψ(A) + tψ(B).

22 . Démontrer finalement que la fonction v(f) est convexe sur Sn(I) si, et seulement
si, f est convexe sur I.

Fin du problème
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Fonction de Wallis

Préliminaires
Dans tout le sujet, l’intervalle ] − 1, +∞[ de R est appelé I et σ et f sont les fonctions,

de R dans R, définies par :

σ(x) =
+∞∑
k=1

xk

k2

et

f(x) =
∫ π/2

0
(sin(t))x dt.

On se propose, dans cette épreuve, d’étudier f (domaine de définition, régularité, varia-
tions, convexité, développement éventuel en série entière,...) puis, dans la dernière partie,
de montrer qu’elle est la seule fonction numérique à vérifier certaines propriétés.

1 Calcul de σ(1)
1 ▷ Déterminer le domaine de définition de σ puis justifier que σ est continue sur

celui-ci.

2 ▷ Exhiber deux nombres réels α et β tels que :

∀n ∈ N∗,
∫ π

0
(αt2 + βt) cos(nt) dt = 1

n2 ,

puis vérifier que si t ∈]0, π], alors :

∀n ∈ N∗,
n∑

k=1
cos(kt) =

sin
(

(2n+1)t
2

)
2 sin

(
t
2

) − 1
2 ·

3 ▷ Justifier que, si φ est une application de classe C1 de [0, π] dans R, alors

lim
x→+∞

∫ π

0
φ(t) sin(xt) dt = 0,
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et en conclure que
σ(1) = π2

6 ·

2 Équivalents
4 ▷ Déterminer le domaine de définition de f puis vérifier que

∀x ∈ I, (x + 1)f(x) = (x + 2)f(x + 2). (1)

5 ▷ Justifier que f est de classe C2, décroissante et convexe sur I.

6 ▷ Donner un équivalent simple de f(x) lorsque x tend vers −1.

7 ▷ Montrer que pour tout entier naturel n,

f(n)f(n + 1) = π

2(n + 1)

puis que :
f(x) ∼

x→+∞

√
π

2x
·

8 ▷ Représenter graphiquement f en exploitant au mieux les résultats précédents.

3 Développement en série entière

Si n ∈ N, on note Dn l’intégrale généralisée
∫ π/2

0
(ln(sin(t)))n dt.

9 ▷ Justifier que, si n ∈ N, l’intégrale généralisée Dn est convergente, puis montrer que

D1 =
∫ π/2

0
ln(cos(t)) dt.

10 ▷ Calculer f ′(0) et f ′(1).

2



11 ▷ Vérifier que si n ∈ N∗, alors

(−1)nDn =
∫ +∞

0

un

√
e2u − 1

du,

puis que
Dn ∼

n→+∞
(−1)nn!

12 ▷ Démontrer que f est développable en série entière sur ] − 1, 1[.

4 Convergence de suite de fonctions
On se propose dans cette partie de calculer f ′′(0). Dans ce but, on considère deux

nombres réels strictement positifs a et b, et on pose

ρ = b − a

b + a
·

On appelle Ψ l’application de R dans R définie par :

∀x ∈ R, Ψ(x) = ln(a2 cos2 x + b2 sin2 x).

13 ▷ Montrer que Ψ est de classe C1 sur R, puis que pour tout x ∈ R,

Ψ′(x) = 4
+∞∑
k=1

ρk sin(2kx).

14 ▷ En déduire que pour tout x ∈ R,

Ψ(x) = 2 ln
(

a + b

2

)
− 2

+∞∑
k=1

cos(2kx)
k

ρk.

15 ▷ En conclure que

∫ π

0
Ψ(x)2dx = 4π

(
ln
(

a + b

2

))2

+ 2πσ(ρ2).
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On définit les suites réelles (an)n∈N∗ et (bn)n∈N∗ par

∀n ∈ N∗, an = 1
n + 1 et bn = n

n + 1 ·

16 ▷ Établir la convergence simple de la suite d’applications (Ψn)n∈N∗ , de ]0, π] dans R,
définie par :

∀n ∈ N∗, ∀t ∈]0, π], Ψn(t) = ln(a2
n cos2 t + b2

n sin2 t).

En déduire f ′′(0).

5 Convexité logarithmique
Une application h d’un intervalle non trivial J de R dans R est dite ln-convexe si, et

seulement si, elle est à valeurs dans R∗
+ et ln ◦h est convexe sur J .

17 ▷ Vérifier que f est une application de I dans R ln-convexe.

On souhaite désormais déterminer toutes les applications de I dans R qui sont ln-
convexes et qui vérifient la propriété (1), voir question 4.

On appelle f̃ l’application de R+ dans R, définie par :

∀x ∈ R+, f̃(x) = ln(f(2x)).

18 ▷ Montrer que

∀p ∈ N∗, ∀x ∈ R+, f̃(x + p) = f̃(x) +
p−1∑
k=0

ln
(

2x + 2k + 1
2x + 2k + 2

)
·

19 ▷ On suppose ici que x ∈ R∗
+, (n, p) ∈ (N∗)2 et x ⩽ p. Vérifier que

f̃(n) − f̃(n − 1) ⩽ f̃(n + x) − f̃(n)
x

⩽
f̃(n + p) − f̃(n)

p

et que (f̃(n + x) − f̃(n)) admet une limite lorsque n tend vers +∞.
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20 ▷ En conclure que f est la seule application de I dans R, qui soit ln-convexe, qui
vérifie (1) et telle que

f(0) = π

2 ·

21 ▷ Plus généralement, déterminer, si T ∈ R∗
+, toutes les applications g de ] − T, +∞[

dans R, ln-convexes et vérifiant

∀t ∈] − T, +∞[, (t + T )g(t) = (t + 2T )g(t + 2T ).

22 ▷ Existe-t-il une application h, de R dans R et ln-convexe, vérifiant

∀t ∈ R, (t + T )h(t) = (t + 2T )h(t + 2T ) ?
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Phénomènes de seuil dans les graphes

Dans ce problème, n désigne un entier supérieur à 1.

On désigne par J1, nK l’ensemble des entiers compris entre 1 et n.

Le groupe symétrique des permutations de J1, nK est noté Sn.

L’ensemble des matrices carrées d’ordre n à coe�cients réels est noté Mn(R).

Le cardinal d’un ensemble fini E sera noté card(E) ou |E|.
Un graphe G est un couple (S, A) où :

– S désigne un ensemble fini non vide d’éléments appelés sommets du graphe G

– A désigne un ensemble éventuellement vide d’éléments appelés arêtes du graphe

G, une arête étant un ensemble

Ó
s, s

Õ
Ô

où s et s
Õ
sont des sommets distincts de S.

Un sommet n’appartenant à aucune arête est dit isolé.

Par convention, le graphe vide est le couple d’ensembles vides (?,?).

On peut représenter un graphe non vide dans un plan à l’aide :

– de disques schématisant les sommets du graphe

– de segments reliant ces disques pour les arêtes du graphe.

Par exemple, on a représenté sur la Figure 1, le graphe G = (S, A) avec :

S = J1, 9K et A =

;Ó
1, 2

Ô
,

Ó
1, 5

Ô
,

Ó
1, 6

Ô
,

Ó
2, 3

Ô
,

Ó
2, 9

Ô
,

Ó
2, 8

Ô<

2

6

3

1

4

5

7

8

9

Figure 1 – un graphe à 9 sommets et 6 arêtes

On remarquera que les arêtes sont constituées de deux sommets distincts, ce qui

interdit la présence de «boucles» reliant un sommet à lui-même.

De plus, une même arête ne peut être présente plusieurs fois dans un graphe.
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Un type de graphe utilisé dans ce problème est l’étoile.

Une étoile de centre s et à d branches avec d entier naturel non nul, est un graphe

(S, A) où S =

Ó
s, s1, s2, . . . , sd

Ô
est de cardinal d + 1, et A est du type

A =

;Ó
s, s1

Ô
,

Ó
s, s2

Ô
, . . . ,

Ó
s, sd

Ô<

On a représenté Figure 2 une étoile de centre 4 à 5 branches avec S =

Ó
1, 3, 4, 5, 6, 8

Ô
.

4 8

6

3

1

5

Figure 2 – une étoile à 5 branches

Soient G = (S, A) et G
Õ
= (S

Õ
, A

Õ
) deux graphes ; on dit que :

– G
Õ

est inclus dans G si S
Õ µ S et A

Õ µ A

– G
Õ

est une copie de G s’il existe une bijection ‡ de S
Õ

dans S telle que :

’(s
Õ
, t

Õ
) œ S

Õ ◊ S
Õ

Ó
s

Õ
, t

Õ
Ô

œ A
Õ ≈∆

Ó
‡(s

Õ
), ‡(t

Õ
)

Ô
œ A

Par exemple, le graphe de la Figure 1 contient plusieurs copies d’étoiles à une branche

(correspondant aux segments), plusieurs copies d’étoiles à deux branches, mais aussi une

copie d’une étoile à 3 branches (de centre 1) et une copie d’une étoile à 4 branches (de

centre 2).

Dans une première partie, on étudie quelques propriétés algébriques des matrices d’ad-

jacence.

On introduit ensuite la notion de fonction de seuil en probabilité des graphes aléatoires.

Les deux parties qui suivent la première partie sont indépendantes de celle-ci, et sont

consacrées à l’étude de deux exemples.
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Partie I - Quelques propriétés algébriques des
matrices d’adjacence

Soit G = (S, A) un graphe non vide où |S| = n. Indexer arbitrairement les sommets

de 1 à n revient à choisir une bijection (appelée aussi indexation) ‡ entre J1, nK et S.

On pourra alors noter :

S =

Ó
‡(1), ‡(2), . . . , ‡(n)

Ô

où ‡(i) est le sommet d’index i.

Une indexation ‡ étant choisie, on définit la matrice d’adjacence MG,‡ du graphe G

associée à ‡ comme étant la matrice de Mn(R) dont le coe�cient situé sur la ie ligne

et la je colonne est :

(MG,‡)i,j =

Y
]

[
1 si {‡(i), ‡(j)} œ A

0 sinon

On remarquera d’une part que la matrice MG,‡ est toujours symétrique (car pour tous

i et j entiers,

Ó
i, j

Ô
=

Ó
j, i

Ô
) et d’autre part que les termes de la diagonale sont tous

nuls (pas de boucle dans un graphe).

Voici par exemple la matrice d’adjacence MG,id du graphe G représenté sur la Fi-
gure 1 :

MG,id =

Q

cccca

0 1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

R

ddddb

Soit fl une permutation du groupe symétrique Sn et M = (mi,j)1Æi,jÆn une matrice de

Mn(R).

1 Û Montrer que les matrices M et (mfl(i),fl(j))1Æi,jÆn sont semblables.

En déduire que si G = (S, A) est un graphe non vide, et si ‡ et ‡
Õ

sont deux

indexations de S, alors MG,‡ et MG,‡Õ sont semblables.

2 Û Justifier qu’une matrice d’adjacence d’un graphe non vide est diagonalisable.

3 Û Montrer qu’une matrice d’adjacence d’un graphe non vide n’est jamais de rang 1.

4 Û Montrer qu’une matrice d’adjacence d’un graphe dont les sommets non isolés

forment un graphe de type étoile est de rang 2 et représenter un exemple de graphe

dont la matrice d’adjacence est de rang 2 et qui n’est pas du type précédent.

Si G = (S, A) est un graphe non vide et si ‡ et ‡
Õ

sont des indexations de S, comme

les matrices MG,‡ et MG,‡Õ sont semblables, elles ont même polynôme caractéristique (ce

que l’on ne demande pas de démontrer).
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On notera ‰G ce polynôme caractéristique commun et on dira que ‰G est le polynôme
caractéristique du graphe G.

Par convention, le polynôme caractéristique du graphe vide est le polynôme constant

égal à 1.

5 Û Soit G un graphe et G
Õ

une copie de G. Justifier que ‰G = ‰GÕ .

6 Û Soit G = (S, A) un graphe avec |S| = n Ø 2. On note ‰G(X) = X
n

+

n≠1ÿ

k=0
akX

k
.

Donner la valeur de an≠1 et exprimer an≠2 à l’aide de |A|.

7 Û En déduire le polynôme caractéristique d’un graphe à n sommets dont les sommets

non isolés forment une étoile à d branches avec 1 Æ d Æ n ≠ 1.

Déterminer alors les valeurs et vecteurs propres d’une matrice d’adjacence de ce

graphe.

Si G = (S, A) est un graphe non vide et si s appartient à S, on définit le graphe G \ s

comme étant le graphe dont l’ensemble des sommets est S \
Ó
s

Ô
et l’ensemble des arêtes

est constitué des arêtes de A qui ne contiennent pas s. Voici par exemple Figure 3 un

graphe G et le graphe G \ 2 :

2

4

3

15

6

7

(a) Un graphe G

4

3

15

6

7

(b) Le graphe G \ 2

Figure 3 – un graphe G, et le graphe G \ 2

Soient G1 = (S1, A1) et G2 = (S2, A2) deux graphes non vides tels que S1 et S2 soient

disjoints, c’est-à-dire tels que S1 fl S2 = ?. Soit s1 œ S1 et soit s2 œ S2.

On définit le graphe G = (S, A) avec S = S1 fi S2 et A = A1 fi A2 fi
;Ó

s1, s2
Ô<

.
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8 Û Montrer que :

‰G = ‰G1 ◊ ‰G2 ≠ ‰G1\s1 ◊ ‰G2\s2

9 Û Déterminer le polynôme caractéristique de la double étoile à d1 + d2 + 2 sommets,

constituée respectivement de deux étoiles disjointes à d1 et d2 branches, à qui l’on

a ajouté une arête supplémentaire reliant les deux centres des deux étoiles.

Quel est le rang de la matrice d’adjacence de cette double étoile ?

Dans toute la suite de ce problème, on suppose que n est supérieur à 2 et on notera :

– N l’entier

A
n

2

B

=
n(n ≠ 1)

2

– �n l’ensemble des graphes de sommets S = J1, nK

– pn un réel dépendant de n appartenant à l’intervalle ]0, 1[ et qn = 1 ≠ pn.

Pour tous i et j appartenant à S = J1, nK avec i ”= j, on note X{i,j} l’application de

�n dans

Ó
0, 1

Ô
telle que pour tout G œ �n avec G = (S, A) :

X{i,j}(G) =

Y
]

[
1 si

Ó
i, j

Ô
œ A

0 si

Ó
i, j

Ô
/œ A

Ainsi, (X{i,j} = 1) =

Ó
G œ �n | X{i,j}(G) = 1

Ô
est l’ensemble des graphes de �n dont

Ó
i, j

Ô
est une arête. Réciproquement, on remarquera aussi que pour G = (S, A), on peut

écrire

{G} =
‹

{i,j}œA

(X{i,j} = 1)
‹

{i,j}/œA

(X{i,j} = 0). (1)

On admet l’existence d’une probabilité P sur

1
�n, P(�n)

2
telle que les applications

X{i,j} soient des variables aléatoires de Bernoulli de paramètre pn et indépendantes. On

note En =

1
�n, P(�n), P

2
l’espace probabilisé ainsi construit.

Autrement dit, pour un graphe G donné appartenant à �n, la probabilité qu’une

arête

Ó
i, j

Ô
soit contenue dans G est pn, et les arêtes apparaissent dans G de façon

indépendante.

10 Û Soit G = (S, A) œ �n. Déterminer la probabilité P(

Ó
G

Ô
) de l’événement élémen-

taire

Ó
G

Ô
en fonction de pn, qn, N et a = card(A).

Retrouver alors le fait que P(�n) = 1.
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Dans la suite du problème on étudie la notion de fonction de seuil pour une propriété

Pn vérifiée sur une partie des graphes de �n.

Une fonction de seuil pour la propriété Pn est une suite (tk)kØ2 de réels strictement

positifs tels que :

– si pn = o(tn) alors la limite, lorsque n tend vers +Œ, de la probabilité pour que la

propriété Pn soit réalisée vaut 0

– si tn = o(pn) alors la limite, lorsque n tend vers +Œ, de la probabilité pour que la

propriété Pn soit réalisée vaut 1.

Partie II - Une première fonction de seuil

Section A - Deux inégalités
Soit X une variable aléatoire définie sur un espace probabilisé (�, A, P) à valeurs dans

N et admettant une espérance E(X) et une variance V(X).

11 Û Montrer que P(X > 0) Æ E(X).

12 Û Montrer que si E(X) ”= 0, alors P(X = 0) Æ V(X)
1
E(X)

22 ·

Indication : on remarquera que (X = 0) µ
1
|X ≠ E(X)| Ø E(X)

2
.

Section B - Une fonction de seuil
13 Û Quelle est la loi suivie par la variable aléatoire An représentant le nombre d’arêtes

d’un graphe de �n ?

14 Û Montrer que si pn = o(
1

n2 ) au voisinage de +Œ, alors lim
næ+Œ

P(An > 0) = 0.

15 Û Montrer que si
1

n2 = o(pn) au voisinage de +Œ, alors lim
næ+Œ

P(An > 0) = 1.

16 Û En déduire une propriété Pn et sa fonction de seuil associée.
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Partie III - Fonction de seuil de la copie d’un
graphe

Si G = (S, A) est un graphe, on note sG (resp. aG) le cardinal de S (resp. A).

Soit G0 = (S0, A0) un graphe particulier fixé. Par commodité d’écriture, on note

s0 = sG0 le cardinal de S0, a0 = aG0 le cardinal de A0 et on suppose que s0 Ø 2 et que

a0 Ø 1.

On va étudier la fonction de seuil de la propriété Pn : «contenir une copie de G0».

On note X
0
n

la variable aléatoire réelle discrète définie sur l’espace probabilisé En telle

que pour G œ �n, l’entier X
0
n
(G) est égal au nombre de copies de G0 contenues dans G.

On introduit :

– l’ensemble C0 des copies de G0 dont les sommets sont inclus dans J1, nK :

C0 =

Ó
H | H est une copie de G0 et H = (SH , AH) avec SH µ J1, nK

Ô

– pour un graphe H = (SH , AH) avec SH µ J1, nK, la variable aléatoire suivant une

loi de Bernoulli XH définie par :

’G œ �n XH(G) =

Y
]

[
1 si H µ G

0 sinon

– le réel Ê0 défini par :

Ê0 = min
HµG0
aHØ1

sH

aH

·

17 Û Montrer que

E(XH) = p
aH

n
.

18 Û Soit S
Õ
0 un ensemble fixé de cardinal s0. On note c0 le nombre des graphes dont

l’ensemble des sommets est S
Õ
0 et qui sont des copies de G0.

Exprimer le cardinal de C0 à l’aide de c0 et en utilisant un majorant simple de c0,
justifier que le cardinal de C0 est inférieur à n

s0 .

19 Û Exprimer X
0
n

à l’aide de variables aléatoires du type XH , et montrer que :

E(X
0
n
) =

ÿ

HœC0

P(H µ G) Æ n
s0p

a0
n

.

20 Û En déduire que si pn = o(n
≠Ê0), alors lim

næ+Œ
P(X

0
n

> 0) = 0.

Indication : on pourra introduire H0 µ G0 réalisant le minimum donnant Ê0.

7



On suppose dorénavant que lim
næ+Œ

1
n

Ê0pn

2
= +Œ.

21 Û Montrer que l’espérance E
1
(X

0
n
)

2
2

vérifie :

E
1
(X

0
n
)

2
2

=
ÿ

(H,HÕ)œC2
0

P(H fi H
Õ µ G) =

ÿ

(H,HÕ)œC2
0

p
2a0≠a

HflHÕ
n

.

Pour k œ J0, s0K, on note :

�k =
ÿ

(H,H
Õ)œC2

0
s

HflHÕ =k

P(H fi H
Õ µ G).

22 Û Montrer que �0 Æ
1
E(X

0
n
)

22
.

23 Û Soit k œ J1, s0K ; montrer que :

�k Æ
ÿ

HœC0

A
s0
k

BA
n ≠ s0
s0 ≠ k

B

c0p
2a0
n

p
≠ k

Ê0
n .

24 Û Justifier que pour tous entiers naturels q et r vérifiant 1 Æ q Æ r, on a :

A
r

q

B

r
≠q Ø 1

q!

A

1 ≠ q ≠ 1

q

B
q

.

et en déduire que pour k œ J1, s0K, on a �k = o

31
E(X

0
n

224
lorsque n tend vers

+Œ.

25 Û Montrer que lim
næ+Œ

V(X
0
n
)

1
E(X0

n
)

22 = 0 où V(X
0
n
) désigne la variance de X

0
n
.

26 Û Montrer alors que la suite (k
≠Ê0)kØ2 est une fonction de seuil pour la propriété Pn.

27 Û Retrouver le résultat de la question 16 Û et déterminer une fonction de seuil pour la

propriété «contenir une copie de l’étoile à d branches» avec d entier fixé supérieur

à 1.

Fin du problème
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Critère de Schur-Cohn et généralisation au cas non inversible

Notations et objectifs du problème
Dans tout le problème :

— n désigne un entier naturel non nul et l’ensemble {1, 2, . . . , n} est noté J1, nK.

— Mn(R) (respectivement Sn(R), resp. Dn(R), resp. GLn(R)), désigne l’ensemble
des matrices carrées (resp. symétriques, resp. diagonales, resp. inversibles) réelles
de taille n, et on confond un élément de M1(R) avec son unique coefficient ;

— si M ∈ Mn(R), on note M⊤ sa transposée et pour tout (i, j) ∈ J1, nK2, on note
Mi,j le coefficient de M situé à la i-ème ligne et la j-ème colonne ;

— on note π(M) le nombre de valeurs propres réelles strictement positives de M
comptées avec leur multiplicité, ainsi par exemple π(In) = n ;

— si (u1, . . . , un) ∈ Rn on note Diag(u1, . . . , un) la matrice D ∈ Dn(R) telle que
Di,i = ui pour tout i ∈ J1, nK ;

— si f et g sont deux polynômes non simultanément nuls, on note f ∧ g leur PGCD ;

— si f est un polynôme, on note également f sa fonction polynomiale associée ;

— on note σ(f) le nombre de racines réelles de f appartenant à l’intervalle ] − 1; 1[,
comptées avec leur multiplicité, ainsi par exemple σ(X2(X − 1)(X + 1)) = 2 ;

— on dit que le réel α est une racine stable de f si α ̸= 0 et f(α) = f(α−1) = 0 ;

— si f est un polynôme de degré m ∈ N et s’écrit

f = amXm + am−1X
m−1 + · · · + a1X + a0 =

m∑
k=0

akXk,

on note f0 son polynôme réciproque, défini par

f0 = a0X
m + a1X

m−1 + · · · + am−1X + am =
m∑

k=0
am−kXk;

— on note U = (1 0 · · · 0)⊤ la matrice colonne de taille n dont le premier
coefficient est égal à 1 et les autres à 0 ;

1



— on note S la matrice de Mn(R) dont tous les coefficients sont nuls sauf les n − 1
coefficients situés juste au-dessus de la diagonale, égaux à 1 :

∀(i, j) ∈ J1, nK2 Si,j = δi+1,j (symbole de Kronecker);

— pour tout polynôme réel f on définit la matrice J(f) ∈ Sn(R) par

J(f) = f0(S)⊤f0(S) − f(S)⊤f(S).

Dans ce problème p désigne un polynôme à coefficients réels, scindé sur R de degré n,

p = anXn + an−1X
n−1 + · · · + a1X + a0 =

n∑
k=0

akXk, an ̸= 0,

et on note α1 ≤ · · · ≤ αn ses racines toutes réelles, comptées avec leurs multiplicités.

L’objectif du problème est d’établir l’égalité σ(p) = π(J(p)) (critère de Schur-Cohn)
dans le cas où J(p) est inversible, puis de proposer une démarche générale permettant
de compter les racines de p dans ] − 1; 1[, lorsque la matrice J(p) n’est pas inversible.

Ces résultats, généralisables aux polynômes à coefficients complexes, sont utiles dans
l’étude de la stabilité de certains systèmes dynamiques.

A. Propriétés du polynôme p0 et stabilité des racines
1 ▷ Montrer que p0, le polynôme réciproque de p, vérifie

∀x ∈ R∗ p0(x) = xnp(1/x)

et en déduire que
p0 = an

n∏
j=1

(1 − αjX).

2 ▷ Montrer que p ∧ p0 = 1 si et seulement si p ne possède pas de racine stable.

Jusqu’à la fin de la partie A. on suppose que toutes les racines de p sont stables et
d’ordre de multiplicité 1.

3 ▷ Justifier qu’il existe λ ∈ {−1, 1} tel que p = λp0.

Soit h le polynôme de degré n défini par h(X) = Xp′, où p′ est le polynôme dérivé de p.
On note h0 et (p′)0 les polynômes réciproques respectifs de h et p′.
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4 ▷ Montrer que h = np − λ(p′)0, puis que h0 = λ(np − Xp′).

5 ▷ Vérifier que p′ est scindé sur R puis montrer que h ∧ h0 = 1 et en déduire que p′

n’admet pas de racine stable.

B. Liberté d’une famille de polynômes
Pour tout entier j ∈ J1, nK, on note fj le polynôme

fj = an(1−αnX) · · · (1−αj+1X)(X −αj−1) · · · (X −α1) = an

n∏
k=j+1

(1−αkX)
j−1∏
k=1

(X −αk)

avec, selon les conventions habituelles,
n∏

k=n+1
(1 − αkX) =

0∏
k=1

(X − αk) = 1.

6 ▷ Montrer que s’il existe deux entiers i, k tels que 1 ≤ i < k ≤ n et αiαk = 1, alors
αi est racine de chaque polynôme fj, où j ∈ J1, nK, et que la famille (f1, . . . , fn)
est liée.

Jusqu’à la fin de la partie B. on suppose qu’aucune racine de p n’est stable.
On note E le sous-espace vectoriel des fractions rationnelles à coefficients réels dont les
éventuels pôles sont des inverses de racines de p (on ne demande pas de justifier que
E est un espace vectoriel). Les éléments de E sont donc les fractions rationnelles dont
le dénominateur peut s’écrire comme produit fini, éventuellement égal à 1, de facteurs
(1 − αiX) où 1 ≤ i ≤ n.

Pour tout j ∈ J1, nK, on définit la fraction rationnelle gj ∈ E par

gj = fj
n∏

i=1
(1 − αiX)

et l’application Pj, qui à une fraction rationnelle f ∈ E associe la fraction rationnelle

Pj(f) =
(1 − αjX)f − (1 − α2

j )f(αj)
X − αj

.

7 ▷ Montrer que pour tout j ∈ J1, nK, l’application Pj est un endomorphisme de E et
déterminer son noyau.
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8 ▷ Pour tout j ∈ J1, nK et tout g ∈ E, calculer Pj

(
(X − αj)g
1 − αjX

)
.

9 ▷ En déduire que la famille (f1, . . . , fn) est libre.

C. Expression de la matrice J(p)
10 ▷ Montrer que la famille ((S⊤)iU)0≤i≤n−1 est une base de Mn,1(R). Les matrices S

et U ont été définies dans la partie préliminaire du problème.

Pour tout entier j ∈ J1, nK, on définit les matrices

Bj = S − αjIn et Cj = In − αj S.

11 ▷ Démontrer que
J(p) =

n∑
j=1

fj(S)⊤(C⊤
j Cj − B⊤

j Bj)fj(S).

Les polynômes f1, . . . , fn ont été définis dans le préambule de la partie B.

12 ▷ Soit j ∈ J1, nK. Montrer que C⊤
j Cj − B⊤

j Bj = (1 − α2
j )UU⊤.

13 ▷ On note D la matrice diagonale de taille n :
D = Diag((1 − αj

2)1≤j≤n)
et V ∈ Mn(R) la matrice telle que pour tout j ∈ J1, nK, la j-ème colonne de V
est Vj = fj(S⊤) U. Montrer que

J(p) = V DV ⊤.

14 ▷ En déduire, à l’aide de la question 6, que si p possède une racine stable alors J(p)
n’est pas inversible.

D. Cas où J(p) est inversible : critère de Schur-Cohn
On rappelle que si M ∈ Mn(R) alors π(M) désigne le cardinal de l’ensemble de ses

valeurs propres strictement positives, comptées avec leurs multiplicités.

On munit Mn,1(R) de sa structure euclidienne canonique. On dit qu’un sous-espace
vectoriel F de Mn,1(R) vérifie la condition (CM) quand

∀X ∈ F \ {0n,1} X⊤MX > 0.
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On note d(M) la dimension maximale d’un sous-espace vectoriel F de Mn,1(R) véri-
fiant la condition (CM), c’est-à-dire :

d(M) = max{dim F | F s.e.v de Mn,1(R) vérifiant (CM)}.

15 ▷ Soit deux matrices A, B ∈ Mn(R) telles qu’il existe une matrice P ∈ GLn(R)
vérifiant A = P ⊤BP . Montrer que d(B) ≥ d(A) puis que d(B) = d(A).

16 ▷ Pour toute matrice M ∈ Sn(R) construire un sous-espace vectoriel FM de Mn,1(R)
de dimension π(M) vérifiant la condition (CM). On a donc d(M) ≥ π(M).

17 ▷ On veut montrer que pour toute matrice M ∈ Sn(R) on a π(M) = d(M). Par
l’absurde, en supposant l’existence d’un sous-espace vectoriel G de Mn,1(R) de
dimension dim G > π(M) vérifiant la condition (CM), montrer dim(F ⊥

M ∩ G) ≥ 1,
en déduire une contradiction et conclure.

18 ▷ Démontrer le critère de Schur-Cohn :

Si J(p) est inversible alors p ne possède aucune racine stable et σ(p) = π(J(p)).

E. Condition nécessaire et suffisante d’inversibilité
19 ▷ Montrer, à l’aide des questions 9 et 13, que si p n’admet pas de racine stable et si

J(p) n’est pas inversible alors il existe un polynôme q non nul à coefficients réels
de degré au plus n − 1 tel que q(S⊤) U = 0n,1.

20 ▷ En déduire que la matrice J(p) est inversible si et seulement si p n’admet aucune
racine stable.

F. Un cas particulier
On suppose dans cette partie, comme on l’a fait aux questions 3 à 5, que toutes les
racines de p sont stables et de multiplicité 1 et on note h = Xp′ (où p′ est le polynôme
dérivé de p) et h0 le polynôme réciproque de h. On rappelle que, d’après la question 3,
il existe un réel λ ∈ {−1, 1} tel que p = λp0.

21 ▷ Montrer que J(h) est inversible.

22 ▷ Montrer qu’il existe un réel η > 0 tel que pour tout r ∈]1−η; 1[, le polynôme p(rX)
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est scindé, admet exactement σ(p) racines à l’intérieur de l’intervalle ] − 1; 1[ et ne
possède aucune racine stable.

Pour tout réel r > 0, on note F (r) = J(p(rX)).

23 ▷ Montrer que

lim
r→1−

π

(
n

2(r − 1)F (r)
)

= n − σ(p).

24 ▷ Justifier que l’application F : R∗
+ → Sn(R) est dérivable et que

F ′(1) = 2n(p(S))⊤p(S) − 2S⊤(p′(S))⊤p(S) − 2(p(S))⊤p′(S)S.

25 ▷ En déduire, à l’aide des résultats de la question 4, que
n

2(r − 1)F (r) =
r→1

J(h) + o(1).

On admet que l’application définie sur Sn(R) à valeurs dans Rn qui à une matrice symé-
trique associe le n-uplet de ses valeurs propres réelles comptées avec leurs multiplicités,
rangées dans l’ordre décroissant, est continue.

26 ▷ En déduire que σ(p) = n − 1 − π(J(p′)).

G. Méthode générale.
On se place dans le cas général, sans disposer d’information sur la stabilité et la multi-
plicité des racines de p, et on cherche à calculer σ(p).
On construit les deux polynômes f et g vérifiant f = p ∧ p0 et p = fg.

27 ▷ Montrer que σ(g) = π(J(g)).

28 ▷ Proposer une méthode permettant de construire un nombre fini (éventuellement
nul) de polynômes g1, . . . , gℓ, dont les racines sont stables et de multiplicité 1, tels
que f = g1g2 · · · gℓ. Exprimer σ(p) à l’aide de n, deg g, π(J(g)), ℓ, π(J(g)) ainsi que
π(J(g′

1)), . . . , π(J(g′
ℓ)).

Fin du problème
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Formule asymptotique de Hardy et Ramanujan

L’objectif de ce problème est l’étude asymptotique du nombre de partitions d’un entier
naturel n, c’est-à-dire du nombre de décompositions de n en somme d’entiers naturels non
nuls (sans tenir compte de l’ordre des termes). Une définition rigoureuse de ce nombre,
noté pn, est donnée en début de partie B. Dans la partie A, on introduit une fonction P

de variable complexe ; dans la fin de la partie B on démontre qu’il s’agit de la somme, sur
le disque unité ouvert de C, de la série entière q

nØ0 pnz
n. L’étude de P au voisinage de

1 permet alors, dans les parties suivantes, de progresser vers l’obtention d’un équivalent
simple de la suite (pn)nœN (formule asymptotique de Hardy et Ramanujan).

Tout au long du problème, le disque unité ouvert de C sera noté
D = {z œ C : |z| < 1}.

Dans tout l’énoncé, on utilisera la dénomination « variable aléatoire réelle » pour signifier
« variable aléatoire discrète réelle ».

On admettra aussi les deux identités classiques suivantes :
+Œÿ

n=1

1
n2 = fi

2

6 et
⁄

R
e

≠ u2
2 du =

Ô
2fi.

A. Fonctions L et P

1 Û Soit z œ D. Montrer la convergence de la série
ÿ

nØ1

z
n

n
· Préciser la valeur de sa

somme lorsque z œ ]≠1, 1[. On notera

L(z) :=
+Œÿ

n=1

z
n

n
·

2 Û Soit z œ D. Montrer que la fonction t œ [0, 1] ‘æ L(tz) est dérivable et donner une
expression simple de sa dérivée. En déduire que t ‘æ (1 ≠ tz) e

L(tz) est constante
sur [0, 1] et conclure que

exp(L(z)) = 1
1 ≠ z

·

3 Û Montrer que |L(z)| Æ ≠ ln(1 ≠ |z|) pour tout z dans D. En déduire la convergence
de la série q

nØ1
L(zn) pour tout z dans D. Dans la suite, on notera, pour z dans D,

P (z) := exp
C+Œÿ

n=1
L(zn)

D

.

On remarque, en vertu de la question précédente et des propriétés de l’exponen-
tielle, que

’z œ D, P (z) ”= 0 et P (z) = lim
Næ+Œ

NŸ

n=1

1
1 ≠ zn

·

1



B. Développement de P en série entière
Pour (n, N) œ N ◊ Nú, on note Pn,N l’ensemble des listes (a1, . . . , aN) œ NN telles

que
Nq

k=1
kak = n. Si cet ensemble est fini, on note pn,N son cardinal.

4 Û Soit n œ N. Montrer que Pn,N est fini pour tout N œ Nú, que la suite (pn,N)NØ1
est croissante et qu’elle est constante à partir du rang max(n, 1).

Dans toute la suite, on notera pn la valeur finale de (pn,N)NØ1.

5 Û Montrer par récurrence que

’N œ Nú
, ’z œ D,

NŸ

k=1

1
1 ≠ zk

=
+Œÿ

n=0
pn,Nz

n
.

6 Û Soit z œ D. On convient que pn,0 = 0 pour tout n œ N. En examinant la somma-
bilité de la famille ((pn,N+1 ≠ pn,N)zn)(n,N)œN2 , démontrer que

P (z) =
+Œÿ

n=0
pnz

n
.

En déduire le rayon de convergence de la série entière q
n

pnx
n.

7 Û Soit n œ N. Montrer que pour tout réel t > 0,

pn = e
nt

2fi

⁄ fi

≠fi
e

≠in◊
P (e≠t+i◊) d◊,

si bien que

pn = e
nt

P (e≠t)
2fi

⁄ fi

≠fi
e

≠in◊ P (e≠t+i◊)
P (e≠t) d◊. (1)

Dans le reste du problème, l’objectif est d’obtenir un équivalent du nombre pn lorsque
n tend vers +Œ. Cet équivalent sera obtenu via un choix approprié de t en fonction de
n dans la formule (1).
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C. Contrôle de P

8 Û Soit x œ [0, 1[ et ◊ œ R. En utilisant la fonction L, montrer que
----

1 ≠ x

1 ≠ xei◊

---- Æ exp
1
≠(1 ≠ cos ◊) x

2
.

En déduire que pour tout x œ [0, 1[ et tout réel ◊,
-----
P (xe

i◊)
P (x)

----- Æ exp
3

≠ 1
1 ≠ x

+ Re
3 1

1 ≠ xei◊

44
.

9 Û Soit x œ
Ë

1
2 , 1

Ë
et ◊ œ R. Montrer que

1
1 ≠ x

≠ Re
3 1

1 ≠ xei◊

4
Ø x(1 ≠ cos ◊)

(1 ≠ x)
1
(1 ≠ x)2 + 2x(1 ≠ cos ◊)

2 ·

En déduire que
-----
P (xe

i◊)
P (x)

----- Æ exp
A

≠ 1 ≠ cos ◊

6(1 ≠ x)3

B

ou que
-----
P (xe

i◊)
P (x)

----- Æ exp
A

≠ 1
3(1 ≠ x)

B

.

D. Intermède : quelques estimations de sommes
On fixe dans cette partie un réel – > 0 et un entier n Ø 1. Sous réserve d’existence,

on pose

Sn,–(t) :=
+Œÿ

k=1

k
n
e

≠kt–

(1 ≠ e≠kt)n
·

On introduit aussi la fonction

Ïn,– : x œ Rú
+ ‘æ x

n
e

≠–x

(1 ≠ e≠x)n
,

qui est évidemment de classe CŒ.

10 Û Montrer que Ïn,– et Ï
Õ
n,– sont intégrables sur ]0, +Œ[.

11 Û Montrer, pour tout réel t > 0, l’existence de Sn,–(t), sa positivité stricte, et l’iden-
tité ⁄ +Œ

0
Ïn,–(x) dx = t

n+1
Sn,–(t) ≠

+Œÿ

k=0

⁄ (k+1)t

kt
(x ≠ kt) Ï

Õ
n,–(x) dx.

En déduire que

Sn,–(t) = 1
tn+1

⁄ +Œ

0

x
n
e

≠–x

(1 ≠ e≠x)n
dx + O

3 1
tn

4
quand t æ 0+.
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12 Û Démontrer, sans utiliser ce qui précède, que
⁄ +Œ

0

xe
≠x

1 ≠ e≠x
dx = fi

2

6 ·

Dans le reste du problème, nous admettrons le résultat suivant (il peut être démontré
par une méthode similaire) :

⁄ +Œ

0

x
2
e

≠x

(1 ≠ e≠x)2 dx = fi
2

3 ·

E. Contrôle des fonctions caractéristiques
Étant donné une variable aléatoire réelle X sur un espace probabilisé (�, A, P), ainsi

qu’un réel ◊, les variables aléatoires réelles cos(◊X) et sin(◊X) sont d’espérance finie
puisque bornées : on introduit alors le nombre complexe

�X(◊) := E(cos(◊X)) + i E(sin(◊X)).

13 Û Soit X une variable aléatoire réelle. Montrer que |�X(◊)| Æ 1 pour tout réel ◊.

Dans les questions 14 Û à 18 Û, on se donne une variable aléatoire réelle X suivant une
loi géométrique, de paramètre p œ ]0, 1[ arbitraire. On pose q = 1 ≠ p.

14 Û Montrer que pour tout (a, b) œ R2 et tout réel ◊,

�aX+b(◊) = p e
i(a+b)◊

1 ≠ qeia◊
·

15 Û Montrer que pour tout k œ N, la variable aléatoire X
k est d’espérance finie. Mon-

trer que �X est de classe CŒ sur R et que �(k)
X (0) = i

kE(Xk) pour tout k œ N.

16 Û Montrer qu’il existe une suite (Pk)kœN de polynômes à coe�cients dans C, indé-
pendante de p, telle que

’◊ œ R, ’k œ N, �(k)
X (◊) = p i

k
e

i◊ Pk(qe
i◊)

(1 ≠ qei◊)k+1 et Pk(0) = 1.
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17 Û En déduire qu’il existe une suite (Ck)kœN de réels strictement positifs, indépendante
de p, telle que

’k œ N,

----- E(Xk) ≠ 1
pk

----- Æ Ck q

pk
·

18 Û En déduire qu’il existe un réel K > 0 indépendant de p tel que

E
1
(X ≠ E(X))4

2
Æ K q

p4 ·

Dans les questions 19 Û à 21 Û, on se donne une variable aléatoire réelle centrée Y telle
que Y

4 soit d’espérance finie.

19 Û Montrer successivement que Y
2 et |Y |3 sont d’espérance finie, et que

E(Y 2) Æ (E(Y 4))1/2 puis E(|Y |3) Æ
1
E(Y 4)

23/4
.

20 Û Montrer, pour tout réel u, l’inégalité
----e

iu ≠ 1 ≠ iu + u
2

2

---- Æ |u|3

6 ·

En déduire que pour tout réel ◊,
----�Y (◊) ≠ 1 + E(Y 2) ◊

2

2

---- Æ |◊|3

3
1
E(Y 4)

23/4
.

21 Û Conclure que pour tout réel ◊,
----�Y (◊) ≠ exp

3
≠E(Y 2) ◊

2

2

4---- Æ |◊|3

3
1
E(Y 4)

23/4
+ ◊

4

8 E(Y 4).

F. Convergence vers une gaussienne
Étant donné un réel t > 0, on pose, suivant les notations de la partie C,

mt := S1,1(t) et ‡t :=
Ò

S2,1(t).

Étant donné des réels t > 0 et ◊, on pose

h(t, ◊) = e
≠imt◊

P

1
e

≠t
e

i◊
2

P (e≠t) ·

5



Étant donné des réels t > 0 et u, on pose

’(t, u) = exp
A

i
u

‡t

1
mt ≠ fi

2

6t2

2B

et j(t, u) = ’(t, u) h

3
t,

u

‡t

4
.

22 Û Soit n œ Nú ainsi que des complexes z1, . . . , zn, u1, . . . , un tous de module inférieur
ou égal à 1. Montrer que

-----

nŸ

k=1
zk ≠

nŸ

k=1
uk

----- Æ
nÿ

k=1
|zk ≠ uk|.

23 Û Soit ◊ œ R et t œ Rú
+. On considère, pour tout k œ Nú, une variable aléatoire Zk

suivant la loi G(1 ≠ e
≠kt), et on pose Yk = k(Zk ≠ E(Zk)). Démontrer que

h(t, ◊) = lim
næ+Œ

nŸ

k=1
�Yk

(◊).

En déduire, à l’aide en particulier de la question 21 Û, l’inégalité
---h(t, ◊) ≠ e

≠ ‡2
t ◊2
2

--- Æ K
3/4|◊|3 S3,3/4(t) + K ◊

4
S4,1(t). (2)

On rappelle que la constante K a été introduite à la question 18 Û, les quantités
Sn,–(t) dans la partie D.

24 Û Montrer que ‡t ≥ fiÔ
3 t3/2 quand t tend vers 0+. En déduire, pour tout réel u, que

j(t, u) ≠æ
tæ0+

e
≠u2/2

.

25 Û Montrer qu’il existe un réel – > 0 tel que

’◊ œ [≠fi, fi], 1 ≠ cos ◊ Ø – ◊
2
.

À l’aide de la question 9 Û, en déduire qu’il existe trois réels t0 > 0, — > 0 et “ > 0
tels que, pour tout t œ ]0, t0] et tout ◊ œ [≠fi, fi],

|h(t, ◊)| Æ e
≠—(‡t◊)2 ou |h(t, ◊)| Æ e

≠“(‡t|◊|)2/3
.

26 Û Conclure que ⁄ fi‡t

≠fi‡t

j(t, u) du ≠æ
tæ0+

Ô
2fi.
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G. La conclusion

Dans cette dernière partie, on admet que P (e≠t) ≥
Û

t

2fi
exp

A
fi

2

6t

B

quand t tend vers

0+.

27 Û En appliquant la formule (1) à t = fiÔ
6n

, démontrer que

pn ≥
exp

1
fi

Ò
2n
3

2

4
Ô

3 n
quand n æ +Œ,

formule découverte par Hardy et Ramanujan en 1918.

Fin du problème
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Autour des exponentielles de matrices

Dans tout le sujet, le corps K sera R ou C, et n est un entier naturel supérieur
ou égal à 2.

On note ‖ · ‖ une norme sur l’espace vectorielMn(K), vérifiant les propriétés

‖In‖ = 1 . (N1)

∀(A,B) ∈
(
Mn(K)

)2 ‖AB‖ ≤ ‖A‖ ‖B‖ . (N2)

On rappelle que l’exponentielle d’une matrice A deMn(K) est la matrice, notée
eA, ou bien exp(A), définie par

eA =
+∞∑
k=0

Ak

k! .

On rappelle que, pour tout A ∈Mn(K), l’application

fA : R →Mn(K) , t 7→ fA(t) = etA

est de classe C1 sur R, avec

∀t ∈ R f ′A(t) = A etA = etA A .

On admettra que, si A et B sont deux matrices semblables de Mn(K), plus
précisément si on a B = P−1AP avec P ∈ GLn(K), alors

eB = P−1 eA P.

Si A et B sont deux matrices deMn(K), on définit leur crochet de Lie par

[A,B] = AB −BA .

La partie 4 du problème est indépendante des parties 2 et 3.

1 Questions préliminaires
On se donne deux matrices A et B dans Mn(K). On suppose dans les

questions 1) et 2) que A et B commutent.

1 . Montrer que les matrices A et eB commutent.

1



On définit une application

g : R →Mn(K)
t 7−→ g(t) = et(A+B) e−tB.

2 . Montrer que l’application g, et l’application fA définie en préambule, sont
solutions d’un même problème de Cauchy. En déduire une démonstration
de la relation

∀t ∈ R et(A+B) = etAetB . (1)

3 . Réciproquement, on suppose la relation (1) satisfaite. En dérivant deux fois
cette relation par rapport à la variable réelle t, montrer que les matrices
A et B commutent.

4 . Pour toute matrice A ∈Mn(K), prouver la relation
∥∥eA∥∥ ≤ e‖A‖.

5 . Montrer que det(eA) = etr(A).

2 Formule de Trotter-Kato
Dans cette partie, on note A et B deux matrices quelconques de Mn(K).

L’objectif est de prouver la relation

lim
k→+∞

(
e
A
k e

B
k

)k
= eA+B ou lim

k→+∞

(
exp

(A
k

)
exp

(B
k

))k
= exp(A+B) . (2)

Pour tout k entier naturel non nul, on pose

Xk = exp
(A
k

)
exp

(B
k

)
et Yk = exp

(A+B

k

)
·

6 . Prouver les majorations

∀k ∈ N∗ ‖Xk‖ ≤ exp
(‖A‖+ ‖B‖

k

)
et ‖Yk‖ ≤ exp

(‖A‖+ ‖B‖
k

)
.

On introduit la fonction

h : R −→Mn(K)
t 7−→ h(t) = etAetB − et(A+B)

2



7 . Montrer que
Xk − Yk = O

( 1
k2

)
lorsque k → +∞ .

8 . Vérifier la relation

Xk
k − Y k

k =
k−1∑
i=0

Xi
k(Xk − Yk)Y k−i−1

k .

En déduire la relation (2).

3 Vers les algèbres de Lie
Dans cette partie, K = R. Pour tout n entier naturel, n ≥ 2, on introduit

l’ensemble, dit groupe spécial linéaire :

SLn(R) =
{
M ∈Mn(R) | det(M) = 1

}
.

Si G est un sous-groupe fermé de GLn(R), on introduit son algèbre de Lie :

AG =
{
M ∈Mn(R) | ∀t ∈ R etM ∈ G

}
.

L’ensemble SLn(R), ainsi que le groupe orthogonal On(R), sont bien des sous-
groupes fermés de GLn(R). On ne demande pas de le démontrer.

9 . Déterminer AG lorsque G = SLn(R).

10 . Si G = On(R), montrer que AG = An(R), ensemble des matrices antisy-
métriques.

Dans les questions 11) à 14), G est un sous-groupe fermé quelconque
de GLn(R).

11 . En utilisant la partie 2, montrer que AG est un sous-espace vectoriel de
Mn(R).

12 . Soient A ∈ AG et B ∈ AG. Montrer que l’application

u : R −→Mn(R)
t 7−→ u(t) = etA ·B · e−tA

est à valeurs dans AG.
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13 . En déduire que AG est stable par le crochet de Lie, i.e.

∀A ∈ AG, ∀B ∈ AG, [A,B] ∈ AG .

On rappelle que, siM est une matrice deMn(R), on dit queM est tangente
à G en In s’il existe ε > 0 et une application γ :] − ε, ε[→ G, dérivable, telle
que γ(0) = In et γ′(0) = M . L’ensemble des matrices tangentes à G en In est
appelé espace tangent à G en In, et noté TIn(G).
On rappelle aussi que l’application det :Mn(R)→ R est différentiable en

tout point, par exemple parce qu’elle est polynomiale.

14 . Prouver l’inclusion AG ⊂ TIn(G).

15 . Soit M ∈ Mn(R), que l’on pourra aussi considérer comme matrice
complexe, soit l’application δM : R → R, t 7→ δM (t) = det(In + tM).
En utilisant un développement limité à l’ordre 1, montrer que δM est
dérivable en 0 et calculer δ′M (0).

16 . Montrer que la différentielle au point In de l’application det :Mn(R)→ R
est la forme linéaire “trace”.

17 . Montrer que, dans les cas particuliers G = SLn(R) et G = On(R), on a
TIn(G) = AG.

4 Comportement asymptotique
Étude d’un exemple
On considère deux nombres complexes distincts α et β. On suppose qu’une

matrice A ∈M3(C) admet α pour valeur propre simple, β pour valeur propre
double.

18 . Montrer que A est semblable à une matrice de la forme

T =

α 0 0
0 β a
0 0 β


où a est un certain nombre complexe. Calculer Tn pour n entier naturel,
puis etT pour t réel. En déduire une condition nécessaire et suffisante sur
α et β pour que l’on ait limt→+∞ e

tA = 03.
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Cas général
Dans tout ce qui suit, K = C. On pose E = Cn. L’espace vectoriel E, identifié

àMn,1(C), peut être muni d’une quelconque norme notée ‖ · ‖E , on rappelle
qu’elles sont toutes équivalentes. On se donne A ∈Mn(C) une matrice carrée
à coefficients complexes, et on note u l’endomorphisme de Cn canoniquement
associé à cette matrice. On s’intéresse au comportement asymptotique de la
fonction fA introduite dans le préambule, et à celui des fonctions vectorielles
solutions du système différentiel linéaire à coefficients constants X ′ = AX. Pour
tout t réel et pour (i, j) ∈ [[1, n]]2, on notera vi,j(t) le coefficient d’indices (i, j)
de la matrice etA. Ainsi,

∀t ∈ R fA(t) = etA =
(
vi,j(t)

)
1≤i,j≤n ∈Mn(C) .

Pour toute valeur propre λ de la matrice A, on note mλ sa multiplicité, et on
introduit le sous-espace vectoriel

Fλ = Ker
(
(A− λIn)mλ

)
= Ker

(
(u− λ IdE)mλ

)
.

On posera aussi α = maxλ∈Sp(A) Re(λ).

19 . Montrer que, si limt→+∞ fA(t) = 0n, alors α < 0.

20 . Montrer que Cn =
⊕
λ∈Sp(A) Fλ.

21 . En déduire l’existence de trois matrices P , D et N dans Mn(C) telles
que :

P est inversible,
D est diagonale,
N est nilpotente,

ND = DN,

A = P (D +N)P−1,

χA = χD.

22 . En déduire qu’il existe un entier naturel p tel que, pour tout (i, j) ∈ [[1, n]]2,
on ait

vi,j(t) = O(tp eαt) lorsque t→ +∞ .
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23 . Étudier la réciproque de la question 19).

24 . On suppose, dans cette question seulement, que les valeurs propres de la
matrice A ont toutes des parties réelles positives ou nulles. Montrer que,
si X ∈ Cn, on a

lim
t→+∞

etAX = 0 ⇐⇒ X = 0 .

Dans les questions qui suivent, on introduit les polynômes suivants :

Ps(X) =
∏

λ∈Sp(A)
Re(λ)<0

(X − λ)mλ ,

Pi(X) =
∏

λ∈Sp(A)
Re(λ)>0

(X − λ)mλ ,

Pn(X) =
∏

λ∈Sp(A)
Re(λ)=0

(X − λ)mλ ,

et les sous-espaces Es = Ker
(
Ps(A)

)
, Ei = Ker

(
Pi(A)

)
et En = Ker

(
Pn(A)

)
de E = Cn. Les indices s, i, n signifient respectivement stable, instable et neutre.

25 . Après avoir justifié que E = Es ⊕ Ei ⊕ En, montrer que

Es =
{
X ∈ E | lim

t→+∞
etAX = 0

}
.

On prouverait de même, mais ce n’est pas demandé, que

Ei =
{
X ∈ E | lim

t→−∞
etAX = 0

}
.

26 . Montrer que

En =
{
X ∈ E

∣∣ ∃C ∈ R∗+ ∃p ∈ N ∀t ∈ R ‖etAX‖E ≤ C
(
1 + |t|

)p}
.

En est donc l’ensemble des vecteurs X de Cn tels que la fonction vectorielle
t 7→ etAX ait un comportement polynomial en −∞ et +∞.

Fin du problème
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Théorème de stabilité de Liapounov

Dans tout le problème, n désigne un entier naturel non nul. On note h.|.i le produit scalaire usuel
de Kn, K pouvant être R ou C, et }.} la norme euclidienne associée.
Si u et v sont deux applications linéaires pour lesquelles la notation u ˝ v a un sens, alors on note
uv l’application u ˝ v. De plus, si u est un endomorphisme d’un espace vectoriel E et k est un entier
naturel non nul, uk désigne l’application u˝¨ ¨ ¨˝u, où u apparaît k fois dans l’écriture. Par convention
u0 “ idE .

On s’intéresse au système différentiel suivant :
"

y1 = 'pyq
yp0q = x0

,

avec x0 P Rn et ' est une application de classe C1 de Rn à valeurs dans Rn, telle que 'p0q “ 0. Cela
entraîne que si x0 “ 0, alors la solution de ce système est la fonction nulle, et donc 0 est un point
d’équilibre. Notons d'p0q l’application différentielle de ' en 0. L’objectif de ce problème est d’établir
une condition suffisante sur le spectre de d'p0q pour assurer la stabilité de l’équilibre en ce point, et
d’obtenir des informations quant à la dynamique des solutions au voisinage de ce point d’équilibre.
Plus précisément, on établit le résultat suivant :

Théorème de Liapounov :
Soit le système différentiel suivant :

"
y1 = 'pyq

yp0q = x0
,

avec x0 P Rn et ' est une application de classe C1 de Rn à valeurs dans Rn, telle que 'p0q “ 0 et
telle que toutes les valeurs propres complexes de d'p0q aient une partie réelle strictement négative.
Alors il existe trois constantes ↵̃, C et � strictement positives telles que :

@x0 P Bp0, ↵̃q, @t P R`, }fx0ptq} § Ce´�t}x0},
où fx0 est l’unique solution du système différentiel et Bp0, ↵̃q désigne la boule ouverte, pour la norme
}.}, de centre 0 et de rayon ↵̃.

Dans une première partie, on étudie une norme sur les endomorphismes des sous-espaces vecto-
riels de Kn. Dans la seconde partie, on établit des résultats sur le système différentiel linéaire, en se
servant des résultats de la partie A. Enfin, la troisième partie est consacrée à la démonstration du
théorème de Liapounov. Cette dernière partie est très largement indépendante des deux premières,
à l’exception du résultat obtenu à la fin de la partie B.

A.. Etude d’une norme sur LpEq
Soit E un sous-espace vectoriel de Kn. Soit u un endomorphisme de E.

1 ô Après avoir justifié l’existence des bornes supérieures, montrer que :

sup
xPE
x‰0

}upxq}
}x} “ sup

xPE
}x}“1

}upxq}.

1



2 ô On note ~u~ “ sup
xPE
x‰0

}upxq}
}x} . Montrer que ~.~ est une norme sur LpEq.

3 ô Montrer qu’il s’agit d’une norme sous-multiplicative, c’est-à-dire que :

@pu, vq P LpEq2, ~uv~ § ~u~.~v~,

et en déduire une majoration de ~uk~, pour tout entier naturel k, en fonction de ~u~ et de
l’entier k.

B.. Etude de la stabilité en 0 du système linéaire

Dans cette partie, a désigne un endomorphisme de Cn.

4 ô Montrer qu’il existe un entier naturel non nul r, des nombres complexes distincts �1, �2, ...,
�r, ainsi que des entiers naturels non nuls m1, m2, ..., mr, tels que :

Cn “
rà

i“1

Ei,

où pour i P J1; rK, Ei “ Kerpa ´ �iidCnqmi .

D’après la question précédente, si x est un élément de Cn, il existe un unique r-uplet px1, . . . , xrq P
E1 ˆ ¨ ¨ ¨ ˆ Er tel que x “

rÿ

i“1

xi. Fixons à présent i P J1; rK. On définit alors les endomorphismes :

pi :

ˇ̌
ˇ̌ Cn Ñ Ei

x fiÑ xi
et qi :

ˇ̌
ˇ̌ Ei Ñ Cn

xi fiÑ xi
.

Par ailleurs, on note ~.~i la norme sur LpEiq introduite à la partie A, à savoir

@u P LpEiq, ~u~i “ sup
xPEi
x‰0

}upxq}
}x} .

On utilisera la notation ~.~c pour LpCnq. Enfin, on notera ai l’endomorphisme piaqi.

5 ô Montrer que, pour tout i P J1; rK, il existe une constante Ci ° 0 telle que :

@u P LpEiq, ~qiupi~c § Ci~u~i.

6 ô Montrer que, pour i P J1; rK, Ei est stable par a.
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7 ô Soient pi, jq P J1; rK2. Exprimer piqj puis
rÿ

i“1

qipi en fonction des endomorphimes idCn et idEj .

8 ô Montrer que : a “
rÿ

i“1

qiaipi.

9 ô En déduire que :

@t P R, eta “
rÿ

i“1

qie
taipi.

10 ô Montrer par ailleurs que :

@i P J1; rK, @t P R, ~etai~i § |et�i |
mi´1ÿ

k“0

|t|k
k!

~ai ´ �iidEi~k
i .

11 ô En déduire l’existence d’un polynôme P à coefficients réels tel que :

@t P R, ~eta~c § P p|t|q
rÿ

i“1

etRep�iq,

où Repzq désigne la partie réelle d’un nombre complexe z.

12 ô Pour toute matrice A P MnpRq, on notera uA l’endomorphisme canoniquement associé à A
dans Rn et vA l’endomorphisme de Cn canoniquement associé à A, vue comme une matrice de
MnpCq . On conservera la notation ~.~c pour la norme introduite à la partie A sur LpCnq et
on utilisera ~.~r sur LpRnq. Montrer qu’il existe C ° 0 telle que :

@A P MnpRq, @t P R, ~etuA ~r § C~etvA ~c.

Dans la suite de cette partie, on considère u un endomorphisme de Rn, et A P MnpRq sa matrice
dans la base canonique. On notera par ailleurs, SppAq le spectre complexe de A. Notons gx0 l’unique
solution de classe C1 sur R` de : "

y1 = upyq
yp0q = x0

.

13 ô Montrer que :

@x0 P Rn, lim
tÑ`8

}gx0ptq} “ 0 ñ SppAq Ä R˚
´ ` iR.

14 ô On se place dans cette question dans le cas où toutes les valeurs propres de A ont une partie
réelle strictement négative. Montrer alors qu’il existe deux constantes C2 et ↵ strictement
positives telles que :

@t P R`, ~etu~r § C2e
´↵t,

et en déduire une majoration de }gx0ptq} pour t P R`.
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C.. Démonstration du théorème de Liapounov

On considère dans cette partie une application ' de Rn dans Rn de classe C1 telle que 'p0q “ 0,
et en notant a “ d'p0q, telle que toutes les valeurs propres de a aient une partie réelle strictement
négative.
Soit x0 P Rn. On s’intéresse au système différentiel suivant :

"
y1 = 'pyq

yp0q = x0
.

On admettra l’existence d’une solution de ce système définie sur R`, que l’on notera fx0 .

15 ô Montrer que la fonction

b :

ˇ̌
ˇ̌
ˇ̌
Rn ˆ Rn Ñ R

px, yq fiÑ
ª `8

0

⌦
etapxq|etapyq↵ dt

est bien définie et qu’elle définit un produit scalaire sur Rn.

On notera q la forme quadratique associée à b, c’est-à-dire que pour tout x P Rn, qpxq “ bpx, xq.

16 ô Démontrer alors que :

@x P Rn, dqpxqpapxqq “ 2bpx, apxqq “ ´}x}2.

Pour toute fonction y définie sur R`, on associe la fonction "pyq définie par :

"pyq :
ˇ̌
ˇ̌ R` Ñ Rn

t fiÑ 'pyptqq ´ apyptqq .

17 ô Vérifier l’égalité

@t P R`, qpfx0q1ptq “ ´}fx0ptq}2 ` 2bpfx0ptq, "pfx0ptqqq.

18 ô Prouver l’existence de deux nombres réels ↵ et � strictement positifs tels que, pour tout t P R`,
on ait :

qpfx0ptqq § ↵ ñ ´}fx0ptq}2 ` 2bpfx0ptq, "pfx0qptqq § ´�qpfx0ptqq.

On fixe un tel couple p↵,�q pour la suite de ce problème.

19 ô Montrer alors que :

qpx0q † ↵ ñ @t • 0, qpfx0qptq § e´�tqpx0q.
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20 ô En déduire l’existence de trois constantes ↵̃, C et � strictement positives telles que :

@x0 P Bp0, ↵̃q, @t P R`, }fx0ptq} § Ce´�
2 t}x0},

où Bp0, ↵̃q désigne la boule ouverte, pour la norme }.}, de centre 0 et de rayon ↵̃.

Fin du problème
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Généralisation d’une intégrale de Dirichlet et application

Le but de ce sujet est de calculer l’intégrale de Dirichlet généralisée

⁄ +Œ

0

1 ≠
1

cos(t)
22p+1

t2 dt

et d’utiliser ce calcul pour évaluer une espérance.

Partie I : Calcul d’une intégrale
Dans tout ce qui suit, x est un élément de ]0; 1[ fixé.

1 Û Montrer que pour tout ◊ œ]≠fi ; fi[, la fonction f définie par

f : ]0 ; +Œ[ ≠æ C

t ‘≠æ tx≠1

1 + tei◊

est définie et intégrable sur ]0; +Œ[.

Soit r la fonction définie par

r : ] ≠ fi ; fi[ ≠æ C

◊ ‘≠æ
⁄ +Œ

0

tx≠1

1 + tei◊ dt.

2 Û Montrer que la fonction r est de classe C1
sur ]≠fi ; fi[ et que :

’◊ œ] ≠ fi; fi[, rÕ
(◊) = ≠iei◊

⁄ +Œ

0

tx

(1 + tei◊)2 dt.

Indication : soit — œ]0; fi[, montrer que pour tout ◊ œ [≠—; —] et t œ [0, +Œ[,
|1 + tei◊|2 Ø |1 + tei—|2 = (t + cos(—))

2
+ (sin(—))

2.

Soit g la fonction définie par

g : ] ≠ fi; fi[ ≠æ C

◊ ‘≠æ eix◊
⁄ +Œ

0

tx≠1

1 + tei◊ dt.

1



3 Û Montrer que la fonction g est de classe C1
sur ]≠fi; fi[ et que pour tout ◊ œ]≠fi; fi[,

gÕ
(◊) = ieix◊

⁄ +Œ

0
hÕ

(t) dt,

où h est la fonction définie par

h : ]0; +Œ[ ≠æ C

t ‘≠æ tx

1 + tei◊ ·

Calculer h(0) et

lim
tæ+Œ

h(t).

En déduire que la fonction g est constante sur ] ≠ fi; fi[.

4 Û Montrer que pour tout ◊ œ]0; fi[,

g(◊) sin(x◊) =
1

2i

1
g(≠◊)eix◊ ≠ g(◊)e≠ix◊

2
= sin(◊)

⁄ +Œ

0

tx

t2 + 2t cos(◊) + 1
dt.

5 Û En déduire que :

’◊ œ]0; fi[, g(◊) sin(◊x) =

⁄ +Œ

cotan(◊)

1
u sin(◊) ≠ cos(◊)

2x

1 + u2 du,

où cotan(◊) =
cos(◊)

sin(◊)
.

6 Û Montrer, en utilisant le théorème de convergence dominée, que :

lim
◊æfi≠

g(◊) sin(x◊) =

⁄ +Œ

≠Œ

du

1 + u2 ·

7 Û En déduire que ⁄ +Œ

0

tx≠1

1 + t
dt =

fi

sin(fix)
·

Partie II : Une expression (utile) de la fonction sinus
On rappelle que x est un élément de ]0; 1[ fixé.

8 Û Montrer que ⁄ +Œ

0

tx≠1

1 + t
dt =

⁄ 1

0

3
tx≠1

1 + t
+

t≠x

1 + t

4
dt.

2



9 Û Montrer que :
⁄ 1

0

tx≠1

1 + t
dt =

+Œÿ

k=0

(≠1)
k

k + x
·

10 Û Établir l’identité

⁄ +Œ

0

tx≠1

1 + t
dt =

+Œÿ

n=0

(≠1)
n

n + x
+

+Œÿ

n=0

(≠1)
n

n + 1 ≠ x
·

11 Û En déduire que l’on a

fi

sin(fix)
=

1

x
≠

+Œÿ

n=1

2(≠1)
nx

n2 ≠ x2 ·

12 Û En déduire enfin que :

’y œ]0 ; fi[,
+Œÿ

n=1

2(≠1)
ny sin(y)

y2 ≠ n2fi2 = 1 ≠ sin(y)

y
·

Partie III : Calcul d’une intégrale de Dirichlet généralisée
13 Û Montrer que l’intégrale

⁄ +Œ

0

1 ≠
1

cos(t)
22p+1

t2 dt

converge et que :

⁄ +Œ

0

1 ≠
1

cos(t)
22p+1

t2 dt = (2p + 1)

⁄ +Œ

0

1
cos(t)

22p sin(t)

t
dt.

14 Û Montrer que pour tout n œ Nú
:

⁄ fi
2 +nfi

fi
2 +(n≠1)fi

1
cos(t)

22p sin(t)

t
dt =

⁄ fi
2

0

1
cos(t)

22p 2(≠1)
nt sin(t)

t2 ≠ n2fi2 dt.

15 Û En déduire que :

⁄ +Œ

fi
2

1
cos(t)

22p sin(t)

t
dt =

⁄ fi
2

0

1
cos(t)

22p
3 +Œÿ

n=1

2(≠1)
nt sin(t)

t2 ≠ n2fi2

4
dt.

16 Û En déduire que :

⁄ +Œ

0

1
cos(t)

22p sin(t)

t
dt =

⁄ fi
2

0

1
cos(t)

22p
dt.

Dans le cas p = 0, cette intégrale est communément appelée “Intégrale de Dirichlet”.
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17 Û Montrer que :

(cos(t))2p
=

1

22p

Q

a
A

2p

p

B

+ 2

p≠1ÿ

k=0

A
2p

k

B

cos(2(p ≠ k)t)

R

b .

Indication : On pourra développer

1
eit+e≠it

2

22p
.

18 Û En déduire que :

⁄ +Œ

0

1 ≠
1

cos(t)
22p+1

t2 dt =
fi

2

(2p + 1)!

22p.(p!)2 ·

Partie IV : Calcul de E
3
|Sn|

4

Toutes les variables aléatoires sont définies sur un même espace probabilisé (�, A, P ).

Soient (Xk)kœNú des variables aléatoires indépendantes, de même loi donnée par :

P (X1 = ≠1) = P (X1 = 1) =
1

2
·

Pour tout n œ Nú
, on note Sn =

nq

k=1
Xk.

19 Û Déterminer, pour tout n œ Nú, E(Sn) et V (Sn).

Soient S et T deux variables aléatoires indépendantes prenant toutes deux un nombre

fini de valeurs réelles. On suppose que T et ≠T suivent la même loi.

20 Û Montrer que :

E
1

cos(S + T )

2
= E

1
cos(S)

2
E

1
cos(T )

2
.

21 Û En déduire que pour tout n œ Nú
, et pour tout t œ R :

E
1

cos(tSn)

2
=

1
cos(t)

2n
.
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22 Û Soient a, b œ R tels que a ”= 0 et |b| Æ |a|. Montrer que

|a + b| = |a| + signe(a) b

où signe(x) = x/|x| pour x réel non nul. En déduire que :

’n œ Nú, E
1
|S2n|

2
= E

1
|S2n≠1|

2
.

23 Û Montrer que pour tout s œ R
⁄ +Œ

0

1 ≠ cos(st)

t2 dt =
fi

2
|s|.

24 Û En déduire que pour tout n œ Nú
:

E
1
|Sn|

2
=

2

fi

⁄ +Œ

0

1 ≠
1

cos(t)
2n

t2 dt.

25 Û Conclure que :

’n œ Nú, E
1
|S2n|

2
= E

1
|S2n≠1|

2
=

(2n ≠ 1)!

22n≠2
1
(n ≠ 1)!

22 ·

Fin du problème
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Inégalités de Khintchine

Notations et résultats admis
— Dans tout le sujet, n est un entier naturel fixé non nul.

— Dans tout le sujet, (Ω,P(Ω),P) est un espace probabilisé fini.

— On note L0(Ω) le R-espace vectoriel des variables aléatoires réelles definies sur
Ω. On notera que si X ∈ L0(Ω), X(Ω) est une partie finie de R. On confondra
systématiquement variable aléatoire nulle et variable aléatoire presque sûrement
nulle.

— Si X ∈ L0(Ω), on note E(X) son espérance.

— Une variable aléatoire X ∈ L0(Ω) suit une loi de Rademacher si :

X(Ω) = {−1, 1} et P (X = 1) = P (X = −1) = 1
2 .

— Si p ∈ [1,+∞[ et X ∈ L0(Ω), on note ∥X∥p = (E (|X|p))1/p. On admet que
l’application X 7→ ∥X∥p est alors une norme sur L0(Ω).

— Sim ∈ N⋆, p ∈ [1,+∞[ et (x1, . . . , xm) ∈ Rm, on définit la quantité ∥(x1, . . . , xm)∥Rm

p

par :

∥(x1, . . . , xm)∥Rm

p =
(

m∑
i=1

|xi|p
)1/p

.

On admet que l’application (x1, . . . , xm) ∈ Rm 7→ ∥(x1, . . . , xm)∥Rm

p est une norme
sur Rm.

— On note R(N) l’ensemble des suites de R nulles à partir d’un certain rang. On
admet alors que l’application ⟨·, ·⟩ définie par

∀u, v ∈ R(N), ⟨u, v⟩ =
+∞∑
i=0

uivi

est un produit scalaire sur R(N).

1



Inégalité de Hölder

Soient p, q ∈]1,+∞[ tels que 1
p

+ 1
q

= 1. Soient X, Y ∈ L0(Ω) que l’on suppose toutes
les deux positives.

1 ▷ Montrer que
∀x, y ∈ R+, xy ≤ xp

p
+ yq

q
.

2 ▷ En déduire l’inégalité suivante (inégalité de Hölder) :

E(XY ) ≤ (E (Xp))1/p (E (Y q))1/q .

On pourra commencer par traiter le cas où E (Xp) = E (Y q) = 1.

3 ▷ Quelle inégalité retrouve-t-on lorsque p = q = 2 ? En donner alors une preuve
directe.

Une inégalité de déviation
Soit (Xi)i∈[[1,n]] une suite de variables aléatoires indépendantes suivant toutes une loi

de Rademacher.

4 ▷ Montrer que
∀t ∈ R, ch (t) ≤ et2/2 .

5 ▷ Montrer que : pour tout t ≥ 0, pour tout (c1, . . . , cn) ∈ Rn,

E
(

exp
(
t

n∑
i=1

ciXi

))
≤ exp

(
t2

2

n∑
i=1

c2
i

)
.

6 ▷ En déduire que : pour tout t ≥ 0, pour tout x ≥ 0 et pour tout (c1, . . . , cn) ∈ Rn,

P
(

exp
(
x

∣∣∣∣∣
n∑

i=1
ciXi

∣∣∣∣∣
)
> etx

)
≤ 2 e−tx exp

(
x2∑n

i=1 c
2
i

2

)
.

On pourra utiliser l’inégalité de Markov.

7 ▷ Montrer que : pour tout t ≥ 0 et pour tout (c1, . . . , cn) ∈ Rn non nul,

P
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2∑n
i=1 c

2
i

)
.
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Inégalités de Khintchine
Soit p ∈ [1,+∞[. Soit (Xi)i∈[[1,n]] une suite de variables aléatoires indépendantes suivant

toutes une loi de Rademacher. Soit (c1, . . . , cn) ∈ Rn.

8 ▷ Soit X une variable aléatoire réelle positive et finie. Soit FX la fonction définie
pour tout t ≥ 0, par

FX (t) = P (X > t) .

Montrer que l’intégrale
∫ +∞

0
tp−1FX (t) dt converge, puis que

E (Xp) = p
∫ +∞

0
tp−1FX (t) dt.

9 ▷ On suppose dans cette question que
n∑

i=1
c2

i = 1. Montrer que l’intégrale
∫ +∞

0
t3e−t2/2dt

converge, puis que

E

( n∑
i=1

ciXi

)4
 ≤ 8

∫ +∞

0
t3e−t2/2dt.

10 ▷ Montrer que

E

( n∑
i=1

ciXi

)2
 =

n∑
i=1

c2
i .

11 ▷ En déduire qu’il existe un réel βp > 0 tel que

E
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣
p)1/p

≤ βpE

( n∑
i=1

ciXi

)2
1/2

.

12 ▷ On suppose p ≥ 2. Montrer que

E

( n∑
i=1

ciXi

)2
1/2

≤ E
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣
p)1/p

.

Dans les questions numérotées de 13 ▷ à 15 ▷, on suppose 1 ≤ p < 2.

13 ▷ Justifier qu’il existe θ ∈ ]0, 1[ tel que 1
2 = θ

p
+ 1 − θ

4 .
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14 ▷ Montrer que

E

( n∑
i=1

ciXi

)2
 ≤ E

(∣∣∣∣∣
n∑

i=1
ciXi

∣∣∣∣∣
p)2θ/p

E

∣∣∣∣∣
n∑

i=1
ciXi

∣∣∣∣∣
4
(1−θ)/2

.

15 ▷ Montrer qu’il existe α̃p > 0 tel que

α̃pE

( n∑
i=1

ciXi

)2
1/2

≤ E
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣
p)1/p

.

16 ▷ En déduire qu’il existe un réel αp tel que

αpE

( n∑
i=1

ciXi

)2
1/2

≤ E
(∣∣∣∣∣

n∑
i=1

ciXi

∣∣∣∣∣
p)1/p

.

Une première conséquence
Soit (Xi)i∈N une suite de variables aléatoires indépendantes qui suivent toutes une loi

de Rademacher.

17 ▷ Montrer que l’application φ définie sur (L0(Ω))2 par

∀X, Y ∈ L0(Ω), φ(X, Y ) = E(XY )

est un produit scalaire sur L0(Ω).

18 ▷ Soit l’application ψ : u ∈ R(N) 7→
+∞∑
i=0

uiXi. Montrer que ψ prend ses valeurs dans

L0(Ω), puis que ψ conserve le produit scalaire.

19 ▷ On note R = ψ
(
R(N)

)
. Montrer que pour tous p, q ∈ [1,+∞[, les normes ∥·∥p et

∥·∥q sont équivalentes sur R.

Une deuxième conséquence
Dans cette partie, on suppose que n est une puissance de 2 : on écrit n = 2k avec

k ∈ N⋆.
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20 ▷ Soit (a1, . . . , ak) ∈ Rk. Montrer que

α1n ∥(a1, . . . , ak)∥Rk

2 ≤
∑

(ε1,...,εk)∈{−1,1}k

∣∣∣∣∣
k∑

i=1
εiai

∣∣∣∣∣ ≤ β1n ∥(a1, . . . , ak)∥Rk

2 .

On pourra utiliser les questions 11 et 16.

21 ▷ En déduire qu’il existe un sous-espace vectoriel F de dimension k de Rn tel que :

∀x ∈ F, α1
√
n ∥x∥Rn

2 ≤ ∥x∥Rn

1 ≤ β1
√
n ∥x∥Rn

2 .

En ordonnant les n éléments de {−1, 1}k de manière arbitraire, on pourra utiliser

l’application T définie sur Rk par T (a1, . . . , ak) =
(

k∑
i=1

aiεi

)
(ε1,...,εk)∈{−1,1}k

.

Fin du problème
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Fonction de Wallis

Préliminaires
Dans tout le sujet, l’intervalle ] − 1, +∞[ de R est appelé I et σ et f sont les fonctions,

de R dans R, définies par :

σ(x) =
+∞∑
k=1

xk

k2

et

f(x) =
∫ π/2

0
(sin(t))x dt.

On se propose, dans cette épreuve, d’étudier f (domaine de définition, régularité, varia-
tions, convexité, développement éventuel en série entière,...) puis, dans la dernière partie,
de montrer qu’elle est la seule fonction numérique à vérifier certaines propriétés.

1 Calcul de σ(1)
1 ▷ Déterminer le domaine de définition de σ puis justifier que σ est continue sur

celui-ci.

2 ▷ Exhiber deux nombres réels α et β tels que :

∀n ∈ N∗,
∫ π

0
(αt2 + βt) cos(nt) dt = 1

n2 ,

puis vérifier que si t ∈]0, π], alors :

∀n ∈ N∗,
n∑

k=1
cos(kt) =

sin
(

(2n+1)t
2

)
2 sin

(
t
2

) − 1
2 ·

3 ▷ Justifier que, si φ est une application de classe C1 de [0, π] dans R, alors

lim
x→+∞

∫ π

0
φ(t) sin(xt) dt = 0,

1



et en conclure que
σ(1) = π2

6 ·

2 Équivalents
4 ▷ Déterminer le domaine de définition de f puis vérifier que

∀x ∈ I, (x + 1)f(x) = (x + 2)f(x + 2). (1)

5 ▷ Justifier que f est de classe C2, décroissante et convexe sur I.

6 ▷ Donner un équivalent simple de f(x) lorsque x tend vers −1.

7 ▷ Montrer que pour tout entier naturel n,

f(n)f(n + 1) = π

2(n + 1)

puis que :
f(x) ∼

x→+∞

√
π

2x
·

8 ▷ Représenter graphiquement f en exploitant au mieux les résultats précédents.

3 Développement en série entière

Si n ∈ N, on note Dn l’intégrale généralisée
∫ π/2

0
(ln(sin(t)))n dt.

9 ▷ Justifier que, si n ∈ N, l’intégrale généralisée Dn est convergente, puis montrer que

D1 =
∫ π/2

0
ln(cos(t)) dt.

10 ▷ Calculer f ′(0) et f ′(1).

2



11 ▷ Vérifier que si n ∈ N∗, alors

(−1)nDn =
∫ +∞

0

un

√
e2u − 1

du,

puis que
Dn ∼

n→+∞
(−1)nn!

12 ▷ Démontrer que f est développable en série entière sur ] − 1, 1[.

4 Convergence de suite de fonctions
On se propose dans cette partie de calculer f ′′(0). Dans ce but, on considère deux

nombres réels strictement positifs a et b, et on pose

ρ = b − a

b + a
·

On appelle Ψ l’application de R dans R définie par :

∀x ∈ R, Ψ(x) = ln(a2 cos2 x + b2 sin2 x).

13 ▷ Montrer que Ψ est de classe C1 sur R, puis que pour tout x ∈ R,

Ψ′(x) = 4
+∞∑
k=1

ρk sin(2kx).

14 ▷ En déduire que pour tout x ∈ R,

Ψ(x) = 2 ln
(

a + b

2

)
− 2

+∞∑
k=1

cos(2kx)
k

ρk.

15 ▷ En conclure que

∫ π

0
Ψ(x)2dx = 4π

(
ln
(

a + b

2

))2

+ 2πσ(ρ2).

3



On définit les suites réelles (an)n∈N∗ et (bn)n∈N∗ par

∀n ∈ N∗, an = 1
n + 1 et bn = n

n + 1 ·

16 ▷ Établir la convergence simple de la suite d’applications (Ψn)n∈N∗ , de ]0, π] dans R,
définie par :

∀n ∈ N∗, ∀t ∈]0, π], Ψn(t) = ln(a2
n cos2 t + b2

n sin2 t).

En déduire f ′′(0).

5 Convexité logarithmique
Une application h d’un intervalle non trivial J de R dans R est dite ln-convexe si, et

seulement si, elle est à valeurs dans R∗
+ et ln ◦h est convexe sur J .

17 ▷ Vérifier que f est une application de I dans R ln-convexe.

On souhaite désormais déterminer toutes les applications de I dans R qui sont ln-
convexes et qui vérifient la propriété (1), voir question 4.

On appelle f̃ l’application de R+ dans R, définie par :

∀x ∈ R+, f̃(x) = ln(f(2x)).

18 ▷ Montrer que

∀p ∈ N∗, ∀x ∈ R+, f̃(x + p) = f̃(x) +
p−1∑
k=0

ln
(

2x + 2k + 1
2x + 2k + 2

)
·

19 ▷ On suppose ici que x ∈ R∗
+, (n, p) ∈ (N∗)2 et x ⩽ p. Vérifier que

f̃(n) − f̃(n − 1) ⩽ f̃(n + x) − f̃(n)
x

⩽
f̃(n + p) − f̃(n)

p

et que (f̃(n + x) − f̃(n)) admet une limite lorsque n tend vers +∞.

4



20 ▷ En conclure que f est la seule application de I dans R, qui soit ln-convexe, qui
vérifie (1) et telle que

f(0) = π

2 ·

21 ▷ Plus généralement, déterminer, si T ∈ R∗
+, toutes les applications g de ] − T, +∞[

dans R, ln-convexes et vérifiant

∀t ∈] − T, +∞[, (t + T )g(t) = (t + 2T )g(t + 2T ).

22 ▷ Existe-t-il une application h, de R dans R et ln-convexe, vérifiant

∀t ∈ R, (t + T )h(t) = (t + 2T )h(t + 2T ) ?
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Phénomènes de seuil dans les graphes

Dans ce problème, n désigne un entier supérieur à 1.
On désigne par J1, nK l’ensemble des entiers compris entre 1 et n.
Le groupe symétrique des permutations de J1, nK est noté Sn.
L’ensemble des matrices carrées d’ordre n à coefficients réels est noté Mn(R).
Le cardinal d’un ensemble fini E sera noté card(E) ou |E|.
Un graphe G est un couple (S, A) où :

– S désigne un ensemble fini non vide d’éléments appelés sommets du graphe G

– A désigne un ensemble éventuellement vide d’éléments appelés arêtes du graphe
G, une arête étant un ensemble

{
s, s′

}
où s et s′ sont des sommets distincts de S.

Un sommet n’appartenant à aucune arête est dit isolé.
Par convention, le graphe vide est le couple d’ensembles vides (∅,∅).

On peut représenter un graphe non vide dans un plan à l’aide :

– de disques schématisant les sommets du graphe

– de segments reliant ces disques pour les arêtes du graphe.

Par exemple, on a représenté sur la Figure 1, le graphe G = (S, A) avec :

S = J1, 9K et A =
{{

1, 2
}
,
{
1, 5

}
,
{
1, 6

}
,
{
2, 3

}
,
{
2, 9

}
,
{
2, 8

}}
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Figure 1 – un graphe à 9 sommets et 6 arêtes

On remarquera que les arêtes sont constituées de deux sommets distincts, ce qui
interdit la présence de «boucles» reliant un sommet à lui-même.

De plus, une même arête ne peut être présente plusieurs fois dans un graphe.
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Un type de graphe utilisé dans ce problème est l’étoile.
Une étoile de centre s et à d branches avec d entier naturel non nul, est un graphe

(S, A) où S =
{
s, s1, s2, . . . , sd

}
est de cardinal d + 1, et A est du type

A =
{{

s, s1
}
,
{
s, s2

}
, . . . ,

{
s, sd

}}

On a représenté Figure 2 une étoile de centre 4 à 5 branches avec S =
{
1, 3, 4, 5, 6, 8

}
.
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Figure 2 – une étoile à 5 branches

Soient G = (S, A) et G′ = (S ′, A′) deux graphes ; on dit que :

– G′ est inclus dans G si S ′ ⊂ S et A′ ⊂ A

– G′ est une copie de G s’il existe une bijection σ de S ′ dans S telle que :

∀(s′, t′) ∈ S ′ × S ′
{
s′, t′

}
∈ A′ ⇐⇒

{
σ(s′), σ(t′)

}
∈ A

Par exemple, le graphe de la Figure 1 contient plusieurs copies d’étoiles à une branche
(correspondant aux segments), plusieurs copies d’étoiles à deux branches, mais aussi une
copie d’une étoile à 3 branches (de centre 1) et une copie d’une étoile à 4 branches (de
centre 2).

Dans une première partie, on étudie quelques propriétés algébriques des matrices d’ad-
jacence.

On introduit ensuite la notion de fonction de seuil en probabilité des graphes aléatoires.
Les deux parties qui suivent la première partie sont indépendantes de celle-ci, et sont

consacrées à l’étude de deux exemples.
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Partie I - Quelques propriétés algébriques des
matrices d’adjacence

Soit G = (S, A) un graphe non vide où |S| = n. Indexer arbitrairement les sommets
de 1 à n revient à choisir une bijection (appelée aussi indexation) σ entre J1, nK et S.
On pourra alors noter :

S =
{
σ(1), σ(2), . . . , σ(n)

}
où σ(i) est le sommet d’index i.

Une indexation σ étant choisie, on définit la matrice d’adjacence MG,σ du graphe G
associée à σ comme étant la matrice de Mn(R) dont le coefficient situé sur la ie ligne
et la je colonne est :

(MG,σ)i,j =

1 si {σ(i), σ(j)} ∈ A

0 sinon

On remarquera d’une part que la matrice MG,σ est toujours symétrique (car pour tous
i et j entiers,

{
i, j
}

=
{
j, i
}
) et d’autre part que les termes de la diagonale sont tous

nuls (pas de boucle dans un graphe).
Voici par exemple la matrice d’adjacence MG,id du graphe G représenté sur la Fi-

gure 1 :

MG,id =


0 1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0


Soit ρ une permutation du groupe symétrique Sn et M = (mi,j)1≤i,j≤n une matrice de
Mn(R).

1 ▷ Montrer que les matrices M et (mρ(i),ρ(j))1≤i,j≤n sont semblables.

En déduire que si G = (S, A) est un graphe non vide, et si σ et σ′ sont deux
indexations de S, alors MG,σ et MG,σ′ sont semblables.

2 ▷ Justifier qu’une matrice d’adjacence d’un graphe non vide est diagonalisable.

3 ▷ Montrer qu’une matrice d’adjacence d’un graphe non vide n’est jamais de rang 1.

4 ▷ Montrer qu’une matrice d’adjacence d’un graphe dont les sommets non isolés
forment un graphe de type étoile est de rang 2 et représenter un exemple de graphe
dont la matrice d’adjacence est de rang 2 et qui n’est pas du type précédent.

Si G = (S, A) est un graphe non vide et si σ et σ′ sont des indexations de S, comme
les matrices MG,σ et MG,σ′ sont semblables, elles ont même polynôme caractéristique (ce
que l’on ne demande pas de démontrer).
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On notera χG ce polynôme caractéristique commun et on dira que χG est le polynôme
caractéristique du graphe G.

Par convention, le polynôme caractéristique du graphe vide est le polynôme constant
égal à 1.

5 ▷ Soit G un graphe et G′ une copie de G. Justifier que χG = χG′ .

6 ▷ Soit G = (S, A) un graphe avec |S| = n ≥ 2. On note χG(X) = Xn +
n−1∑
k=0

akXk.

Donner la valeur de an−1 et exprimer an−2 à l’aide de |A|.

7 ▷ En déduire le polynôme caractéristique d’un graphe à n sommets dont les sommets
non isolés forment une étoile à d branches avec 1 ≤ d ≤ n − 1.

Déterminer alors les valeurs et vecteurs propres d’une matrice d’adjacence de ce
graphe.

Si G = (S, A) est un graphe non vide et si s appartient à S, on définit le graphe G \ s

comme étant le graphe dont l’ensemble des sommets est S \
{
s
}

et l’ensemble des arêtes
est constitué des arêtes de A qui ne contiennent pas s. Voici par exemple Figure 3 un
graphe G et le graphe G \ 2 :

2
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(a) Un graphe G

4

3
15

6

7

(b) Le graphe G \ 2

Figure 3 – un graphe G, et le graphe G \ 2

Soient G1 = (S1, A1) et G2 = (S2, A2) deux graphes non vides tels que S1 et S2 soient
disjoints, c’est-à-dire tels que S1 ∩ S2 = ∅. Soit s1 ∈ S1 et soit s2 ∈ S2.

On définit le graphe G = (S, A) avec S = S1 ∪ S2 et A = A1 ∪ A2 ∪
{{

s1, s2
}}

.
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8 ▷ Montrer que :
χG = χG1 × χG2 − χG1\s1 × χG2\s2

9 ▷ Déterminer le polynôme caractéristique de la double étoile à d1 + d2 + 2 sommets,
constituée respectivement de deux étoiles disjointes à d1 et d2 branches, à qui l’on
a ajouté une arête supplémentaire reliant les deux centres des deux étoiles.

Quel est le rang de la matrice d’adjacence de cette double étoile ?

Dans toute la suite de ce problème, on suppose que n est supérieur à 2 et on notera :

– N l’entier
(

n

2

)
= n(n − 1)

2

– Ωn l’ensemble des graphes de sommets S = J1, nK

– pn un réel dépendant de n appartenant à l’intervalle ]0, 1[ et qn = 1 − pn.

Pour tous i et j appartenant à S = J1, nK avec i ̸= j, on note X{i,j} l’application de
Ωn dans

{
0, 1

}
telle que pour tout G ∈ Ωn avec G = (S, A) :

X{i,j}(G) =

1 si
{
i, j
}

∈ A

0 si
{
i, j
}

/∈ A

Ainsi, (X{i,j} = 1) =
{
G ∈ Ωn | X{i,j}(G) = 1

}
est l’ensemble des graphes de Ωn dont{

i, j
}

est une arête. Réciproquement, on remarquera aussi que pour G = (S, A), on peut
écrire

{G} =
⋂

{i,j}∈A

(X{i,j} = 1)
⋂

{i,j}/∈A

(X{i,j} = 0). (1)

On admet l’existence d’une probabilité P sur
(
Ωn, P(Ωn)

)
telle que les applications

X{i,j} soient des variables aléatoires de Bernoulli de paramètre pn et indépendantes. On
note En =

(
Ωn, P(Ωn), P

)
l’espace probabilisé ainsi construit.

Autrement dit, pour un graphe G donné appartenant à Ωn, la probabilité qu’une
arête

{
i, j
}

soit contenue dans G est pn, et les arêtes apparaissent dans G de façon
indépendante.

10 ▷ Soit G = (S, A) ∈ Ωn. Déterminer la probabilité P(
{
G
}
) de l’événement élémen-

taire
{
G
}

en fonction de pn, qn, N et a = card(A).

Retrouver alors le fait que P(Ωn) = 1.
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Dans la suite du problème on étudie la notion de fonction de seuil pour une propriété
Pn vérifiée sur une partie des graphes de Ωn.

Une fonction de seuil pour la propriété Pn est une suite (tk)k≥2 de réels strictement
positifs tels que :

– si pn = o(tn) alors la limite, lorsque n tend vers +∞, de la probabilité pour que la
propriété Pn soit réalisée vaut 0

– si tn = o(pn) alors la limite, lorsque n tend vers +∞, de la probabilité pour que la
propriété Pn soit réalisée vaut 1.

Partie II - Une première fonction de seuil

Section A - Deux inégalités
Soit X une variable aléatoire définie sur un espace probabilisé (Ω, A, P) à valeurs dans

N et admettant une espérance E(X) et une variance V(X).

11 ▷ Montrer que P(X > 0) ≤ E(X).

12 ▷ Montrer que si E(X) ̸= 0, alors P(X = 0) ≤ V(X)(
E(X)

)2 ·

Indication : on remarquera que (X = 0) ⊂
(
|X − E(X)| ≥ E(X)

)
.

Section B - Une fonction de seuil
13 ▷ Quelle est la loi suivie par la variable aléatoire An représentant le nombre d’arêtes

d’un graphe de Ωn ?

14 ▷ Montrer que si pn = o( 1
n2 ) au voisinage de +∞, alors lim

n→+∞
P(An > 0) = 0.

15 ▷ Montrer que si 1
n2 = o(pn) au voisinage de +∞, alors lim

n→+∞
P(An > 0) = 1.

16 ▷ En déduire une propriété Pn et sa fonction de seuil associée.
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Partie III - Fonction de seuil de la copie d’un
graphe

Si G = (S, A) est un graphe, on note sG (resp. aG) le cardinal de S (resp. A).
Soit G0 = (S0, A0) un graphe particulier fixé. Par commodité d’écriture, on note

s0 = sG0 le cardinal de S0, a0 = aG0 le cardinal de A0 et on suppose que s0 ≥ 2 et que
a0 ≥ 1.

On va étudier la fonction de seuil de la propriété Pn : «contenir une copie de G0».

On note X0
n la variable aléatoire réelle discrète définie sur l’espace probabilisé En telle

que pour G ∈ Ωn, l’entier X0
n(G) est égal au nombre de copies de G0 contenues dans G.

On introduit :

– l’ensemble C0 des copies de G0 dont les sommets sont inclus dans J1, nK :

C0 =
{
H | H est une copie de G0 et H = (SH , AH) avec SH ⊂ J1, nK

}
– pour un graphe H = (SH , AH) avec SH ⊂ J1, nK, la variable aléatoire suivant une

loi de Bernoulli XH définie par :

∀G ∈ Ωn XH(G) =

1 si H ⊂ G

0 sinon

– le réel ω0 défini par :
ω0 = min

H⊂G0
aH≥1

sH

aH

·

17 ▷ Montrer que
E(XH) = paH

n .

18 ▷ Soit S ′
0 un ensemble fixé de cardinal s0. On note c0 le nombre des graphes dont

l’ensemble des sommets est S ′
0 et qui sont des copies de G0.

Exprimer le cardinal de C0 à l’aide de c0 et en utilisant un majorant simple de c0,
justifier que le cardinal de C0 est inférieur à ns0 .

19 ▷ Exprimer X0
n à l’aide de variables aléatoires du type XH , et montrer que :

E(X0
n) =

∑
H∈C0

P(H ⊂ G) ≤ ns0pa0
n .

20 ▷ En déduire que si pn = o(n−ω0), alors lim
n→+∞

P(X0
n > 0) = 0.

Indication : on pourra introduire H0 ⊂ G0 réalisant le minimum donnant ω0.
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On suppose dorénavant que lim
n→+∞

(
nω0pn

)
= +∞.

21 ▷ Montrer que l’espérance E
(
(X0

n)2
)

vérifie :

E
(
(X0

n)2
)

=
∑

(H,H′)∈C2
0

P(H ∪ H ′ ⊂ G) =
∑

(H,H′)∈C2
0

p2a0−aH∩H′
n .

Pour k ∈ J0, s0K, on note :

Σk =
∑

(H,H′)∈C2
0

sH∩H′ =k

P(H ∪ H ′ ⊂ G).

22 ▷ Montrer que Σ0 ≤
(
E(X0

n)
)2

.

23 ▷ Soit k ∈ J1, s0K ; montrer que :

Σk ≤
∑

H∈C0

(
s0

k

)(
n − s0

s0 − k

)
c0p

2a0
n p

− k
ω0

n .

24 ▷ Justifier que pour tous entiers naturels q et r vérifiant 1 ≤ q ≤ r, on a :(
r

q

)
r−q ≥ 1

q!

(
1 − q − 1

q

)q

.

et en déduire que pour k ∈ J1, s0K, on a Σk = o
((

E(X0
n

)2
)

lorsque n tend vers
+∞.

25 ▷ Montrer que lim
n→+∞

V(X0
n)(

E(X0
n)
)2 = 0 où V(X0

n) désigne la variance de X0
n.

26 ▷ Montrer alors que la suite (k−ω0)k≥2 est une fonction de seuil pour la propriété Pn.

27 ▷ Retrouver le résultat de la question 16 ▷ et déterminer une fonction de seuil pour la
propriété «contenir une copie de l’étoile à d branches» avec d entier fixé supérieur
à 1.

Fin du problème
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Proposition de corrigé

1 ▷ Soit u l’endomorphisme de Rn canoniquement associé à M ; en notant (e1, e2, . . . , en)
la base canonique de Rn, on a :

pour tout j ∈ J1, nK, u(ej) =
n∑

i=1
mi,jei et donc u(eρ(j)) =

n∑
i=1

mi,ρ(j)ei.

Si on effectue le changement d’indice correspondant à la permutation ρ, on obtient :
pour tout j ∈ J1, nK, u(eρ(j)) =

n∑
i=1

mρ(i),ρ(j)eρ(i).

Or, la famille (eρ(i))1≤i≤n forme une base de Rn dans laquelle la matrice de u est
(mρ(i),ρ(j))1≤i,j≤n.

Ainsi, les matrices M = (mi,j)1≤i,j≤n et (mρ(i),ρ(j))1≤i,j≤n sont semblables .

Si maintenant σ et σ′ sont deux indexations de S et si (i, j) ∈ J1, nK2, en notant
ρ = (σ′)−1 ◦ σ ∈ Sn :

(MG,σ)i,j = 1 ⇐⇒ {σ(i), σ(j)} ∈ A ⇐⇒ {σ′
(
ρ(i)

)
, σ′
(
ρ(j)

)
} ∈ A ;

soit (MG,σ)i,j = 1 ⇐⇒ (MG,σ′)ρ(i),ρ(j) = 1.
Comme les seules valeurs prises par une matrice du type MG,σ sont 1 et 0, on en déduit

que les matrices MG,σ et
(
(MG,σ′)ρ(i),ρ(j)

)
1≤i,j≤n

sont égales et comme cette dernière
matrice est semblable à la matrice MG,σ′ d’après l’encadré précédent :

les matrices MG,σ et MG,σ′ sont semblables .

2 ▷ D’après la question précédente, le caractère diagonalisable est indépendant de l’in-
dexation choisie. Dans tous les cas, en tant que matrice symétrique réelle :

une matrice d’adjacence d’un graphe non vide est diagonalisable .

3 ▷ Là encore, d’après la question ??, deux matrice semblables ayant même rang, le rang
d’une matrice d’adjacence ne dépend pas de l’indexation choisie.

Si une matrice d’adjacence M appartenant à Mn(R) avec n ≥ 1 est non nulle, alors
n ≥ 2 (car les termes diagonaux de M sont nuls) et il existe (i, j) ∈ J1, nK2 avec i ̸= j
tel que mi,j = 1. Comme M est symétrique, mj,i = 1 alors que mi,i = 0 ; les colonnes
d’indices i et j de M ne sont pas liées et rg(M) ≥ 2 :

une matrice d’adjacence d’un graphe non vide n’est jamais de rang 1 .

4 ▷ Soit M la matrice d’adjacence d’un graphe G = (J1, nK, A) dont ses sommets non
isolés forment le graphe de centre i et de branches

{
i, j1

}
,
{
i, j2

}
, . . . ,

{
i, jd

}
, alors les

seules colonnes non nulles sont d’une part la colonne Ci d’indice i ayant d + 1 chiffres 1
et les colonnes d’indices j1, j2, . . . , jd toutes identiques avec un seul terme non nul situé
en ligne i ; ces colonnes sont libres avec la colonne Ci si bien que Im(M) = vect(Ci, Cj1)
et donc :
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une matrice d’adjacence d’un graphe dont ses sommets non isolés forment un
graphe de type étoile est de rang 2.

La matrice M =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 est de rang 2 , représente un carré

1 2

3 4

et

n’est pas du type précédent.

5 ▷ On note G = (S, A) et G′ = (S ′, A′). Soit σ une indexation de S. Comme G′ est une
copie de G, il existe une bijection σ′ de S dans S ′ telle que :

∀(s, t) ∈ S2, (s, t) ∈ A ⇐⇒ (σ′(s), σ′(t)) ∈ A′. Alors :
(MG,σ)i,j = 1 ⇐⇒ {σ(i), σ(j)} ∈ A ⇐⇒ {σ′

(
σ(i)

)
, σ′
(
σ(j)

)
} ∈ A′ ;

soit (MG,σ)i,j = 1 ⇐⇒ (MG,σ′)σ(i),σ(j) = 1.
Comme les seules valeurs prises par une matrice du type MG,σ sont 1 et 0, on en

déduit que les matrices MG,σ et
(
(MG,σ′)σ(i),σ(j)

)
1≤i,j≤n

sont égales et ont donc même

polynôme caractéristique ; mais d’après ??, les matrices
(
(MG,σ′)σ(i),σ(j)

)
1≤i,j≤n

et MG,σ′

sont semblables, elles ont donc même polynôme caractéristique :
si G′ est une copie de G, alors χG = χG′ .

6 ▷ On sait que an−1 = − tr(M) où M est la matrice d’adjacence du graphe considéré.
Comme les coefficients de la diagonale de M sont nuls, an−1 = 0 .

Lorsqu’on développe le déterminant χG(X) par la formule

χG(X) =
∑

σ∈Sn

ε(σ)a1,σ(1)a2,σ(2) · · · an,σ(n)

pour obtenir le coefficient de Xn−2 il est nécessaire de choisir une permutation σ telle
que n − 2 valeurs de k donnent σ(k) = k (pour obtenir les n − 2 termes «en X») et deux
valeurs de k telles que σ(k) ̸= k. Ceci correspond obligatoirement à une transposition
τi,j et le coefficient correspondant de Xn−2 est alors −ai,jaj,i = −a2

i,j (le «−» étant la
signature de la transposition).

Le coefficient a2
i,j est non nul (et vaut donc 1) si et seulement si ai,j = 1 i.e.

{
i, j
}

∈ A

et donc an−2 = −|A| .

7 ▷ Soit G = (S, A) une telle étoile et M sa matrice d’adjacence. On sait que rg(M) = 2
et donc χG(X) est de la forme χG(X) = Xn−2(X2 + aX + b).

Or, an−1 = 0 et donc a = 0 et b = an−2 = −|A| = −d si bien que :
χG(X) = Xn−2(X2 − d) .
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Si l’étoile étudiée est de centre j (en indexant les sommets par J1, nK), en notant
i1, i2, . . . , id les sommets correspondant aux extrémités de l’étoile, la colonne Cj d’indice
j de M est nulle sauf les termes d’indices i1, i2, . . . , id valant 1.

Comme M est diagonalisable (symétrique réelle), on a dim
(
Ker(M)

)
= n − 2.

D’ailleurs, en notant (e1, e2, . . . , en) la base canonique de Rn, Ker(M) est engendré
d’une part par les vecteurs ek tels que le colonnes Ck de M soient nulles et d’autre part
par les vecteurs ei1 − eij

pour j ∈ J2, dK.
Les vecteurs propres associés à des valeurs propres non nulles étant dans
Im(M) = vect(Cj, ej), ces vecteurs sont de la forme λCj + µej et on trouve facilement

que Cj +ε
√

dej est un vecteur propre associé à ε
√

d. Comme les espaces propres associés
à ε

√
d sont de dimension 1, on obtient finalement :

Les valeurs propres de M sont :

– 0 d’espace propre associé vect(ei)i∈J1,nK\{i1,i2,...,id} ∪ vect(ei1 − eij
)j∈J2,dK

–
√

d d’espace propre associé vect(Cj +
√

dej)

– −
√

d d’espace propre associé vect(Cj −
√

dej)

8 ▷ On note nk = |Sk| pour 1 ≤ k ≤ 2 et quitte à utiliser une indexation, on peut
supposer que les n1 (resp. n2) premiers (resp. derniers) sommets de G sont ceux de S1
(resp. S2) et que le n1

e (resp. (n1 + 1)e) sommet est s1 (resp. s2).
En notant M1 (resp. M2) la matrice d’adjacence du graphe G1 (resp. G2), on a :

χG(X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[XIn1 − M1]
0 0 · · · 0
... ... ...
0 0 · · · 0

−1 0 · · · 0
0 · · · 0 −1

[XIn2 − M2]
0 · · · 0 0
... ... ...
0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Par multilinéarité, on obtient :
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χG(X) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[XIn1 − M1]
0 0 · · · 0
... ... ...
0 0 · · · 0

−1 0 · · · 0
0 · · · 0 0

[XIn2 − M2]
0 · · · 0 0
... ... ...
0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[M ′
1]

0 0 0 · · · 0
... ... ... ...
0 0 0 · · · 0
0 −1 0 · · · 0

0 · · · 0 −1

[XIn2 − M2]
0 · · · 0 0
... ... ...
0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Le premier déterminant est triangulaire par blocs et donne χM1χM2 et M ′

1 est obtenue à
partir de XIn1 −M1 en supprimant sa dernière colonne ; on utilise encore la multilinéarité
pour le second déterminant :

χG(X) =

χM1χM2 +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[M ′
1]

0 0 0 · · · 0
... ... ... ...
0 0 0 · · · 0
0 0 0 · · · 0

0 · · · 0 −1

[XIn2 − M2]
0 · · · 0 0
... ... ...
0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[M ′
1]

0 0 0 · · · 0
... ... ... ...
0 0 0 · · · 0
0 −1 0 · · · 0

0 · · · 0 −1 0

[M ′
2]

0 · · · 0 0 0
... ... ... ...
0 · · · 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Cette fois, M ′

2 est obtenue à partir de XIn2 − M2 en supprimant sa première colonne.
Le premier déterminant triangulaire par blocs donne 0 car le déterminant supérieur

gauche est nul (une colonne de 0). On développe finalement le dernier déterminant par
rapport à la n1

e colonne puis encore par rapport à la n1
e colonne ((n1 + 1)e colonne

initiale) :

χG(X) = χM1χM2 +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[M ′
1]

0 0 · · · 0
... ... ...
0 0 · · · 0

−1 0 · · · 0
0 · · · 0 0

[M ′′
2 ]... ... ...

0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= χM1χM2 −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[M ′′
1 ]

0 · · · 0
... ...
0 · · · 0

0 · · · 0
[M ′′

2 ]... ...
0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
où M ′′

1 et M ′′
2 sont les matrices d’adjacence de G1 \ s1 et de G2 \ s2 respectivement.

Finalement : χG(X) = χG1(X)χG2(X) − χG1\s1(X)χG2\s2(X) .
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9 ▷ On utilise la formule de la question précédente avec s1 et s2 les centres des deux
étoiles :

χG(X) = Xd1−1(X2 − d1)Xd2−1(X2 − d2) − Xd1Xd2 (pour une étoile à d branches
privée de son centre, il n’y a plus d’arêtes et son polynôme caractéristique est Xd).

On obtient χG(X) = Xd1+d2−2
(
(X2 − d1)(X2 − d2) − X2

)
:

χG(X) = Xd1+d2−2
(
X4 − (d1 + d2 + 1)X2 + d1d2

)
.

Comme la matrice d’adjacence est symétrique réelle donc diagonalisable,
on a «m0 = d0» donc la dimension du noyau de cette matrice est d1 + d2 − 2 (car

d1d2 ̸= 0) :
le rang de la matrice d’adjacence de la double étoile étudiée est :
d1 + d2 + 2 − d1 + d2 − 2 = 4.

10 ▷ Comme G possède a arêtes, et donc que les N − a autres arêtes sont inexistantes,
on a : {G} =

⋂
{i,j}∈A

(X{i,j} = 1)
⋂

{i,j}/∈A

(X{i,j} = 0) et P({G}) = pa
nqN−a

n .

On a P(Ωn) =
∑

G∈Ωn

P({G}).

Si on partitionne Ωn par la famille Ω(k)
n des graphes ayant k arêtes, on obtient, d’après

l’encadré précédent :

P(Ωn) =
N∑

k=0

(
N

k

)
pk

nqN−k
n (le coefficient

(
N
k

)
correspondant aux possibilités de choix

des k arêtes parmi les N arêtes potentielles).
Par la formule du binôme, on obtient : P(Ωn) = (pn + qn)N = 1N = 1 .

11 ▷ Comme X est à valeurs dans N, par l’inégalité de Markov :
P(X > 0) = P(X ≥ 1) ≤ E(X) .

12 ▷ L’événement (X = 0) est inclus dans l’événement
(
|X − E(X)| ≥ E(X)

)
et donc :

P(X = 0) ≤ P
(
|X − E(X)| ≥ E(X)

)
≤ V(X)(

E(X)
)2 par Bienaymé-Tchebychev.

13 ▷ An suit une loi binomiale B(N, pn) .

14 ▷ D’après la question 11 ▷, 0 ≤ P(An > 0) ≤ E(An) = Npn = n(n − 1)
2 pn ∼

n→+∞

1
2n2pn

qui a pour limite 0. Par encadrement, lim
n→+∞

P(An > 0) = 0 .
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15 ▷ D’après la question 12 ▷, (on a bien E(An) = Npn ̸= 0) :

0 ≤ 1 − P(An > 0) = P(An = 0) ≤ V(An)(
E(An)

)2 = Npnqn

N2p2
n

= 2(1 − pn)
n(n − 1)pn

∼
n→+∞

2
n2pn

qui

a pour limite 0. Par encadrement, lim
n→+∞

P(An > 0) = 1 .

16 ▷ D’après les deux questions précédentes :

la propriété «posséder au moins une arête» a pour fonction de seuil
( 1

k2

)
k≥2

.

17 ▷ Comme XH suit une loi de Bernoulli, E(XH) = P(XH = 1) = P(H ⊂ G) ;
or, (H ⊂ G) =

⋂
{i,j}∈AH

(X{i,j} = 1) et par indépendance des X{i,j} :

E(XH) =
∏

{i,j}∈AH

P(X{i,j} = 1) = paH
n .

18 ▷ On a card(C0) =
(

n

s0

)
c0 car après avoir choisi les s0 sommets d’un élément de C0,

il suffit d’en faire des copies pour obtenir les éléments de C0 associés à ces sommets.
Une copie de G0 menant avant tout à une bijection de S0 dans un ensemble de sommets

de même cardinal, et comme il y a s0! telles bijections :
il y a au plus s0! copies isomorphes à G0 : c0 ≤ s0! .

Comme il y a
(

n

s0

)
choix possibles d’ensemble de sommets pour tout graphe dans C0,

on a donc : card(C0) ≤
(

n

s0

)
s0! = n(n − 1) · · · (n − s0 + 1) et donc card(C0) ≤ ns0 .

19 ▷ On a tout simplement X0
n =

∑
H∈C0

XH .

Comme XH suit une loi de Bernoulli, E(XH) = P(XH = 1) = P(H ⊂ G) et donc :
E(X0

n) =
∑

H∈C0

E(XH) =
∑

H∈C0

P(H ⊂ G) .

On obtient, d’après la question 17 ▷ : E(X0
n) =

∑
H∈C0

pa0
n = card(C0)pa0

n ≤ ns0pa0
n .

20 ▷ Soit H0 ⊂ G0 tel que ω0 = sH0

aH0

.
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On note aussi D0 l’ensemble des copies de H0 dont les sommets sont inclus dans J1, nK,
et Y 0

n la variable aléatoire égale au nombre de copies de H0 contenus dans G
Puisqu’une copie de G0 donne a fortiori une copie de H0, on a X0

n ≤ Y 0
n et donc

E(X0
n) ≤ E(Y 0

n )
D’après les questions 11 ▷ et 19 ▷, P(X0

n > 0) ≤ E(X0
n) ≤ E(Y 0

n ) ≤ nsH0 p
aH0
n .

On a nsH0 p
aH0
n = (nω0pn)aH0 = o(1) Comme 0 ≤ P(X0

n > 0) ≤ nsH0 p
aH0
n , il en résulte

par encadrement que lim
n→+∞

P(X0
n > 0) = 0 .

21 ▷ D’après la question 19 ▷, X0
n =

∑
H∈C0

XH . On a donc :

(X0
n)2 =

 ∑
H∈C0

XH

2

=
 ∑

H∈C0

XH

 ∑
H′∈C0

XH′

 =
∑

(H,H′)∈C2
0

XHXH′ .

Donc, E
(
(X0

n)2
)

=
∑

(H,H′)∈C2
0

E(XHXH′).

Or, XHXH′ suit une loi de Bernoulli de paramètre :
P(XH = 1, XH′ = 1) = P(H ⊂ G, H ′ ⊂ G) = P(H ∪ H ′ ⊂ G) et donc :
E(XHXH′) = P(H ∪ H ′ ⊂ G) si bien que : E

(
(X0

n)2
)

=
∑

(H,H′)∈C2
0

P(H ∪ H ′ ⊂ G) .

Mais P(H ∪ H ′ ⊂ G) = p
aH∪H′
n = p

2a0−aH∩H′
n car aH = aH′ = a0 si H et H ′ sont dans

C0. Finalement : E
(
(X0

n)2
)

=
∑

(H,H′)∈C2
0

p2a0−aH∩H′
n .

22 ▷ Si sH∩H′ = 0, les événements H ⊂ G et H ′ ⊂ G sont indépendants
(P(H ⊂ G, H ′ ⊂ G) = p2a0

n = pa0
n pa0

n = P(H ⊂ G)P(H ′ ⊂ G) si H et H ′ sont dans C0
avec aH∩H′ = 0).

On obtient : Σ0 =
∑

(H,H′)∈C2
0

sH∩H′ =0

P(H ⊂ G)P(H ′ ⊂ G) et donc :

Σ0 ≤
∑

(H,H′)∈C2
0

P(H ⊂ G)P(H ′ ⊂ G) =
 ∑

H∈C0

P(H ⊂ G)
 ∑

H′∈C0

P(H ′ ⊂ G)
 soit

Σ0 ≤
(
E(X0

n)
)2

.

23 ▷ On a Σk =
∑

H∈C0

 ∑
H′∈C0

sH∩H′ =k

P(H ∪ H ′ ⊂ G)

.

Or, P(H ∪ H ′ ⊂ G) = p
2a0−aH∩H′
n car H et H ′ sont dans C0.

Par définition de ω0, on a ω0 ≤ sH∩H′

aH∩H′
si H et H ′ sont dans C0 avec aH∩H′ ≥ 1.
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On obtient P(H ∪ H ′ ⊂ G) ≤ p
2a0−

sH∩H′
ω0

n = p
2a0− k

ω0
n si sH∩H′ = k.

Il en résulte que Σk ≤
∑

H∈C0

 ∑
H′∈C2

0
sH∩H′ =k

p
2a0− k

ω0
n

.

Mais, card
({

H ′ ∈ C2
0 | sH∩H′ = k

})
=
(

s0

k

)(
n − s0

s0 − k

)
c0.

En effet, on choisit k sommets parmi les s0 sommets de H pour former l’intersection
H ∩ H ′, puis les n0 − k autres sommets de H ′ parmi les sommets n’appartenant pas à
H et on effectue toutes les copies de G0 avec les sommets obtenus.

Finalement : Σk ≤
∑

H∈C0

(
s0

k

)(
n − s0

s0 − k

)
c0p

2a0− k
ω0

n ≤
∑

H∈C0

(
s0

k

)(
n − s0

s0 − k

)
n0!p

2a0− k
ω0

n .

24 ▷ On a
(

r

q

)
r−q = r(r − 1) · · · (r − q + 1)

rqq! =
1(1 − 1

r
) · · · (1 − q−1

r
)

q! .

Or, si 0 ≤ k ≤ q − 1, k

r
≤ q − 1

r
≤ q − 1

q
car r ≥ q.

On obtient
(

r

q

)
r−q ≥ 1

q!

(
1 − q − 1

q

)q

.

Notons εn = n−ω0p−1
n ; donc on a lim εn = 0. On a alors :

0 ≤ Σk ≤ card(C0)
(

s0

k

)(
n − s0

s0 − k

)
c0p

2a0− k
ω0

n = card(C0)
(

s0

k

)(
n − s0

s0 − k

)
c0p

2a0
n ε

k
ω0
n nk.

On obtient : 0 ≤ Σk ≤ c1 card(C0)p2a0
n ns0−kc0ε

k
ω(G0)
n nk où c1 est une constante indépen-

dante de n.
On a vu à la question 19 ▷ que E(X0

n) = card(C0)pa0
n .

On obtient : 0 ≤ Σk ≤ c1E(X0
n)pa0

n ns0c0ε
k

ω(G0)
n .

D’après la question 24 ▷, ns0 ≤ c2

(
n

s0

)
où c2 est une constante. On obtient :

0 ≤ Σk ≤ c1c2E(X0
n)pa0

n c0

(
n

s0

)
ε

k
ω(G0)
n = c1c2E(X0

n)pa0
n card(C0)ε

k
ω0
n d’après la question

18 ▷.
Et enfin, d’après la question 18 ▷, 0 ≤ Σk ≤ c1c2

(
E(X0

n)
)2

ε
k

ω0
n .

Ainsi, 0 ≤ Σk(
E(X0

n)
)2 ≤ c1c2ε

k
ω0
n si bien que par encadrement, lim

n→+∞

Σk(
E(X0

n)
)2 = 0 :

Σk = o
((

E(X0
n)
)2
)

.

25 ▷ On a
E
(
(X0

n)2
)

(
E(X0

n)
)2 =

a0∑
k=0

Σk(
E(X0

n)
)2 = Σ0(

E(X0
n)
)2 +

a0∑
k=1

Σk(
E(X0

n)
)2 ≤ 1 + o(1) d’après
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les questions 22 ▷ et 24 ▷.

Il en résulte que V(X0
n)(

E(X0
n)
)2 =

E
(
(X0

n)2
)

−
(
E(X0

n)
)2

(
E(X0

n)
)2 ≤ o(1) et lim

n→+∞

V(X0
n)(

E(X0
n)
)2 = 0 .

26 ▷ D’après les questions 25 ▷ et 12 ▷ et par encadrement, on a lim
n→+∞

P(X0
n = 0) = 0

et donc lim
n→+∞

P(X0
n > 0) = 1 .

La question 20 ▷ et l’encadré précédent montrent que :
(k−ω0)k≥2 est une fonction de seuil pour la propriété Pn .

27 ▷ Il s’agit tout simplement de déterminer ω0 où G0 est une étoile à d branches.
Si un sous-graphe H de G0 ne contient pas le centre de l’étoile, on a aH = 0 et il est

facile de constater que si H contient le centre de l’étoile, sH

aH

est minimum pour H = G0.

Ainsi, ω0 = d + 1
d

et :

(k− d+1
d )k≥2 est une fonction de seuil pour la propriété :

«contenir une copie de l’étoile à d branches».
Remarque : pour d = 1, on retrouve bien le résultat de la question 16 ▷ car un segment

est une étoile à une branche.
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Critère de Schur-Cohn et généralisation au cas non inversible

Notations et objectifs du problème
Dans tout le problème :

— n désigne un entier naturel non nul et l’ensemble {1, 2, . . . , n} est noté J1, nK.

— Mn(R) (respectivement Sn(R), resp. Dn(R), resp. GLn(R)), désigne l’ensemble
des matrices carrées (resp. symétriques, resp. diagonales, resp. inversibles) réelles
de taille n, et on confond un élément de M1(R) avec son unique coefficient ;

— si M ∈ Mn(R), on note M⊤ sa transposée et pour tout (i, j) ∈ J1, nK2, on note
Mi,j le coefficient de M situé à la i-ème ligne et la j-ème colonne ;

— on note π(M) le nombre de valeurs propres réelles strictement positives de M
comptées avec leur multiplicité, ainsi par exemple π(In) = n ;

— si (u1, . . . , un) ∈ Rn on note Diag(u1, . . . , un) la matrice D ∈ Dn(R) telle que
Di,i = ui pour tout i ∈ J1, nK ;

— si f et g sont deux polynômes non simultanément nuls, on note f ∧ g leur PGCD ;

— si f est un polynôme, on note également f sa fonction polynomiale associée ;

— on note σ(f) le nombre de racines réelles de f appartenant à l’intervalle ] − 1; 1[,
comptées avec leur multiplicité, ainsi par exemple σ(X2(X − 1)(X + 1)) = 2 ;

— on dit que le réel α est une racine stable de f si α ̸= 0 et f(α) = f(α−1) = 0 ;

— si f est un polynôme de degré m ∈ N et s’écrit

f = amXm + am−1X
m−1 + · · · + a1X + a0 =

m∑
k=0

akXk,

on note f0 son polynôme réciproque, défini par

f0 = a0X
m + a1X

m−1 + · · · + am−1X + am =
m∑

k=0
am−kXk;

— on note U = (1 0 · · · 0)⊤ la matrice colonne de taille n dont le premier
coefficient est égal à 1 et les autres à 0 ;
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— on note S la matrice de Mn(R) dont tous les coefficients sont nuls sauf les n − 1
coefficients situés juste au-dessus de la diagonale, égaux à 1 :

∀(i, j) ∈ J1, nK2 Si,j = δi+1,j (symbole de Kronecker);

— pour tout polynôme réel f on définit la matrice J(f) ∈ Sn(R) par

J(f) = f0(S)⊤f0(S) − f(S)⊤f(S).

Dans ce problème p désigne un polynôme à coefficients réels, scindé sur R de degré n,

p = anXn + an−1X
n−1 + · · · + a1X + a0 =

n∑
k=0

akXk, an ̸= 0,

et on note α1 ≤ · · · ≤ αn ses racines toutes réelles, comptées avec leurs multiplicités.

L’objectif du problème est d’établir l’égalité σ(p) = π(J(p)) (critère de Schur-Cohn)
dans le cas où J(p) est inversible, puis de proposer une démarche générale permettant
de compter les racines de p dans ] − 1; 1[, lorsque la matrice J(p) n’est pas inversible.

Ces résultats, généralisables aux polynômes à coefficients complexes, sont utiles dans
l’étude de la stabilité de certains systèmes dynamiques.

A. Propriétés du polynôme p0 et stabilité des racines
1 ▷ Montrer que p0, le polynôme réciproque de p, vérifie

∀x ∈ R∗ p0(x) = xnp(1/x)

et en déduire que
p0 = an

n∏
j=1

(1 − αjX).

2 ▷ Montrer que p ∧ p0 = 1 si et seulement si p ne possède pas de racine stable.

Jusqu’à la fin de la partie A. on suppose que toutes les racines de p sont stables et
d’ordre de multiplicité 1.

3 ▷ Justifier qu’il existe λ ∈ {−1, 1} tel que p = λp0.

Soit h le polynôme de degré n défini par h(X) = Xp′, où p′ est le polynôme dérivé de p.
On note h0 et (p′)0 les polynômes réciproques respectifs de h et p′.
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4 ▷ Montrer que h = np − λ(p′)0, puis que h0 = λ(np − Xp′).

5 ▷ Vérifier que p′ est scindé sur R puis montrer que h ∧ h0 = 1 et en déduire que p′

n’admet pas de racine stable.

B. Liberté d’une famille de polynômes
Pour tout entier j ∈ J1, nK, on note fj le polynôme

fj = an(1−αnX) · · · (1−αj+1X)(X −αj−1) · · · (X −α1) = an

n∏
k=j+1

(1−αkX)
j−1∏
k=1

(X −αk)

avec, selon les conventions habituelles,
n∏

k=n+1
(1 − αkX) =

0∏
k=1

(X − αk) = 1.

6 ▷ Montrer que s’il existe deux entiers i, k tels que 1 ≤ i < k ≤ n et αiαk = 1, alors
αi est racine de chaque polynôme fj, où j ∈ J1, nK, et que la famille (f1, . . . , fn)
est liée.

Jusqu’à la fin de la partie B. on suppose qu’aucune racine de p n’est stable.
On note E le sous-espace vectoriel des fractions rationnelles à coefficients réels dont les
éventuels pôles sont des inverses de racines de p (on ne demande pas de justifier que
E est un espace vectoriel). Les éléments de E sont donc les fractions rationnelles dont
le dénominateur peut s’écrire comme produit fini, éventuellement égal à 1, de facteurs
(1 − αiX) où 1 ≤ i ≤ n.

Pour tout j ∈ J1, nK, on définit la fraction rationnelle gj ∈ E par

gj = fj
n∏

i=1
(1 − αiX)

et l’application Pj, qui à une fraction rationnelle f ∈ E associe la fraction rationnelle

Pj(f) =
(1 − αjX)f − (1 − α2

j )f(αj)
X − αj

.

7 ▷ Montrer que pour tout j ∈ J1, nK, l’application Pj est un endomorphisme de E et
déterminer son noyau.
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8 ▷ Pour tout j ∈ J1, nK et tout g ∈ E, calculer Pj

(
(X − αj)g
1 − αjX

)
.

9 ▷ En déduire que la famille (f1, . . . , fn) est libre.

C. Expression de la matrice J(p)
10 ▷ Montrer que la famille ((S⊤)iU)0≤i≤n−1 est une base de Mn,1(R). Les matrices S

et U ont été définies dans la partie préliminaire du problème.

Pour tout entier j ∈ J1, nK, on définit les matrices

Bj = S − αjIn et Cj = In − αj S.

11 ▷ Démontrer que
J(p) =

n∑
j=1

fj(S)⊤(C⊤
j Cj − B⊤

j Bj)fj(S).

Les polynômes f1, . . . , fn ont été définis dans le préambule de la partie B.

12 ▷ Soit j ∈ J1, nK. Montrer que C⊤
j Cj − B⊤

j Bj = (1 − α2
j )UU⊤.

13 ▷ On note D la matrice diagonale de taille n :
D = Diag((1 − αj

2)1≤j≤n)
et V ∈ Mn(R) la matrice telle que pour tout j ∈ J1, nK, la j-ème colonne de V
est Vj = fj(S⊤) U. Montrer que

J(p) = V DV ⊤.

14 ▷ En déduire, à l’aide de la question 6, que si p possède une racine stable alors J(p)
n’est pas inversible.

D. Cas où J(p) est inversible : critère de Schur-Cohn
On rappelle que si M ∈ Mn(R) alors π(M) désigne le cardinal de l’ensemble de ses

valeurs propres strictement positives, comptées avec leurs multiplicités.

On munit Mn,1(R) de sa structure euclidienne canonique. On dit qu’un sous-espace
vectoriel F de Mn,1(R) vérifie la condition (CM) quand

∀X ∈ F \ {0n,1} X⊤MX > 0.
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On note d(M) la dimension maximale d’un sous-espace vectoriel F de Mn,1(R) véri-
fiant la condition (CM), c’est-à-dire :

d(M) = max{dim F | F s.e.v de Mn,1(R) vérifiant (CM)}.

15 ▷ Soit deux matrices A, B ∈ Mn(R) telles qu’il existe une matrice P ∈ GLn(R)
vérifiant A = P ⊤BP . Montrer que d(B) ≥ d(A) puis que d(B) = d(A).

16 ▷ Pour toute matrice M ∈ Sn(R) construire un sous-espace vectoriel FM de Mn,1(R)
de dimension π(M) vérifiant la condition (CM). On a donc d(M) ≥ π(M).

17 ▷ On veut montrer que pour toute matrice M ∈ Sn(R) on a π(M) = d(M). Par
l’absurde, en supposant l’existence d’un sous-espace vectoriel G de Mn,1(R) de
dimension dim G > π(M) vérifiant la condition (CM), montrer dim(F ⊥

M ∩ G) ≥ 1,
en déduire une contradiction et conclure.

18 ▷ Démontrer le critère de Schur-Cohn :

Si J(p) est inversible alors p ne possède aucune racine stable et σ(p) = π(J(p)).

E. Condition nécessaire et suffisante d’inversibilité
19 ▷ Montrer, à l’aide des questions 9 et 13, que si p n’admet pas de racine stable et si

J(p) n’est pas inversible alors il existe un polynôme q non nul à coefficients réels
de degré au plus n − 1 tel que q(S⊤) U = 0n,1.

20 ▷ En déduire que la matrice J(p) est inversible si et seulement si p n’admet aucune
racine stable.

F. Un cas particulier
On suppose dans cette partie, comme on l’a fait aux questions 3 à 5, que toutes les
racines de p sont stables et de multiplicité 1 et on note h = Xp′ (où p′ est le polynôme
dérivé de p) et h0 le polynôme réciproque de h. On rappelle que, d’après la question 3,
il existe un réel λ ∈ {−1, 1} tel que p = λp0.

21 ▷ Montrer que J(h) est inversible.

22 ▷ Montrer qu’il existe un réel η > 0 tel que pour tout r ∈]1−η; 1[, le polynôme p(rX)
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est scindé, admet exactement σ(p) racines à l’intérieur de l’intervalle ] − 1; 1[ et ne
possède aucune racine stable.

Pour tout réel r > 0, on note F (r) = J(p(rX)).

23 ▷ Montrer que

lim
r→1−

π

(
n

2(r − 1)F (r)
)

= n − σ(p).

24 ▷ Justifier que l’application F : R∗
+ → Sn(R) est dérivable et que

F ′(1) = 2n(p(S))⊤p(S) − 2S⊤(p′(S))⊤p(S) − 2(p(S))⊤p′(S)S.

25 ▷ En déduire, à l’aide des résultats de la question 4, que
n

2(r − 1)F (r) =
r→1

J(h) + o(1).

On admet que l’application définie sur Sn(R) à valeurs dans Rn qui à une matrice symé-
trique associe le n-uplet de ses valeurs propres réelles comptées avec leurs multiplicités,
rangées dans l’ordre décroissant, est continue.

26 ▷ En déduire que σ(p) = n − 1 − π(J(p′)).

G. Méthode générale.
On se place dans le cas général, sans disposer d’information sur la stabilité et la multi-
plicité des racines de p, et on cherche à calculer σ(p).
On construit les deux polynômes f et g vérifiant f = p ∧ p0 et p = fg.

27 ▷ Montrer que σ(g) = π(J(g)).

28 ▷ Proposer une méthode permettant de construire un nombre fini (éventuellement
nul) de polynômes g1, . . . , gℓ, dont les racines sont stables et de multiplicité 1, tels
que f = g1g2 · · · gℓ. Exprimer σ(p) à l’aide de n, deg g, π(J(g)), ℓ, π(J(g)) ainsi que
π(J(g′

1)), . . . , π(J(g′
ℓ)).

Fin du problème
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