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Représentation matricielle Ae”

Soit n un entier naturel non nul et .4 ,,(C) I'espace vectoriel des matrices
carrées d’ordre n a coefficients complexes. On note I,, la matrice identité de
M (C). Une matrice N de .4, (C) est dite nilpotente d’indice p si p est le plus
petit entier strictement positif pour lequel N” = 0.

Pour A € .4,(C), on appelle exponentielle de A, et on note exp(A) ou e,
+00 n

la matrice e = Z o On admet que si deux matrices A et B de .#,(C) sont
n=0 '*

telles que AB = BA, on a e*8 = e/eB. Enfin, on appelle bloc de Jordan d’ordre n
associé au nombre complexe A, la matrice

A1 0 - 0
0 A 1
Ja=|: ol
Z AR
O ceeeeee-- 0o A

Si n et p sont deux entiers naturels non nuls on note .4, (C) I'espace vectoriel
des matrices a coefficients complexes comportant 7 lignes et p colonnes. On
notera indifféremment .4, ,(C) ou .4, (C).

A. Préliminaire sur la représentation ze* dans C

1) Soit r et R des nombres réels strictement positifs, a et 0 des nombres réels.
On note w = re'® et z = Re'®. Montrer que I'équation ze® = w équivaut au
systeme :

ReRcos(Q) =r
{Rsin(@) =a—0 (modulo2n).

On choisit dorénavant le réel a dans l'intervalle 27,47 |. Soit alors ¢ 'application
de ]0, 7[ dans R définie par la formule :

«a cosfO
¢00) = sin () )

2) Déterminer les limites de ¢(0) lorsque 6 — 0% et lorsque 6 — 7~. Que

peut-on en déduire sur les solutions de I'équation ¢(8) = r pour r > 0 fixé ?

Soit D = {Reie ; R>0er0<0<m}ui{0} et g l'application de D dans C définie
par g(z) = ze®.

exp((a -9 sin@

3) Déduire de ce qui précéde que g est surjective.



B. Représentation Ae” d’un bloc de Jordan

Soit N € .4, (C) une matrice nilpotente d’'indice n.

4) Montrer qu'il existe X € .4, 1(C) telle que N""1X # 0 et que la famille
{X,NX,...,N""1X} estlibre.

5) En déduire que N est semblable a J,,(0).
6) Montrer que e/ est inversible et que J,(0) e/n0) est nilpotente d’indice n.

7) Montrer que si P € ./, (C) est inversible, on a Pe]"(f))P_1 = ePInOP! Ep
déduire qu'il existe N € .#,,(C) telle que J,(0) = Ne®.

Soit A un nombre complexe non nul.

8) Justifier I'existence d'un nombre complexe u # —1 tel que A = ue* et
montrer que I'on peut écrire :

Tn(we!n™ = A1, + (u+1)e" J,,(0) + (J(0))? p(J,,(0))

ol p est un polyndéme a coefficients complexes qui dépend de p.

9) Montrer que (u+ 1)e”J,(0) + (J,(0))? p(J,(0)) est nilpotente d’indice n. En
déduire qu'il existe M € .#,,(C) telle que J, (1) = MeM.

C. Forme de Jordan d'une matrice nilpotente

Soit N € ./, (C) une matrice nilpotente d’indice p. On suppose dans un
premier temps que 1 < p < n.

10) Montrer qu'il existe B € 4y ;,—,(C) et C € My p,n—p(C) telles que N est
semblable a la matrice par blocs suivante :

(], B
A‘( 0 C)

ou O est la matrice nulle de .4, ,(C).

Pour tout X € .4} ,—,(C), on définit la matrice par blocs Ty suivante :

(5| X
TX = (T‘m) € ./%n(q:)

11) Montrer que Tx est inversible et calculer son inverse. Vérifier que A’ =

TxATy' estdelaforme
(1O Y
N S ara

oul'on explicitera les matrices Y € 4, ,,(C) et Z € My p,n—p(C).
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12)

13)

14)

Montrer que dans I'écriture de A’ de la question précédente, on peut choi-
sir X € My n—-p(C) de telle sorte que toutes les lignes de Y, a I’exception
éventuelle de la derniere, soient nulles. (On pourra noter X(; la iéme
ligne de X pour i € {1,..., p} et étudier l'effet sur les lignes de X de la
multiplication par J,(0) dans le produit J,(0) X.)

Justifier que A’ est nilpotente d’indice p. En déduire que sila matrice X est
choisie comme dans la question précédente, la matrice Y est nulle. (On
pourra raisonner par ’absurde en étudiant I’effet des endomorphismes
associés aux puissances de A’ sur les vecteurs de la base canonique de C".)

En déduire que lorsque 1 < p < n, la matrice nilpotente N est semblable a
une matrice diagonale par blocs de la forme :

Jp, (0) (0)
J 1, (0)

0 Jp, ()

our et py, po,..., pr désignent des entiers naturels non nuls.

D. Représentation Ae” dans ./, (C)

Soit A € 4, (C). On note A, Ay,..., A, ses valeurs propres complexes dis-
tinctes, d’ordres de multiplicité respectifs a,as,..., a; dans le polynéme ca-
ractéristique de A. Soit f 'endomorphisme de C"” dont la matrice dans la
base canonique de C” est A et F; le sous-espace vectoriel de C" défini par
F; =Ker((f —A;Idc»)") pour tout i € {1,..., s}.

15) Montrer que I'espace vectoriel C” est la somme directe des espaces F;. En

considérant une base de C" adaptée a cette somme directe, montrer que
A est semblable a une matrice diagonale par blocs de la forme :

Ao, + Ny (0)
/12[,12 + Ng

) AsIaS + N

ol N1, No,..., Ng sont des matrices nilpotentes.

16) Montrer que I'application A — Ae” de .#,,(C) dans lui-méme est surjec-

tive.

FIN DU PROBLEME
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Opérateur de Volterra et équations différentielles

Lobjectif de ce probleme est I'’étude d’'un opérateur de Volterra appliqué
notamment a la résolution de certaines équations différentielles.

On considere I'espace vectoriel E des fonctions réelles définies et continues
sur l'intervalle [0, Z], muni du produit scalaire défini pour tous f, g dans E par :

(g = fo * ring(n dr.

On note || fll = v/{f, f) la norme associée a ce produit scalaire. Un endomor-
phisme V de I'espace E est dit symétrique défini positif si pour tous f, g dans E,
ona(V(f), g =(f,V(g) etside plus, (V(f), f) >0 pour tout f € E non nul.

Les parties A et B sont mutuellement indépendantes.

A. Opérateur de Volterra

On note V et V* les endomorphismes de E défini par les formules :
X
Vi = [ rud
0

V*(f)(x) =f§f(t)dt

pour tous f € Eet x€ [0, Z].

1) En observant que V(f) et —V*(f) sont des primitives de f, montrer que
pour tous f, g dans E, ona(V(f),g) = (f,V*(g)).
2) Montrer que 'endomorphisme V* o V est symétrique défini positif. En
déduire que ses valeurs propres sont strictement positives.
Soit A une valeur propre de V* o V et f) un vecteur propre associé a A.
3) Montrer que f; est de classe C? et est solution de I'équation différentielle :
y'+ %y = 0 avec les conditions y(5) =0 et y'(0) = 0.

4) En déduire que A est une valeur propre de V* oV si et seulement s'il existe
neN tel que A = ——— . Préciser alors les vecteurs propres associés.
@n+1)



B. Théoreme d’approximation de Weierstrass

Soit n un entier strictement positif, x € [0,1] et f : [0,1] — R une fonction
continue. On note Xi, X», ..., X;; des variables aléatoires mutuellement indépen-
dantes et distribuées selon la loi de Bernoulli de parametre x. On note également
Sp= X1+ Xo+ .+ Xy, Zn = 22 et By (f)(x0) = E(f(Zn)).

n
5) Rappeler, sans démonstration, la loi de S;. En déduire, avec démonstra-
tion, les valeurs de I’espérance et de la variance de S; en fonction de n et
de x.

6) En utilisant I'inégalité de Bienaymé-Tchebychev, montrer que pour tout

a>0:
n 1
Y xk(l—x)"_ks—2
0<ks<n k 4na
|§—x|>a

7) Montrer que :

n

n _ k

Bp(H)—flx)=) ( )xk(l—X)" k(f(—)—f(x))
i=o\k n

et en déduire que la suite (B, (f)),en converge uniformément vers f

sur [0,1]. On pourra utiliser le résultat de la question précédente ainsi

que le théoréme de Heine.

On a donc établi le théoreme d’'approximation de Weierstrass sur le segment [0, 1] :
toute fonction continue sur [0, 1] y est limite uniforme d’une suite de polynémes.
On en déduit aisément, et on I’admet, le théoréeme d’approximation de Weiers-
trass sur un segment quelconque [a, b].

C. Développementde V* o V(f) en série trigonométrique

On considere maintenant I'espace vectoriel G des fonctions réelles définies
et continues sur l'intervalle [0, 7], muni du produit scalaire défini pour tous f, g
dans G par:

(f, 8¢ :fo f(g(r) dr.

Onnote || fll; =+/{f, f)c lanorme associée a ce produit scalaire.

Pour n € N, on définit la fonction ¢, € G par la formule c,(f) = cos(nt)
et on note F, = Vect(cy, c1,...,c,) le sous-espace vectoriel de G engendré par
{co, c1,...,cp}. On note également Pr, la projection orthogonale de G sur Fj,.

8) Montrer que si p est un polynome de degré n € N, la fonction ¢t — p(cos(t))
définie sur [0, 7] appartient a F,.
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9) Trouver une suite (a,) ,en de nombres réels strictement positifs telle que
la suite (@ cy) nen s0it orthonormée. Déduire du théoreme d’approxima-
tion de Weierstrass que la suite orthonormée (a;c,) nen €St totale.

10) Soit f € G. Démontrer que || f — Pr, (f)ll; tend vers 0 lorsque n tend vers
I'infini. Si, de plus, la suite (Pg, (f)) zen converge uniformément sur [0, 7]
vers une fonction g, montrer que g = f.

Pour tout x € [0, Z], on définit la fonction g, sur [0, 7] par la formule :

(5 = %—max(x, ) si0
Ex —gy(m—1) si % <

11) Soit n € N. Déterminer les coordonnées de Pr, (gx) surlabase (¢, ¢y, ..., cp)
de F,,. En déduire que pour tout ¢ € [0,7/2] :

m 4t cos((2n+1)x)
o ~max(x, 1) = — Y —oni

n=0

cos(2n+1)1).

12) Montrer que pour tous f € E et x € [0, %] :

T

v oV(f)(x):f (——max(x, t))f(t)dt
o (2

et en déduire la suite des coefficients (a; (f)) nen pour laquelle on a :

+00
V*oV((x) =) an(f) cos((2n+1)x).
n=0

D. Equations différentielles du type Sturm-Liouville

Soit h € E, A € R et]’équation différentielle :

S y'+Ay+h=0
y(@/2)=0ety'(0) =0

On définit ¢, € E pour tout n € N par la formule ¢, () = % cos(2n+1)1).

1
13) Montrer que pourtous fe EetneN,(V*oV(f), @) = m(f,(pn>.

14) Montrer que g est solution de I’équation différentielle S si et seulement si
g=A-V*oV(g)+ V*oV(h) et que dans ce cas, on a les formules suivantes
pour tout n € N :

(1-—2) (g0 = =5 o)
en+12) 8 = ozt



et .
g€=) (& Pn)¢Pn.
n=0

15) On suppose dans cette question que A n’est pas égal au carré d'un entier
impair. Montrer que la série :

1
Z m (h, (Pn>(Pn

est normalement convergente. Exhiber alors une solution de S.

On suppose maintenant qu'il existe p € N tel que A = (2p + 1)2.

16) Montrer que si (h,¢,) = 0 alors S a une infinité de solutions, puis exhiber
I'une d’entre elles. Que peut-on dire si (h, ¢p) #0?

FIN DU PROBLEME
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Autour de I'inégalité de Hoffman-Wielandt

Dans tout le probleme n désigne un entier supérieur ou égal a 2. Soit M,,(R)
I’ensemble des matrices carrées d’ordre n a coefficients réels et A un sous ensemble
de M, (R). On dit qu'une matrice A € M,,(R) est extrémale dans A si pour tous
M, N dans A et tout A €0, 1[, on a U'implication :

A=AM+(1-AN = A=M=N.

On note B, l'ensemble des matrices bistochastiques de M, (R), c’est-a-dire
I'ensemble des matrices A = (A; ;)1<i j<n dont tous les coeflicients sont positifs ou

n n
nuls et tels que > A;; =Y A;; =1 pour tout i € {1,2,...,n}.
j=1 j=1
On note enfin P, 'ensemble des matrices de permutation M, € M, (R) dont
les coefficients sont de la forme :

(M), = {1 si i = o(j)

0 sinon,
pour tous 4, j dans {1,2,...,n}, ou ¢ est une permutation de {1,2,...,n}.

La partie A n’est pas indispensable da la résolution des parties suivantes.

A Un exemple

Soit J la matrice de M,,(C) définie par

1 0 ... 0

o 1 " :

J = R -0
0 |

r 0o ... 00

c'est-a-dire par J; ; =1sij—t=1oui—j=n—1,et J;; =0 sinon.

1. Montrer que J est une matrice de permutation. Calculer les valeurs propres
réelles et complexes de J, et en déduire que J est diagonalisable sur C.

2. Déterminer une base de C" de vecteurs propres de J.



Dans les trois questions suivantes n désigne un entier naturel impair > 3. Pour
tout m € N, on note X,, une variable aléatoire a valeurs dans {0,1,...,n — 1}
telle que

e Xy = 0 avec probabilité 1;

e si X,, = k, alors ou bien X,,;; = k — 1 modulo n, ou bien X,,,; = k+1
modulo n, ceci avec équiprobabilité.

On note

3. Déterminer Uy et une matrice A de M, (R) telle que pour tout m € N,
Upni1 = AU,,. On exprimera A a I'aide de la matrice J.

4. Déterminer les valeurs propres de la matrice A et un vecteur propre de R”
unitaire associé a la valeur propre de module maximal.

5. En déduire la limite de U, lorsque m — +o0.

B Théoréme de Birkhoff-Von Neumann

6. Montrer que I'’ensemble B, est convexe et compact. Est-il un sous espace
vectoriel de M,,(R)?

7. Montrer que P,, C B, et que P, est un sous-groupe multiplicatif de GL,(R).
Tout élément de P, est-il diagonalisable sur C 7 L’ensemble P,, est-il convexe ?

8. Montrer que toute matrice de P, est extrémale dans B,,.

Dans toute la suite de cette partie, on considére une matrice bistochastique A =
(Aij)i<ij<n qui n'est pas une matrice de permutation.

9. Montrer qu’il existe un entier r > 0 et deux familles ¢y, 29, . . . , i, et j1, Jo, . . ., Jr
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d’indices distincts dans {1,2,...,n} tels que pour tous k € {1,2,...,r},
Ai e €10, 1] et Ay 5, ., €]0,1] avec i = J1.

10. En considérant la matrice B = (B;;)1<ij<n de M, (R) définie par :

Blk,jkzl k€{1,2,...,r}
Bikyijrl:_l k€{1,2,...,7”}
B;;=0 dans les autres cas,

montrer que A n’est pas un élément extrémal de B,,. En déduire I’ensemble
des éléments extrémaux de B,,.

On dit qu'une matrice M = (M;;)i<ij<n de M, (RY), & coefficients positifs
ou nuls, admet un chemin strictement positif s’il existe une permutation o de
{1,2,...,n} telle que Myn1)1My2)2- - Mym)yn > 0.

On démontre par récurrence sur n, et on admet le résultat suivant : si M est
a coefficients positifs ou nuls et si toute matrice extraite de M ayant p lignes et g
colonnes avec p + ¢ = n + 1 n’est pas la matrice nulle, alors M admet un chemin
strictement positif.

11. Montrer que A admet un chemin strictement positif.

On note o une permutation de {1,2,...,n} telle que Ay1)1452)2° Asm)m > 0

1
et on pose \g = min(Ayj) ;) et Ag = ﬁ(A — XAoM,) ou M, est la matrice de
j — Ao
permutation associée a o.

12. Montrer que Ap est bien définie, et que c’est une matrice bistochastique
contenant au moins un élément nul de plus que A.

13. En raisonnant par récurrence, démontrer que A s’écrit comme une combinai-
son linéaire d’un nombre fini de matrices de permutation My, My, ..., M, :

A=A oMo+ MM+ -+ XM,
ou les coefficients \; sont tous strictement positifs et de somme 7 j\; = 1.
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14. Soit ¢ une forme linéaire de M, (R). Montrer que Mu€17fD ©(M) existe. En

déduire que Mugg ©(M) existe et est atteint en une matrice de permutation.

C Inégalité de Hoffman-Wielandt

Dans cette partie, on munit M,,(R) de la norme euclidienne || - || associée au
produit scalaire défini par (A, B) = tr(*A - B). On note S,,(R) le sous-ensemble de
M, (R) des matrices symétriques et O, (R) celui des matrices orthogonales.

15. Montrer que pour tous A € M, (R) et P, dans O,(R), on a ||PAQ|| = ||A]|.
Dans la suite de cette partie, A et B désignent deux matrices symétriques réelles.

16. Montrer qu’il existe deux matrices diagonales réelles D 4,Dp, et une matrice
orthogonale P = (P, j)1<; j<n telles que ||A — B||> = || DaP — PDg|*.

17. Montrer que la matrice R définie par R;; = (P,;)* pour tous i,j dans
{1,2,...,n} est bistochastique et que

IA=B|>= > Ri;|N(A) = X(B)f

1<i,j<n

o A1(A), ..., A\ (A) désignent les valeurs propres de A et A\i(B),..., A\, (B)
celles de B.

18. En déduire que
min Y [Asgy(A) = A(B)|* < [|[A - B
i=1

ol le minimum porte sur ’ensemble de toutes les permutations de {1,2,...,n}.

Soit (£2,2(, P) un espace probabilisé et V' I’ensemble des variables aléatoires
définies sur cet espace admettant un moment d’ordre 2. Pour tout X de V, on

) TSVP



note X ~ Px si X suit la loi Py. Pour tout couple (P;, P») de lois, on pose

2 _ . 2
(P, P) = nf  E(IX - YP).

)

X~Py,Y~Ps
Soit (ay,...,a,) et (by,...,b,) deux familles de réels. On note P; la loi uniforme
sur {ay,...,a,} et Py la loi uniforme sur {by,...,b,}.

19. Montrer que

n

1
(P, P) = - Z lagy — b(i)|2

i=1
ot 'on a noté agy < -+ < ap) et bay < -+ < by les suites (aq,...,an)
et (by,...,b,) ré-ordonnées par ordre croissant. En déduire que pour toutes
matrices symétriques réelles A, B de valeurs propres respectives (ai, ..., a,)
et (by,...,b,), on a l'inégalité :

ndQ(Pl, PQ) < HA — BH2

FIN DU PROBLEME
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Etude d'un endormorphisme d'un espace de fonctions numériques

Soit I un intervalle de la forme [—a,a] ot a est un réel strictement positif. Dans
tout le probleme, on considere les ensembles suivants :

e & le C-espace vectoriel constitué des applications de I dans C de classe C*;

e D la partie de £ constituée de ses éléments développables en série entiere sur
un voisinage de 0;

e P la partie de £ constituée de ses éléments polynomiaux.
Pour tout n € N, on note
w/2
W, :/ (sint)™ dt
0
et si f € &, on note u(f) et v(f) les applications de I dans C définies par les
formules :

u(f)(z) = 2/07T/2f(xsint) dt

™

(Vz e 1)
o)) = FO0) +o [ " pwsint) dt.

Les candidats devront justifier leurs affirmations.

A Préliminaires

1. Justifier que P et D sont des sous-espaces vectoriels de €.

2. Montrer que si f € &€, u(f) et v(f) sont bien définies et appartiennent a &,
et que l'on définit ainsi des endomorphismes v et v de £.

3. Montrer que P est stable par u et par v.

4. Etablir pour n € N une relation simple entre W,, .5 et W,,. En déduire que

pour tout n € N,
7r

WoWig1 = m

5. Montrer que la suite (W,),en est strictement décroissante. Déterminer sa
limite et donner un équivalent de cette suite.

1 TSVP



B

Etude de la continuité de u et v

On considere la norme M de £ définie pour tout f € £ par la formule

10.

11.

12.

M(f) = max [f(x)]

zel

. Vérifier que M est bien définie et montrer que u est une application continue

de l'espace vectoriel normé (£, M) dans lui-méme.

. L’application v est-elle continue de (£, M) dans lui-méme ?

. Vérifier que l'application N : £ — R définie par N(f) = M(f) + M(f’) est

une norme sur &, et montrer que v est continue de (€, N) dans (€, M). Les
normes M et N sont-elles équivalentes ?

Si f € £ et e > 0, montrer qu’il existe p € P tel que f(0) = p(0) et

|f'(x) —p'(x)| < e pour tout € I. En déduire que P est dense dans ’espace
vectoriel normé (€, N).

Etude de ’inversibilité de u et v

Déterminer les restrictions de uov et vowu a P.

Déterminer (u o v)(f) pour tout f € E. Le réel 0 est-il valeur propre de
I’endomorphisme v ?

Déterminer également (v o u)(f) pour tout f € £. Conclure.

Applications.

13.

14.

15.

Pour tout f € &, donner une relation liant v(f) et u(f’). Calculer u(arctan’)
a I'aide du changement de variable z = tant et en déduire u(argsh”).

Montrer que f € £ est paire (respectivement impaire) si et seulement si u(f)
I'est. Qu’en est-il pour v?
Etude des valeurs et vecteurs propres de u et v

Montrer que A est une valeur propre de v si et seulement si % est une valeur

propre de u. Qu’en est-il des vecteurs propres correspondants ?

2



16. Montrer que D est stable par u. L’est-il par v ?

On considere une valeur propre A de u, de vecteur propre associé f € £.

17. Vérifier que si n € N, le nombre m,, = max,c; |f™(¢)| est bien défini, et

18.

19.

établir que pour tout = € I,

2m, W,
T

AL 1™ ()] <
En déduire que f € P.
Déterminer les valeurs propres et les vecteurs propres de u et v.
L’espace vectoriel £ admet-il une base de vecteurs propres de u? de v?

L’ensemble des valeurs propres de u (respectivement de v) est-il une partie
fermée de C7?

FIN DU PROBLEME
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Espaces vectoriels d’endomorphismes nilpotents

Dans tout le sujet, on considere des R-espaces vectoriels de dimension finie. Soit
FE un tel espace vectoriel et v un endomorphisme de E. On dit que u est nilpotent
lorsqu’il existe un entier p > 0 tel que uP = 0; le plus petit de ces entiers est
alors noté v(u) et appelé nilindice de u, et 'on remarquera qu’alors u* = 0 pour
tout entier k£ > v(u). On rappelle que u® = idg. L’ensemble des endomorphismes
nilpotents de E est noté N (F).

Un sous-espace vectoriel V de L(E) est dit nilpotent lorsque tous ses éléments
sont nilpotents, autrement dit lorsque V C N(E).

Une matrice triangulaire supérieure est dite stricte lorsque tous ses coeflicients
diagonaux sont nuls. On note T, " (R) I'ensemble des matrices triangulaires supé-
rieures strictes de M, (R).

L’objectif du probleme est d’établir le théoréme suivant, démontré par Murray
Gerstenhaber en 1958 :

Théoréme de Gerstenhaber

Soit £ un R-espace vectoriel de dimension n > 0, et )V un sous-espace vectoriel
nilpotent de L(E). Alors, dimV < W Si en outre dimV = "(nQ_l) alors il
existe une base de E dans laquelle tout élément de V est représenté par une matrice
triangulaire supérieure stricte.

Les trois premieres parties du sujet sont largement indépendantes les unes des
autres. La partie I est constituée de généralités sur les endomorphismes nilpotents.
Dans la partie IT, on met en évidence un mode de représentation des endomorphismes
de rang 1 d’un espace euclidien. Dans la partie I1I, on établit deux résultats généraux
sur les sous-espaces vectoriels nilpotents : une identité sur les traces (lemme A), et
une condition suffisante pour que les éléments d’un sous-espace nilpotent non nul
possédent un vecteur propre commun (lemme B). Dans 'ultime partie IV, les résul-
tats des parties précédentes sont combinés pour établir le théoréme de Gerstenhaber
par récurrence sur la dimension de ’espace F.



I Généralités sur les endomorphismes nilpotents

Dans toute cette partie, on fixe un espace vectoriel réel £ de dimension n > 0.

1. Soit u € N(E). Montrer que tru® = 0 pour tout k € N*.

2. On fixe une base B de E. On note N'g I'ensemble des endomorphismes de F
dont la matrice dans B est triangulaire supérieure stricte. Justifier que Ng est
un sous-espace vectoriel nilpotent de L(FE) et que sa dimension vaut nn=l),

3. Soit B une base de E. Montrer que

{v(u) | ueNp} ={v(u) | ueN(E)}=[1n].

4. Soit u € L(E). On se donne deux vecteurs z et y de E, ainsi que deux entiers
p > q > 1 tels que wP(z) = ui(y) = 0 et uP~L(x) # 0. Montrer que la
famille (z,u(z),...,uP~!(x)) est libre, et que si (uP~'(x),ud"1(y)) est libre
alors (x,u(z),...,uP~1(x),y,u(y),...,ui"t(y)) est libre.

5. Soit u € N(E), de nilindice p. Déduire de la question précédente que si p > n—1
et p>2alors Imu?~! = ImunNKeru et ImuP~! est de dimension 1.

II Endomorphismes de rang 1 d’un espace euclidien
On considére ici un espace vectoriel euclidien (F,(— | —)). Etant donné a € F

et x € F, on notera a ® x I'application de F¥ dans lui-méme définie par :

6.

7.

II1

VzeE, (a®z)(z)=(a]z)x

On fixe z € E \ {0}. Montrer que 'application a € E +— a ® z est linéaire et
constitue une bijection de E sur {u € L(F) : Imu C Vect(z)}.

Soit a € E et x € E'\ {0}. Montrer que tr(a ® z) = (a | z).

Deux lemmes

On considére ici un R-espace vectoriel £ de dimension n > 0. Soit V un sous-
espace vectoriel nilpotent de £(E) contenant un élément non nul. On note

p = maxv(u),

appelé nilindice générique de V (cet entier est bien défini grace a la question 3).
On notera que p > 2.



On introduit le sous-ensemble V* de E formé des vecteurs appartenant a au
moins un des ensembles Im u?~! pour u dans V; on introduit de plus le sous-espace
vectoriel engendré

K (V) := Vect(V*).

Enfin, étant donné = € E, on pose
V= {v(x) | v eV}

L’objectif de cette partie est d’établir les deux résultats suivants :
Lemme A. Soit u et v dans V. Alors tr(u*v) = 0 pour tout entier naturel k.

Lemme B. Soit = dans V*\ {0}. Si K(V) C Vect(x) + Vz, alors v(xz) = 0 pour tout
v dans V.

Dans les questions 8 a 11, on se donne deux éléments arbitraires u et v de V.

8. Soit k € N*. Montrer qu'il existe une unique famille ( fék), el f,gk)) d’endo-
morphismes de E telle que

k
VtER, (u+tv)t =3 ¢ "
1=0

ol ) _ b op ) S k1
Montrer en particulier que f;' = u" et f;"/ = > u'vu L
i=0

p—1 )
9. Montrer que > u‘vuP~'=% = 0.
=0

10. Etant donné k € N, donner une expression simplifiée de tr( f1(k+1)), et en
déduire la validité du lemme A.

11. Soit y € E. Démontrer que fl(p_l)(y) € K(V). A l'aide d'une relation entre
u(fl(pfl)(y)) et v(uP~L(y)), en déduire que v(z) € u(K(V)) pour tout x € ImuP~ 1.

12. Soit x € V* \ {0} tel que K(V) C Vect(x) + Vz. On choisit u € V tel que
r € ImuP~L.
Etant donné y € K(V), montrer que pour tout k € N il existe y, € K(V) et
M € R tels que y = A\p 7 + u¥(yx). En déduire que K (V) C Vect(x) puis que
v(z) = 0 pour tout v € V.

IV Démonstration du théoréme de Gerstenhaber

Dans cette ultime partie, nous démontrons le théoreme de Gerstenhaber par
récurrence sur 'entier n. Le cas n = 1 est immédiat et nous le considérerons comme
acquis. On se donne donc un entier naturel n > 2 et on suppose que pour tout
espace vectoriel réel E’ de dimension n — 1 et tout sous-espace vectoriel nilpotent
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V' de L(E'), on a dim V' < W, et si en outre dim)V’ = m_léﬂ alors il

existe une base de E’ dans laquelle tout élément de )V’ est représenté par une matrice
triangulaire supérieure stricte.

On fixe un espace vectoriel réel E de dimension n, ainsi qu’un sous-espace vec-
toriel nilpotent V de £(F). On munit £ d’un produit scalaire (— | —), ce qui en fait
un espace euclidien.

On considére, dans un premier temps, un vecteur arbitraire z de E \ {0}. On
pose,

H :=Vect(z)t, Vz:={v(@)|veV} et W:={veV: v(z)=0}

On note 7 la projection orthogonale de E sur H. Pour u € VW, on note u ’endomor-
phisme de H défini par
Vz € H, u(z) = m(u(z)).

On consideére enfin les ensembles

Vi={ulueW} et Z:={ueW: u=0}

13. Montrer que YV, W, V et Z sont des sous-espaces vectoriels respectifs de E,
V, L(H) et V.

14. Montrer que
dimV = dim(Vz) + dim Z + dim V.

15. Montrer qu’il existe un sous-espace vectoriel L de E tel que
Z={a®xz|ac€L} et dimL=dimZ,
et montrer qu’alors z € L.

16. En considérant v et a ® x pour v € V et a € L, déduire du lemme A que
Vo C L*, et que plus généralement u*(x) € L+ pour tout k& € N et tout
ueV.

17. Justifier que Az € Vx pour tout A € R*, et déduire alors des deux questions
précédentes que
dimVz +dimL <n—1.

18. Soit u € W. Montrer que (@)*(z) = m(u*(2)) pour tout k € N et tout z € H.
En déduire que V est un sous-espace vectoriel nilpotent de L£(H).

19. Démontrer que

dimy < =1,

Dans toute la suite du probléme, on suppose que dim) = @
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20. Démontrer que

(n—1)(n—2)

dimV =
imV 5 ,

dim(Vect(z) @ Vz)+dimL =n
et
Lt = Vect(z) ® V.

En déduire que Vect(z) © Vz contient v*(z) pour tout v € V et tout k € N.

21. En appliquant ’hypothése de récurrence, montrer que le nilindice générique
de V est supérieur ou égal & n — 1, et que si en outre Vax = {0} alors il existe
une base de E dans laquelle tout élément de V est représenté par une matrice
triangulaire supérieure stricte.

Compte tenu du résultat de la question 21, il ne nous reste plus qu’a établir que
I'on peut choisir le vecteur z de telle sorte que Vz = {0}.

On choisit x dans V*\ {0} (I’ensemble V* a été défini dans la partie III). On note
p le nilindice générique de V, et I'on fixe u € V tel que € ImuP~!. On rappelle que
p > n — 1 d’apres la question 21.

22. Soit v € V tel que v(x) # 0. Montrer que Im vP~! C Vect(x) @ V. On pourra
utiliser les résultats des questions 5 et 20.

23. On suppose qu'il existe vy dans V tel que vo(z) # 0. Soit v € V. En considérant
v + tvg pour t réel, montrer que ImvP~! C Vect(z) @ V.

24. Conclure.

FIN DU PROBLEME
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Points fixes et opérateurs a noyau

On considere un espace réel E de Banach, c’est-a-dire un espace vectoriel
sur R muni d'une norme notée | || et complet pour cette norme. Si A est une
partie de E, on note A son adhérence, A son intérieur, 0A = A\ A sa frontiere,
etd(x, A) = 1nfy€ Allx—yll sa distance a un point x € E. On note respectivement
B(x,r)={y€E;|y—xl<r} etB(x,r) ={ y€E; |ly— x|l <r}lesboules ouverte
et fermée de centre x et de rayon r.

Etant données deux parties A et B de E, et une application f: A— B, on
rappelle que x € E est un point fixe de f si c’est une solution de 1'équation
x = f(x). Lapplication f est dite contractante si elle est k-lipschitzienne de
rapport k € [0, 1], c’est-a-dire si pour tous x, y € A, il existe un réel k < 1 tel que

If ) = fFWI < kllx—yll.

On rappelle qu'une application lipschitzienne est continue.
Dorénavant et dans tout le probleme, A désigne une partie fermée non vide
de E.

A. Théoreme du point fixe

Dans cette partie préliminaire, on établit le

Théoreme (Picard). Toute application contractante f : A — A admet un unique
point fixe x € A.

Soit donc f: A — A une application contractante.
1) Montrer que si f admet un point fixe x, celui-ci est unique.

Soit xp € A et (x,) nen 1a suite d’éléments de A définie par la relation de récur-
rence x,+1 = f(x,) pour tout entier naturel n.

2) Montrer que la suite (x,) ,en est de Cauchy.

3) Conclure.

B. Invariance par homotopie

Soit f: A— E et g: A— E deux applications contractantes. On suppose que
[ et g sont homotopes, c’est-a-dire qu'’il existe une application h: Ax [0,1] = E
telle que pour tout x € A, on a h(x,0) = f(x) et h(x,1) = g(x), et qui vérifie en
outre les trois propriétés suivantes :



@ il existe k € [0, 1] tel que pour tous x,y € Aettout t€[0,1],ona
Ih(x, ) = h(y, Dl <klx-yl;
@ il existe un réel k' > 0 tel que pour tout x € A et tous ¢, u € [0,1],
Ir(x, ) = hx, Wl < k|t —ul;
pour tous € [0,1] et x € 0A, on a x # h(x, t).
On suppose en outre que f admet un point fixe dans A et on pose
T={re[0,1]; 3x€ A, x = h(x, »)}.
4) Vérifier que T n’est pas vide.

Soit (#,) nen une suite d’éléments de T qui converge vers un réel ¢ € [0,1]. On
choisit une suite (x,),eny d’éléments de A tels que pour tout entier naturel 7, on
alarelation x,, = h(x,, t;,).

5) Vérifier qu'une telle suite (x,) ,en €Xiste et que pour tous entiers naturels n

et m,ona
/
Xp—Xmll <€ —— |t — tinl.
%0 — Xmll l—kl n— tml
6) Montrer alors que la suite (x,),en est de Cauchy et en déduire que T est
fermée.

Soit encore t € T et x € A tels que x = h(x, t).
7) Vérifier que d(x,0A) > 0.
1-kr
3

Soit r et € deux nombres réels strictement positifs tels que € < etr<
d(x,0A), etsoit ue[0,1] tel que |t —u| <e.
8) Montrer que pour tout y (—:E(x, r)NnA,onalx—-h(y,w)l<r.

9) En déduire, en utilisant le théoreme de Picard ci-dessus, que I'application
¥y — h(y, u) possede un point fixe intérieur a A.
10) En déduire que T est un ouvert relatif a [0, 1]. Conclure alors que g pos-
sede un unique point fixe intérieur a A (on pourra considérer une borne
supérieure de T).

Une application. On ne suppose plus que I'application contractante f: A — E
admet un point fixe, mais on fait les trois hypotheéses suivantes :

@ le vecteur nul 0 est intérieura A;
[e] I'image f(A) de Apar f estbornée;
pour tout x € 0A et tout £t € [0,1], on a x # t f(x).

11) Montrer que f posséde un unique point fixe intérieur a A.



C. FEtude de certains opérateurs a noyau

Soit a < b deuxréels et f : [a, b] x R — R une application continue. On sup-
pose qu’il existe un sous-ensemble D c R contenant 0 et un réel Ky > 0 vérifiant
pour tous (t, u) et (¢, v) dans [a, b] x D,

[f(t,u)— f(t,v)| < Kolu—vl.

Lespace de Banach C([a, b]) des fonctions continues ¢ : [a, b] — R est muni de

lanorme [[@|l = sup ¢4 p; 1@ (D)1
Soit K : [a, b] x [a, b] — R une fonction continue. On définit I'application F
de C([a, b]) dans lui-méme par la formule :

b
F((p)(t)zf K(t,x) f(x,(x))dx

b
eton pose a = sup |K(t,x)|dx.
tela,b]Ja

12) Pour toutes fonctions y, z € C([a, b]) telles que pour tout ¢ € [a, b], on a
y(t) € D et z(t) € D, démontrer I'inégalité

IF(y) = F(2) | < aKolly — zll.

Soit A une partie fermée et bornée de C([a, b]) contenant la fonction nulle dans
son intérieur et telle que pour tous ¢ € A et f € [a, b], on a ¢(t) € D. On suppose
en outre que aKy < 1 et que pour tous p e 0Aet A€ [0,1],ona ¢ # AF(p).

13) Montrer que F admet un unique point fixe intérieur a A.

D. Une généralisation

Soit C une partie convexe fermée de E contenant A. On considere une appli-
cation continue f : A — C, pas nécessairement contractante, telle que

le vecteur nul 0 est intérieur a A;
I'ensemble f(A) est compact;
pour tout x € 0A et tout t € [0,1], on a x # ¢ f(x).

On pose
X={xe€A;3re0,1]; x=tf(x)}.



14) Montrer que X est non vide et fermé. En déduire que la fonction u: A —
[0, 1] définie par la formule

B d(x,0A)
T d(x,04) +d(x, X)

p(x)

est bien définie et continue. Déterminer p(x) lorsque x € X et lorsque
X €0A.

On définit une fonction g: C — C par:

ux) f(x) sixeA
gx) = .
0 sixe C\ A.

15) Montrer que g est continue sur C et que g(C) est compact.

On admet le

Théoreme (Schauder). SiC est une partie convexe fermée de E, toute application
f:C — C continue telle que f (C) est compact possede au moins un point fixe.

16) Conclure, a I'aide du théoreme de Schauder, que f admet un point fixe
intérieur a A.

E. Application aux intégrales de Fredholm

On considere dans cette partie I'espace de Banach E = C([0,1]) des fonc-
tions ¢ : [0, 1] — R continues muni de la norme |||y = SUPe(0,1) lep(f)]. On note
également L? I'espace des fonctions ¢ : [0,1] — R continues muni de la norme

lpllz = (fi o012 de) .
Soit g:[0,1] xR - R, h:[0,1] — Ret K:[0,1] x [0,1] — R des fonctions
continues. On pose, pour toutp € Eet € [0,1] :

1
F(p)(1) = h(t)+f0 K(t,x)g(x,p(x))dx.

On fait les hypothéses suivantes :
pour toutréel r = 0, il existe y, € L? tel que |y| < r implique |g(x, y)| < i, (x)
pour tout x € [0, 1].

la fonction K; définie pour tout ¢ € [0, 1] par la formule K;(x) = K (¢, x) est
dans L2, et 'application ¢ — K; est continue de [0, 1] dans L.

On suppose en outre qu’il existe un réel M > 0 tel que pour tout A € [0, 1] et toute
solution ¢ de I'équation ¢(t) = AF(¢) (1), on a |l@llo # M.



17) Déterminer pour chaque ¢ € E, une constante ¢, telle que pour tous
t,uel0,1],

IF(@) (D] < 1hllo + ¢ - SuPgero 1) 1K ll2
IF(0) (1) — F@) )] < [h(2) = h()| + ¢y - 1 K; = Kyl

18) En déduire que F est une application de E dans E.
On note A = B(0, M) et on considére une suite (@n)nen d’éléments de A.

19) Montrer que si ¢, — ¢ dans E quand n — +oo, on a la convergence simple
F(pn) — F(¢g) sur [0,1].

20) Montrer que pour tout réel € > 0, il existe un réel 6 > 0 tel que pour tout
neNettous t,uc€ [0,1], |t — u| < implique |F(¢,) (1) — F(@,) ()| < €.

On rappelle que pour tout § > 0, il existe une famille finie #;, f», ..., ty € [0,1] telle
que le segment [0, 1] soit inclus dans la réunion des intervalles ] t; — 9, t; + 6 [ pour
iefl,2,...,N}L

21) Montrer que si la suite (F(¢,)) nen converge simplement sur [0, 1], alors
elle converge dans E. En déduire que F est continue sur A.

22) Soit (¢ ) nen une suite de A. Montrer que la suite (F(¢;)) ey admet une
sous-suite qui converge simplement sur [0, 1] (on pourra commencer par
établir la convergence simple sur une partie dense de [0, 1]).

23) Conclure : F admet un point fixe de norme strictement inférieure a M.

FIN DU PROBLEME
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Norme d'une matrice aléatoire

Lobjectif de ce probléme est d’étudier une inégalité de concentration pour
la norme opérationnelle d'une matrice aléatoire dont les coefficients sont mu-
tuellement indépendants et « uniformément sous-gaussiens ».

Soit n un entier strictement positif. On identifie R” a I'espace .4 ;1 (R) des
vecteurs colonnes a n coordonnées réelles. Pour tout x = (x1,..., x,) dans R”

on note :
n
lxl =1/ (x)?
i=1

La sphere unité de R” est notée "' = {x e R", | x|| = 1}. On identifie une ma-
trice carrée M € .4, (R) al’endomorphisme de R” canoniquement associé et on
note o (M) I'’ensemble de ses valeurs propres réelles.

Les parties A, B et C sont mutuellement indépendantes.

A. Norme d’opérateur d’'une matrice

Soit M € 4, (R).

1) Montrer que S~! est un compact de R” et en déduire I'existence de :
IMllop = max{l| Mx||; x € S"~'}.

2) Montrer que I'application qui a M € .#,(R) associe || M||op st une norme
sur ./, (R). Montrer en outre que pour tous x et y dans R”, on a I'inégalité
[Mx—-Myl < [Mlop lx=yl.

3) Si M est symétrique, établir I'égalité || M||op = max{l/ll i A E O'(M)}. On
pourra commencer par le cas ou M est diagonale.

On note J, la matrice de .#,(R) dont tous les coefficients sont égaux a 1.

4) Déterminer les valeurs propres et les espaces propres de J,, en précisant
la dimension des espaces propres. En déduire la valeur de || J; [l op.

Soit M = (M; j)1<i,j<n € An(R).
5) Démontrer I'inégalité | M|op = max{|M; j|; 1 <i,j < n}.
6) Etablir que:

et donner une condition nécessaire et suffisante sur le rang de M pour
que cette inégalité soit une égalité.

2



On note X, I'ensemble des matrices M = (M; j)1<; j<n de 4,(R) telles que
|M;, ;| <1 pourtous i, j dans {1,..., n}.
7) Montrer que pour tout M € Z,, || M| op < n. Caractériser et dénombrer les
matrices M de X, pour lesquelles || M||op = 7.

B. Variables aléatoires sous-gaussiennes

Dans toute la suite du probleme, toutes les variables aléatoires considérées sont
réelles et discretes, définies sur un espace probabilisé (Q, <7, P) . Soit a@ > 0. On
dit que la variable aléatoire X est a-sous-gaussienne si:

2,2
VieR,  E(exp(tX)) Sexp(%).

exp(f) +exp(—1)
> .

On rappelle la notation : ch(z) =

tz
8) Montrer que pour tout £ € R, onach(#) < exp(;). On pourra au préalable

établir le développement de la fonction ch en série entiére sur R.
9) Soit € R. Démontrer que si x € [-1, 1], on al'inégalité de convexité :

1+x
exp(tx) < exp(f) + exp(—1).

10) Soit X une variable aléatoire réelle bornée par 1 et centrée. Montrer que
X est 1-sous-gaussienne. En déduire que, si X est une variable aléatoire
bornée par a > 0 et centrée, alors elle est a-sous-gaussienne.

11) Soit Xj,..., X, des variables aléatoires mutuellement indépendantes et a-

sous-gaussiennes, et [y, ..., L, des nombres réels tels que Z?:l (,ui)2 =1.
n
Montrer que la variable aléatoire Z ;i X; est a-sous-gaussienne.
i=1
12) Soit X une variable aléatoire a-sous-gaussienne et A > 0. Montrer que

pour tout ¢t >0:
2.2

P(X>A)< exp(% - m)

En déduire que :
2

P(X]=A) szexp(—z%).

Dans la suite du probleme, on admet qu’'une variable aléatoire X a valeurs
dans N est d’espérance finie si et seulement si la série ). P(X = k) converge et
que, dans ce cas :

+00
EX)=) P(X=k).
k=1



13) Si X est une variable aléatoire a valeurs dans R*, montrer que X est
d’espérance finie si et seulement si la série de terme général P(X = k)
converge et que, dans ce cas :

+00 oo
Y PX=k)<EX)<1+) P(X=k).
k=1 k=1

On pourra pour cela considérer la partie entiere | X].
+00
Pour tout s €]1, +oo[, on note {(s) = Z k5.
k=1

14) Soit X une variable aléatoire a-sous-gaussienne et § > 0. Montrer que
pout tout entier k> 0:

2k~

N

2x2
p (exp('[3 ) > k)
ollon aposén=a~2f72. En déduire que si af < 1, la variable aléatoire
2 yv2
exp(ﬁTX) est d’espérance finie majorée par 1+ 2 (n).

1
En particulier, en prenant aff = W et en utilisant I'inégalité 1 + 2{(2) <5 (que

'on ne demande pas de justifier), on obtient immédiatement, et on 'admet, que
si X est une variable aléatoire a-sous-gaussienne, on a l'inégalité d’Orlicz :

E (exp(%)) <5|

C. Recouvrements de la sphére

Si aeR", onnote B, ; = {x eER™; |lx—al < r} la boule fermée de centre a et de
rayon r. Soit K une partie compacte non vide de R”, et soit € > 0.

15) Montrer que I'on peut trouver un sous-ensemble fini A de K tel que :

C
K< B,
acA
On pourra raisonner par I'absurde en utilisant le théoreme de Bolzano-
Weierstrass.

16) Soit A un sous-ensemble de K tel que pour tous x, y distincts dans A,
lx—yll > . Montrer que A est fini et que son cardinal est majoré par celui

d'un ensemble A du type considéré a la question précédente. Si de plus
A est de cardinal maximal, montrer que :

K< | Bae

ael



On admet I'existence d'une fonction u, appelée volume, définie sur I'’ensemble
des parties compactes de R” et vérifiant les propriétés suivantes.

(i) Pour tout vecteur a de R" et tout nombre réel r >0, u(Bg,;) = r".

(ii) Pour toute famille finie K1, ..., K;;, de compacts de R"” deux a deux dis-
joints,ona:

ﬂ(gKi) = ;mlu(Ki).

(iii) Pour tous compacts K, K’ de R", K < K’ implique u(K) < u(K").
Soit A une partie finie de S n=lielle que pour tous x, y distincts dans A, || x —y|| > €.

17) Vérifier que les boules B, ¢ pour a € A sont toutes contenues dans Bo,+¢.
Montrer alors que le cardinal de A est majoré par (%)"
18) Justifier 'existence d’'une partie finie A, de S§""1 de cardinal majoré

par 5", et telle que :

ael,

D. Norme d’'une matrice aléatoire

1
On fixe un nombre réel @ > 0 et on pose y = v
a

Soit n un entier strictement positif. On définit une famille de variables aléa-
toires réelles M;’}), indexées par i, j € {1,2,..., n}, mutuellement indépendantes

- - i (n) i 4 ; (n)
et a-sous-gaussiennes. On note M'"¥ la matrice aléatoire (Mi,j )1< i j<n
Si x € $"7!, on note y = M"x qui est ainsi un vecteur aléatoire dont les

composantes yy,..., ¥, sont des variables aléatoires réelles.

19) Montrer que pour tout i € {1,..., n}, la variable aléatoire y; est a-sous-
gaussienne. En déduire que E(exp(yllyll?)) < 5" et que pour tout réel
r>0:

P(Iyll = rvn)<(5e )"

20) Soit A, une partie de S""! vérifiant les conditions de la question 18).
Pour tout réel r > 0, montrer que | M (n) lop = 2ry/n implique I'existence
d'un a € A, tel que M a| = rv/n. En déduire que :

P(IM™ |lop = 2rvn) < (257"

FIN DU PROBLEME
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Théoreme taubérien de Hardy-Littlewood-Karamata

Dans tout le probleme, I désigne I'intervalle ]0, 4-00].

A Une intégrale a parametre

Pour tout = € R on pose, sous réserve d’existence,
+o0 e v +o00 g7 U
F(z) = ; mdu et K:/O ﬁdu.
ot

Vu

2. Déterminer les valeurs de x pour lesquelles F'(z) est définie.

1. Montrer que la fonction ¢ : u est intégrable sur I.

3. Montrer que la fonction F est de classe C! sur I et exprimer F”(x) sous forme
intégrale.
4. En déduire que pour tout x € I, F'(z) — (x — 5)F(z) = — K.

5. Pour tout = € I, on pose G(x) = /xe *F(r). Montrer qu'il existe une
xT e_t
constante réelle C' telle que pour tout x € I, G(z) =C — K - / Wdt.
0

6. Déterminer les limites de G en 0 et +00, et en déduire la valeur de K.

B Etude de deux séries de fonctions

400 e~ 400
Dans toute cette partie, on pose f(z) =) N et g(x) =) Vne ™.
n=1 n n=0

7. Montrer que f et g sont définies et continues sur I.

+o0 g UL

Vi

déduire un équivalent de f(z) lorsque x — 0.

+o0 g UL

du < f(z) < / du. En

AT

8. Montrer que pour tout z € I, /
1

n

9. Montrer que la suite (Z
k=1

1
— =2 n) converge.
\/E \/_ n=>1 &

2



"1
10. Démontrer que pour tout x > 0, la série Z (Z —)e_m“” converge et expri-

n>1 k=1 \/E

mer sa somme h(x) en fonction de f(x) pour tout = € I.

11. En déduire un équivalent de h(z) lorsque z — 0. Montrer alors que g(z) est

équivalent a lorsque x — 0.

™
2383/2

C Séries de fonctions associées a des ensembles
d’entiers

A tout ensemble A C N on associe la suite (a,) définie par

{1 sin e A,
a, =

0 sinon.

nx

Soit 14 'ensemble des réels x > 0 pour lesquels la série Z ane” """ converge. On

n=0
+o00o
pose fa(x) = Z ane” "™ pour tout x € I4. Enfin, sous réserve d’existence, on pose
=0

D(A) = limo 7:;67f,4(x) et on note S 'ensemble des parties A C N pour lesquelles
z—
®(A) existe.

12. Quel est 'ensemble I4 si A est fini? Si A est infini, montrer que 1'on peut
extraire une suite (b,) de la suite (a,) telle que pour tout n € N, b, = 1.
Déterminer I4 dans ce cas.

13. Soit A € S et (a,) la suite associée. Pour tout entier naturel n, on note A(n)
I’ensemble des éléments de A qui sont < n. Vérifier que pour tout z > 0 la
série »  Card(A(n)) e converge et que

n=0

fa(z)

T 1 _e@

+0o0
z_% Card(A(n)) e ™

Dans la question suivante, A = A; désigne ’ensemble des carrés d’entiers naturels
non nuls.

+oo
x

14. Montrer quesi x > 0, 1fA ( )x = > [V/n]e ™ ou |-] désigne la partie entiére.

— € n=0

. R fa () . L
En déduire un encadrement de Z Ve ™ — ] —, puis un équivalent de
_ e_
n=0

fa, en 0. Prouver alors que A; € S et donner ®(A;).

3 TSVP



Dans la question suivante, A = A, désigne ’ensemble constitué des entiers qui
sont la somme des carrés de deux entiers naturels non nuls. On admet que A, € S,
et on désire majorer ®(As).

Soit v(n) le nombre de couples d’entiers naturels non nuls (p, ¢) pour lesquels
n=p*+q.

15. Montrer que pour tout réel z > 0, la série 3o v(n)e™™ converge et établir
que oo

> v(n)e ™™ = (fa,(x))

n=0

Montrer alors que pour tout z > 0, fa,(z) < (fa,(z))% En déduire un
majorant de ®(As).

D Un théoreme taubérien

Soit (a,)n=o une suite de nombres réels positifs tels que pour tout réel z > 0,
la série >~ ane™"* converge. On suppose que

+oo

gl_{r})(x > ane’mj> = /(e [0,+o0].
n=0

On note F 'espace vectoriel des fonctions de [0, 1] dans R, E le sous-espace de F' des

fonctions continues par morceaux et Fy le sous-espace de E des fonctions continues

sur [0, 1]. On munit F de la norme || ||définie par la formule ||¢||oc = sup [¢(1)].
te(0,1]

Si 1 € E, on note L(y)) 'application qui a x > 0 associe

(L)) () = f)ane-%@-m).

16. Montrer que L(1)) est bien définie pour tout ¢ € E et que I'application L est
une application linéaire de E dans F'. Vérifier que, pour tous 1,1y dans F,

Y1 < )9 entraine L(1y) < L(vhs).

On note E; 'ensemble des ¢ € E pour lesquels limbx (L(¥))(z) existe et si ¢ € Ey,
z—
on pose

AY) = lim 2z (L(y))(x).

xz— 0

17. Vérifier que E; est un sous-espace vectoriel de E et que 'application A est
une forme linéaire continue de (E1, || ||c)-

18. Montrer que pour tout p € N, e, : t € [0, 1] — ¥ appartient a E; et calculer
A(e,). En déduire que Ey C E) et calculer A(z)) pour tout ¢ € Ej.

4



Pour tous a,b € [0, 1] tel que a < b, on note 1,4 : [0,1] — {0, 1} la fonction définie

par
1 sixé€la,b
1mﬂ($)::{0 .
S1non.

Soit a €]0,1[ et € €]0, min(a, 1 — a)[. On note

1 size|0,a—¢]
g—(x) = i six €la—e¢,al
£
0 siz € [a,l]
et 1 siz € [0,a]
at+e—x
g+(x) = —— siz €la,a+ €|

0 siz € [a+e,l].

19. Vérifier que g_ et g4 appartiennent a Ey et calculer A(g_) et A(gy). Montrer
alors que lpq € Ey et calculer A(1jgq). En déduire que £y = E et donner
A(1) pour tout ¥ € E.

On considére maintenant la fonction v définie sur [0, 1] par la formule :

) 1
0 81x6[0,g[
v =1 1
— siz e[ 1]
T e

20. Calculer (L(¢))(+) pour tout entier N > 0 et en déduire la limite

L1
N

1 N
N1—1>I—§r—loo N l;) Ck

(théoreme taubérien).

On rappelle que v(n) est le nombre de couples d’entiers naturels non nuls (p, q)
tels que n = p* + ¢

1 1
21. Si A€ S, que vaut lim —Card(A(n)) ? Déterminer alors lim — > (k).

n—-+oo n, n—-+oo n, el

FIN DU PROBLEME
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Majoration du rayon spectral de la matrice de Hilbert

Soit n un entier = 1. L'espace vectoriel R” est muni de sa structure eucli-
dienne canonique. La norme euclidienne associée est notée || ||. On note .4 ,(R)
I'ensemble des matrices carrées d’ordre n a coefficients réels, et on identi-
fiera R" a 'ensemble .4, 1 (R) des matrices colonnes a coefficients réels. On
note X = (xp x1---Xp-1) € A »,(R) la matrice ligne transposée de la matrice

colonne
X0

X1
X=| | |edp®.
Xn-1

Enfin, on note X la fonction polynomiale définie sur R par la formule
_ n-1
X0 =Y xptr.
k=0

Lobjet du probleme est I'étude de quelques propriétés de la matrice de
Hilbert H,, = (h(.”))()sj ren_1 € Ann(R) définie par

Ik

1 1

1 3 u
1 1 1

=2 3 n+1

=

1 1 1

n n+l "7 2n-1
On adonc hﬁ”]z = j+,1€+1 pour tous j,k€{0,1,...,n—1}.

A. Une propriété de Perron-Frobenius
1) Montrer que la matrice Hj, est symétrique réelle et définie positive. On

1
pourra s'aider du calcul de l'intégrale f (X(n)*dr.
0

On note 7 le sous-espace propre de Hj, associé a la plus grande valeur propre
pn de Hy,.

2) Montrer que X € 7 si et seulement si X H, X = p,,|| X||%.



Xo | ol

X1 |x1]
Soit Xy = . un vecteur non nul de 7. On note | Xy| =

Xn—-1 |Xp-1l
3) FEtablir I'inégalité Xy H,, Xy < /| Xo| H, | Xo| et en déduire que | Xo| € 7.
4) Montrer que H,|Xyl, puis que Xy, n’a aucune coordonnée nulle.

5) En déduire la dimension du sous-espace propre 7.

B. Inégalité de Hilbert
X0
X1
Soit X=| . |unvecteurdeR"” et P un polynéme a coefficients réels.

Xn-1

” . .
6) En s’aidant du calcul de 'intégrale f P(e?)e’® d9, montrer I'inégalité

. 0
‘f P(r)dt
-1

7) En déduire que X H,X < 7| X|?.

8) Montrer que la suite (p,),>1 est croissante et convergente.

b/ . T .
< f |P(e?)| 46, puis I'inégalité X H, X < f |X ()| do.
0 0

C. Un opérateur intégral

Dans la suite du probléme, pour tout entier n > 0 et tout réel x, on pose
n-1
Kn(x)= ) xF.
k=0

Soit E I'espace vectoriel des fonctions a valeurs réelles, continues et intégrables
sur [0,1[ et T, : E — E l'application définie par

1
Tn(f)(x):f0 K, (tx)f(r)dt.

9) Montrer que T} est un endomorphisme de E, dont 0 est valeur propre.
(On rappelle que A € C est valeur propre de T, s’il existe f € E non nulle
telle que T, (f) = Af.)

10) Pour tout X € R”, calculer T,,(X). En déduire que T, et H, ont les mémes
valeurs propres non nulles.



On note «f 'ensemble des fonctions ¢ € E a valeurs strictement positives
sur 10, 1[ telles que ~ admette un prolongement continu sur [0, 1]. On rappelle
que p, est la plus grande valeur propre de H,,.

11) En utilisant un vecteur propre associé a p,, montrer que

1 1
< inf su —f K, (tx)p(t)dt
P <P€£¢xe]0I,)l[(P(x) o ¢

En utilisant la partie A, montrer que 'on a égalité dans l'inégalité précé-
dente.

D. Une majoration explicite des rayons spectraux

Soit ¢ € of et n € N. Dans la suite du probléme, on pose, pour tout x € ]0,1[ :

1 1
rn(x)=—f K, (tx)p(1)dt,
@(x) Jo

B ltn(p(t)
]n(X)_‘[() l—tx dt)

n
®,(x) = X ]n(x).
@(x)

La fonction Gamma d’Euler est définie sur R’ par la formule
+00
I'(x)= f e tdr.
0

On admet, et on pourra utiliser sans démonstration, les formules suivantes :

I'x+1)=xT'(x) pour tout x > 0.

I'(n)=(mn-1)! pour tout entier n > 0.
I'a)T 1

)] :f 11 - 0P dr pour tous réels @ >0, > 0.
[la+p) 0

12) Montrer que J, est dérivable sur ]0,1[ et que 'on a I’égalité

L (1)
U — —
xJp(x) = 5 (l—tx)zdt Tn(x).

On suppose dorénavant que ¢ € < est de classe C'sur [0,1[ et que (1-0)p(t) —
Olorsque t —1".



13) Montrer que
L tg(t Li'(1-0e' (¢
(p()dt+f ( )(p()dt
(1-tx)? 0 1-tx
ol ¢ est un coefficient a déterminer et ot ¢’ désigne la dérivée de ¢. (On

pourra traiter a part le cas n =0, ot1 'on considere que nJ,-(x) =0 et ou
I’on montrera que ¢ = ¢(0).)

njp(x)=c+nj_1(x)+(x— l)f
0

14) Déduire des deux questions précédentes que

1 1 ¢n¢1 _ !
tn_l(p(t)dt+f ra-0e(0 4,

x(1-x) ], (x) = c+(n+1)(x—1)]n(x)+nf
0 1-1tx

0

15) Soit y € R. Résoudre I’équation différentielle (1 — 1)y’ = —yy sur l'inter-
valle [0,1[. A quelles conditions une solution y(f) de cette équation
différentielle vérifie-t-elle les hypotheses faites sur ¢ ?

On suppose désormais ces conditions réalisées et que la fonction ¢ est la solu-
tion de cette équation différentielle telle que ¢(0) = 1.

16) Montrer que la fonction ®,, est dérivable sur ]0,1[ etquel'ona:

o (0= 1)2r® . X"
S T T T Ty

ol 'on donnera I’expression de la constante ¢, en fonction de n et de y.

17) En déduire que pour tout x € 10, 1[,

I
(D”(x)_x1+on (1—t)1+7’dt

18) En déduire que pourn =1,

. 1 [* 1-0,t"
pns inf  sup —— m —
ael0,1[ xe]0,1[ X o t%(1-1)

n!
l-a)2-a)...n-a)
Un calcul montre, et on 'admet, que I'inégalité précédente implique I'inégalité :

oul’'onaposéf, =

9;1/1’1 dt
< inf 9(1_“)/”f _—.
Pns oetoar m o rr1-ple
1 (n')g 1/2n
19) En déduire que p, < anarcsin(—), oul'on a posé w, =2 (—) .
Wy (2n)!

1

20) Donner un équivalent de w, — 1, puis un équivalent de 7 — 2w, arcsin -
n

lorsque n — +oo.

FIN DU PROBLEME
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Nombre de sites visités par une marche aléatoire

Dans tout le texte, d est un élément de N*. On note 04 le d-uplet dont toutes les
coordonnées valent 0, c’est-a-dire le vecteur nul de R%.

On considére une variable aléatoire X & valeurs dans Z%, (X})pen- une suite
de variables aléatoires mutuellement indépendantes suivant chacune la loi de X et
définies sur un méme espace probabilisé. La suite de variables aléatoires (S,)nen est
définie par Sy = 04 et

VHEN*, Sn:ZXk
k=1

La suite (Sy)nen est une marche aléatoire de pas X, a valeurs dans Z-.

On note R la variable aléatoire a valeurs dans N* U {+oc} définie par

R min {n € N*, S, =04} si {neN* S, =04} #0,
N +oo sinon.

Autrement dit, R est égal a 400 si la marche aléatoire (S,,)nen ne revient jamais en
04, au premier instant auquel cette marche aléatoire revient en 04 sinon.

Pour n dans N, soit N, le cardinal du sous-ensemble

{Sk, k€ {0,...,n}}

de Z%. Le nombre N, est donc le nombre de points de Z¢ visités par la marche
aléatoire (Sp,)nen apres n pas.

Le but du probleme est d’étudier asymptotiquement l'espérance E(N,,) de la
variable aléatoire N,,.

La partie D est indépendante des parties précédentes.

A. Préliminaires

Les cing questions de cette partie sont indépendantes et utilisées dans les parties
CetE.

1. Soit n € N. En utilisant la factorisation

X+ = (X +1D)" (X 4+ 1),

S0 ()

montrer que



2. Rappeler la formule de Stirling, puis déterminer un nombre réel ¢ > 0 tel que

2n 4n
n | n—+oo ¢ \/ﬁ

3. Si v est un élément de |0, 1[, montrer, par exemple en utilisant une comparaison

série-intégrale, que

n 1 nl—a

kzlkioé n—too 1 —a

Si « est un élément de |1, +oo[, montrer de méme que

S
oy kO nooo (a — 1) no—1

4. Pour x € [2,400], on pose

Etablir par ailleurs la relation

¢ dt
/z (D)2 asioe © @)

En déduire finalement un équivalent de I(z) lorsque x tend vers +oc.

5. Pour a € R, rappeler, sans donner de démonstration, le développement en
série entiere de (14 z)® sur | — 1, 1].

Justifier la formule :

1 B —+o00 (Qn) .

n/

\/1—37_7;) 4n

Ve €] —1,1],

B. Marches aléatoires, récurrence

On considere les fonctions F' et G définies par les formules

+oo
Ve €] —1,1], F(x) = ZP(Snzod) x";
n=0

Vo € [—-1,1], G(z) = JFXO:OP(R =n)z".
n=1



10.

11.

. Montrer que les séries entiéres définissant F' et G ont un rayon de convergence

supérieur ou égal a 1. Justifier alors que les fonctions F' et G sont définies et
de classe C*° sur | — 1, 1].

Montrer que G est définie et continue sur [—1, 1] et que

G(1) = P(R # +00).

. Si k et n sont des entiers naturels non nuls tels que k < n, montrer que

P((S,=04)N(R=k))=P(R=k) P(Sp_r = 0y).
En déduire que

VneN*,  P(S,=0q) =Y PR=k)P(S,_k =0q).
k=1

. Montrer que

Vo €] — 1,1], F(z) =14 F(z) G(z).

Déterminer la limite de F'(x) lorsque z tend vers 1, en discutant selon la
valeur de P(R # +00).

. Soit (ck)ren une suite d’éléments de RT telle que la série entiere chxk ait

un rayon de convergence 1 et que la série Z ¢, diverge. Montrer que

L’élément A de R étant fixé, on montrera qu'il existe a €]0, 1] tel que
+o0
Vo €]1 — o, 1], chxk>A.
k=0
Montrer que la série Z P(S,, = 04) est divergente si et seulement si

PR # + o0) = 1.

Pour ¢ € N*, soit Y; la variable de Bernoulli indicatrice de I’événement

(S,‘%{S]w 0§k§i—1}>.

Montrer que, pour 7 € N* :



12. Conclure que

E(Nn) — P(R = +0).

n n—-+oo

On pourra admettre et utiliser le théoréme de Cesaro : si (up)nen+ est une
suite réelle convergeant vers le nombre réel ¢, alors

1 n
—Zuk — /.
nk*l n—-+4oo

C. Les marches de Bernoulli sur Z

Dans cette question, d est égal & 1 et on note donc simplement 0y = 0. Par
ailleurs, p est un élément de |0, 1[, ¢ =1 — p et la loi de X est donnée par

PX=1)=p e PX=-1)=q

13. Pour n € N, déterminer P(S2,+1 = 0) et justifier 1’égalité :
2n
P(Son =0) = (n) (pg)"-

14. Pour z €] — 1, 1], donner une expression simple de G(x).
Exprimer P(R = +00) en fonction de |p — g|.
Déterminer la loi de R.

15. On suppose que
1

q= 9
Donner un équivalent simple de P(R = 2n) lorsque n tend vers +oo. En
déduire un équivalent simple de E(N,,) lorsque n tend vers +oo.

p:

D. Un résultat asymptotique

Soient (an)nen et (bn)nen deux suites d’éléments de R™*. On suppose que (ay, )nen
est décroissante et que

Vn € N, > ag by = 1.
k=0

On pose, pour n € N.

Bn = by.
k=0



16. Soient m et n deux entiers naturels tels que m > n. Montrer que

1

— et 1<ay, Bnn+ay (Bn — Bn-n).
By,

an <

17. On suppose dans cette question qu’il existe une suite (my,)nen vérifiant m,, > n
pour n assez grand et

Bm,—n ~ Bn et Bpn —Bm,_n — 0.

n—-+o00 n—-+00

Montrer que
1

" teo B,
18. On suppose dans cette question qu’il existe C' > 0 tel que

o~ C

n—+oo N

En utilisant la question 17 pour une suite (m,),en bien choisie, montrer que

1
" st C In(n)

E. La marche aléatoire simple sur Z? : un théoréme d’Erdos et
Dvoretzky

19. Soit n € N*. Montrer que

Dans les questions 20 et 21, on suppose que d = 2 et que la loi de X est donnée par

P(X =(0,1)) = P(X = (0,-1)) = P(X = (1,0)) = P(X = (-1,0)) = %

20. Soit n € N. Etablir I’égalité
(Qn) 2
P(Sgn = 02) = < ]nn> :

21. Donner un équivalent simple de E(N,,) lorsque n tend vers +oc.

FIN DU PROBLEME
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Lemme de Fekete et théoréme de Erdos-Szekeres

Le but de ce probleme est d’étudier quelques applications probabilistes du
lemme de sous-additivité de Fekete et du théoreme de Erdos-Szekeres.

Dans tout le probleme, (2, </, P) désigne un espace probabilisé. On note
P(A) la probabilité d'un événement A et on note E(X) I'espérance (si elle existe)
d’une variable aléatoire réelle discrete X définie sur (QQ, 7, P).

A. Préliminaires

Les deux questions de cette partie sont indépendantes.

Soit n un entier naturel non nul.

1) Montrer que pour toute variable aléatoire X réelle a valeurs dans {1, ..., n}
etpourtoutme{l,...,n},

EX)sm-1+nP(X=m).

2) Al'aide d’une comparaison entre une somme et une intégrale, montrer
que

n
nlnn)—-n+1< Z In(k).
k=1

En déduire I'inégalité

B. Lelemme de sous-additivité de Fekete
Soit u = (u,)nen+ une suite réelle bornée. Pour tout n € N*, on note U,, =
{ur; k= n}. On définit les suites u = (u,,) nen+ €t U = (Up) nen+ par les formules
u, =inf(U,) et u,=sup(Upy,).
3) Justifier que u et u sont bien définies. Montrer qu’elles sont monotones
puis qu’elles convergent.

Pour toutes suites réelles v = (vy,) nen €t W = (Wy) nen+, on dit que v est plus
petite que w, et on note v < w, si pour tout n € N*, on a v, < wy. De facon
équivalente, on dit aussi que w est plus grande que v.



4) Montrer que u est la plus petite suite (au sens de <) qui est décroissante
et plus grande que u. Montrer de méme que u est la plus grande suite (au
sens de <) qui est croissante et plus petite que u.

Dans toute la suite du probleme, on appelle limite inférieure lim et limite supé-

rieure lim les limites suivantes :

lim u,= lim u, et lim wu,= lim u,
o oo n—-+oo— n—-+oo n—-+oo

5) Si v = (v,)nen+ €st une autre suite réelle bornée plus grande que u, com-
parer les limites de u et de .

6) Montrer que u et u sont adjacentes si et seulement si u converge. En ce
cas, que peut-on dire des limites des trois suites u, u et u?

On dit qu'une suite réelle u = (u,) en+ €St sous-additive si pour tous i, j dans N*,
onauiyjsu;+Uuj.

Dans le reste de cette partie on ne suppose plus que la suite u est bornée, mais on
suppose que u est positive et sous-additive.

7) Soit m et n deux entiers naturels non nuls tels que m = 2n. On note q le
quotient et r le reste de la division euclidienne de m par n. Montrer que

Unm < (q—Dup+ Upyr

et en déduire I'inégalité

Un _m-n—r un+nmmumumbu”uw_ﬁ

m m n m
8) En déduire que la suite [ — est bornée, puis que pour tout n € N*,
meN*
= Um _ Up
lim —<—.
m—+oo m n
. Un
9) En conclure que la suite (—) converge.
n 7/ neN*

C. Une application probabiliste

Soit x un nombre réel et (X;,) ,en+ Une suite de variables aléatoires réelles mutuel-
lement indépendantes et de méme loi. Pour tout n € N* on note Y}, la variable
aléatoire réelle définie par

1 n
Ypo=—=) Xp.
n

2



10) Montrer que si P(X; < x) = 1, alors pour tout n € N*, P(Y,, < x) =1 et que
si P(X; = x) > 0, alors pour tout n € N*, P(Y,, = x) > 0.

11) Soit m et n deux entiers naturels non nuls. Montrer 'inclusion d’événe-
ments suivante :

m+n

({szx}n{% Y szx})c{Ymme}

k=m+1
et en déduire I'inégalité
P(Yypin=zx)2P(Yy=2x)P(Y, = x).

12) Démontrer la convergence de la suite

((P(Y, > x) )neN*

D. Le théoréeme de Erdos-Szekeres

Si r est un entier naturel non nul, on note ¢ = (¢4, ..., ¢,;) une liste de nombres
réels de longueur r; cette liste est croissante si ¢ < ¢ < --- < {,, décroissante
sify=0,=---=/,. Uneliste ¢' de longueur p € {1,...,r} est extraite de ¢ s'il
existe p indices strictement croissants i; < i, <--- < i, dans {1,...,r} tels que
0= (Ciyy.enli).

Soit p et g deux entiers naturels non nuls et a = (ay, ay, ..., Apg+1) une liste
de longueur pq + 1 de nombres réels deux-a-deux distincts qui représentent les
valeurs de pqg + 1 jetons numérotés 1,2,...,pg + 1.

On range successivement les jetons en piles de gauche a droite par le procédé
suivant :

¢ lejeton n°1 de valeur a; débute la premiere pile;

* siap > ay, alors on pose le jeton n°2 de valeur a, sur le jeton n°1;
sinon on crée une nouvelle pile avec ce jeton n°2, située a droite de la
premieére pile;

* lors des étapes suivantes, disposant du jeton n°k de valeur ay, on le dé-
pose sur la premiere pile en partant de la gauche telle que ay est supérieur
alavaleur du jeton au sommet de la pile, si une telle pile existe;
sinon on crée une nouvelle pile avec ce jeton, située a droite des précé-
dentes.

En suivant ce procédé avec tous les jetons, on obtient plusieurs piles de
jetons, chaque pile ayant des valeurs rangées dans |'ordre croissant du bas vers
le haut.



Par exemple, avec la liste
a=(1,4,2,3,7,6,5,9,10,8)

dans cet ordre, on obtient de gauche a droite les trois piles suivantes :

10

— s~ ©
N W o ™

5

13) Al'aide d’un raisonnement par récurrence sur le nombre s de piles, mon-
trer qu’a l'issue du processus, pour tout jeton de valeur z de la derniere
pile, il existe une liste b = (by,..., bs) de réels extraite de la liste a vérifiant :

e b est décroissante et de longueur s;
e pourtoutie€{l,...,s}lejeton n°i de valeur b; est dans la i-eme pile
en partant de la gauche;
* by=1z.
Par exemple, avec la liste a = (1,4,2,3,7,6,5,9,10, 8) on a une liste extraite
b=(7,6,5).

14) En déduire que la liste @ admet au moins une liste extraite croissante de
longueur p + 1 ou une liste extraite décroissante de longueur g + 1.

E. Comportement asymptotique d'une suite aléatoire

Soit n un entier naturel supérieur ou égal a 2. On note S, 'ensemble des
permutations de {1,2,..., n}. Chaque élément o € S, est noté par la liste de ses
nimages (o(1),0(2),...,0(n)).

Soit B une variable aléatoire a valeurs dans S;, de loi uniforme, c’est-a-dire
que pour tout o € S;, on a P(B = ¢) = 1/Card(S,). On définit la variable aléa-
toire A a valeurs dans S, en posant, pour tout w € Q,

Aw) = (B)(1),...,Bw)(n).

On note également, pour tout k € {1,..., n}, Ax(w) = B(w) (k). Enfin, on considére
les variables aléatoires réelles C, et D, définies par :

e C, estlalongueur de la plus longue liste croissante extraite de A;

e D, estlalongueur de la plus longue liste décroissante extraite de A.

15) Les variables aléatoires réelles Aj, As,..., A, sont-elles mutuellement
indépendantes?



16)

17)

18)

19)

20)

Soit ke {1,...,n} et s=(sy,..., S) une liste croissante de longueur k d’élé-
ments de {1,...,n}. On note A® 'événement : « la liste (Ay,,..., Ag) est

croissante ». Montrer que P(A®) = k'
Démontrer que C, et D, ont la méme loi. Démontrer alors, a I'aide du
résultat de la question 14, que :

E(Cy) = @

Démontrer que pour tout k€ {1,...,n},

PCh=zk) < —.

Soit nn un entier naturel non nul et @ un réel strictement supérieur a 1.
Justifier qu’il existe un entier naturel non nul k tel que k—1 < aey/n < k.
ATaide du résultat de la question 2, déduire de la question précédente
que
1 2aev/n
P(C,=aevn) < (E) )

En déduire qu'’il existe une suite (¢,) ,en+ tendant vers 0 telle que, pour
tout n € N*,

E(C
() <(1+n " e+e,
vn
Cn (Cn)
En conclure que hmoo NG existe et que 11 lim \/_

FIN DU PROBLEME
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Comportement asymptotique de sommes de séries entieres
et application a I'équation d'Airy

Soit p un entier naturel non nul et 7 un nombre réel. On considere la fonction
définie sur C par la série entiere

L’objectif, dans les parties A et B du probleme, est d’établir I’équivalence suivante
quand xr — +00 :

r LT

T e

Srp() (Hrp)

T——+00 p

Cet énoncé est noté (H,,). Dans la partie C, on applique ce résultat a I'étude
asymptotique d’une solution particuliere de ’équation d’Airy.

(pn)”

1. Question préliminaire. Justifier que la série entiere Z ' 2" a pour
n>1 (pn)
9 . /. N (pn)r pn
rayon de convergence +o0o. Qu’en est-il de la série entiere ZW 27
=1 (pn)!

A Equivalence entre (H,,) et (H,;) lorsque r > 0

On suppose dans cette partie que p > 2 et r > 0, et on se propose de montrer
que les énoncés (M, ) et (H, 1) sont équivalents. Pour tous n € N et € R*, on

pose

nr

2. Pour x > 0 fixé, étudier le signe de la fonction
Op it €[, +oo[ =t (t 1) — .

En déduire que ¢, s’annule en un unique élément de [1, +o00[ que 'on note t,.
Montrer que la suite finie (un(a:)) est croissante et que la suite infinie

0<n< |t
(un(:c)) est décroissante, ou |z| désigne la partie entiere du nombre
réel x.

n=|tz |

1 TSVP



L’ensemble {u,(z) ; n € N} admet donc un maximum égal a us, |(x). Dans la
suite de cette partie, ce maximum sera noté M.

3.

Pour tout o € R, déterminer la limite de ¢,(z + «) quand x tend vers +oo.
En déduire que t, —x —r tend vers zéro lorsque z — 400. (On pourra s’aider
de la définition d’une limite.)

. Montrer que pour tout entier relatif k, u|,|4x(2)~u|) () lorsque x — +o00.

En déduire que pour tout n € N et pour tout z au voisinage de +o0,

Lz
> w(w) = nup ().

i=|z]—n

. En déduire que pour tout entier relatif &,

Ul +k(T) = o(x"e”)
quand x — +o00. Montrer alors que
M, = o(x"e").

(On pourra d’abord démontrer que, pour x assez grand, M, = u|;|4;(z) pour
un entier ¢ compris entre |r| — 1 et |r| +2.)

Soit z un nombre complexe tel que |z| = 1 et z # 1. Pour tout entier naturel
n non nul, on pose

n—1
D, = sz.
k=0

Pour tout nombre réel z > 0, comparer S,1(zz) a la somme

i.fl D, (un,l(:ﬂ) — un(x))

En déduire que pour tout x au voisinage de +o0,

conclure que lorsque x — +o0,

Sri1(zx) = o(x"e”).

2

On pose ( = exp (7) Pour tout réel x, montrer que

S50 (CK2) = p Syp(2)

k=0

et en déduire que les énoncés (H,,) et (H, 1) sont équivalents.

2



B Une démonstration probabiliste

On admet dans cette partie qu’il existe, sur un certain espace probabilisé
(2, A,P), une famille (X,),ecr: de variables aléatoires a valeurs dans N telle que
X, suive la loi de Poisson de parametre x pour tout réel x > 0. On fixe de telles
données dans l'intégralité de cette partie.

Soit un réel r > 0. On pose
Ly = Xa

x
et on se propose de démontrer que E(Z7) — 1 lorsque z — +00.

8. Pour tout réel o > 0, montrer que P(\Xr—x| > ax2/3> — 0 quand x — +o0.

9. Montrer que, pour tout réel x > 1, les variables aléatoires
Ax = 1(Zz<1*$71/3) Z; et BCE == 1(|Zz*1|<3371/3) Z;

sont d’espérance finie et trouver les limites de E(A,) et de E(B,) lorsque
T — +00.

Soit NV un entier naturel strictement positif.

10. Montrer que pour tout réel = > 0, la variable aléatoire

N-1

Ve = Lix,omiazsy || (Xo— k)
k=0

est d’espérance finie et que
xNP(Xx >+ 2?3 - N) =E(Yng).
Déduire alors de la question 8 que E(Yy,) = o(z") quand z — +o0.

11. Montrer qu’il existe des réels aq,...,ay tels que pour tout réel x > 0,
N
1(Xz>x+z2/3) XQZCV = Z Qg Ykﬂ;
k=1

et en déduire la limite de E(]_(Zx>1+$—l/3) Zév) lorsque x — +00.

12. Démontrer que E(]-(Z:C>1+x—1/3) Z’”) — 0 quand 2 — +4o00. En déduire que

E(Z) — 1 quand © — +o00 et conclure a la validité de I’énoncé H,.;.

3 TSVP



En combinant les résultats des deux parties précédentes, nous concluons a la
validité de (H,,) pour tout entier naturel p > 0 et tout réel > 0. Dans la suite
du sujet, nous aurons besoin du résultat classique suivant, que nous admettrons :

Lemme de comparaison asymptotique des séries entiéres. Soit (a,),en €t
(bn)nen deux suites a termes réels. On suppose que :

(i) la série entiere Y b,2" a pour rayon de convergence +00;
n
(ii) les suites (an)nen €t (by)nen sont équivalentes;

(iii) il existe un rang ng € N tel que pour tout n > ng, on a b, > 0.

Alors la série entiere Y a, 2" a pour rayon de convergence +oo et
! “+o0o “+oo
n n
nZ::oanx Mete Z%bnm .
Soit un entier naturel p > 0 et un nombre réel r.

13. En remarquant que pour tout réel z > 0,

py~ AL
—xzp o

déduire du lemme de comparaison asymptotique des séries entieres que

Srp(x) ~ xpsrfp,p(w)-

’ T—+00

En déduire que (H,,) implique (H,_,,) et conclure a la validité de (H, ).

C Application a ’équation d’Airy
L’équation différentielle d’Airy (Ai) est définie par
" (t) = tx(t). (Ai)

14. Question préliminaire. Soit un réel x > 0. Pour tout entier n > 0, on pose
Uy = > Ink+xzlnn — >  In(z + k). Etablir la convergence de la série

> (v —Vn_1), et en déduire l'existence d'un réel I'(z) > 0 vérifiant la formaule
d’Euler :

n*n!
[[@+k) ~ )

15. Justifier qu’il existe une unique solution f de (Ai) sur R vérifiant f(0) = 1
et f'(0)=0



16.

17.

18.

+oo
Expliciter une suite (a,),en telle que pout tout réel ¢, f(t) = > a, t".
n=0

['(2)nl/3 (2
9(3() jj puis aue agnron1/0 L0
" (n:

N3

2\%" 1
<> lorsque

Démontrer que ag,~ 3) (2n)
n)!

n — +00.

En déduire une constante C', que 'on exprimera a l'aide de F(%), telle que

t—+00

ft) ~ cCct A exp<§t3/2>.

FIN DU PROBLEME
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Théoreme de De Moivre-Laplace

Notations

Dans tout le probleme :

- Par convention 0° = 1.

Sii et j sont des entiers naturels tels que ¢ < j, on note [[¢, j] 'ensemble des entiers
k tels que t < k < j.

a et b sont des réels tels que a < b.

Si x est un réel, on définit :

lz] =max{k€Z,k<z} et [z]=min{keZ,x <k}

pest un réel de |0,1[ et ¢ =1 — p.

C est la fonction de | — 1, +oo[ dans R définie par :
((z)=(x+1)In(x +1).

® est la fonction de R dans R définie par :

(Q, A, P) est un espace probabilisé.

- (X,)nen+ est une suite de variables aléatoires définies sur (2, A, P) telle que, pour
tout n € N*, X, suit la loi binomiale de parametres n et p, ce que l'on note
Xp — B(n,p).

Résultats préliminaires

1 > Rappeler la formule de Stirling. En déduire I'existence d’une suite réelle (€, )nen+
convergeant vers 0 telle que :

VneN*, nl= 27m(g)n(1 + €n).

2 > Soit A € R} et u € R. Démontrer que :

| A\x + p] e Ar et [Ar+ p et Azx.



+o00
3 > Prouver que 'intégrale / ®(t)dt converge.

—00

4 > Démontrer que :

Etude asymptotique d’une suite

Dans cette partie, si n € N*, on note z, le nombre entier [np —q| et p, le réel
P(X,, = xy).

5 > Justifier que py, est le plus grand élément de {P(X,, = k), k € [0,n]}.

6 > Vérifier que lim z, = fooet lim (n—x,) = +oc.
n—-+00 n—+o0o

Etablir alors :
N o Tn ,N—Tn

~Y n p q .
" n—too /21 20 (n — xy)"n

vnpap

7 > Montrer que, pour tout entier n > max {p, q} :
q p

N Tn ,N—Tn

n-prq

_ emrnc(en) o2
i (n — zp)" % © '
n n

8 > Montrer que la suite (,/npqpn)neN* converge.

Convergence en loi

1
Dans toute la suite, pour tout n € N*, on note Y, = ——(X,, — np) et on définit

vnpq
les réels 7, ;, par la relation :

VkE€Z, Top = k—np,
vnpq

9 > Soit n € N*. Déterminer la loi de Y, et vérifier que Y,, est une variable aléatoire
centrée réduite.

10 > Justifier I'existence d’un élément N € N* tel que :

pour tout entier n > N, [a,b] C [Tp0,Tnn] €t <b-—a.

vnpq



On définit les suites (kn>nEN*’ (en)neN* et <fn)n6N*’ de fonctions de R dans R de la

fagon suivante : pour tout n € N*, pour tout t € R,

kn(t) = |vnpgt +np|, en(t) = g, fut) = VnpqP(Ya = en(t)).

11 » Démontrer que pour tout n € N*, e, est une fonction en escalier croissante véri-

flant :
1

Nz

VteR, ey(t) <t <en(t)+

Démontrer que (ey,) converge simplement vers une fonction e que 'on préci-

sera.

neN*

12 > Montrer que :
Tn ke (b)+1 b
/ o(t)dt — [ d(t)dt,
-

ko () n—-+00 a

puis vérifier que

Plea(a) < Ya < eal®) = [ puttiar.

n,kn (a)

13 > Prouver que, pour tout n € N*, pour tout k € [1,n — 1] :

o) 1 pgn? prgnF 1+e,
n\Tn = s
K ar k(n—k) (%)k (nT—k)”*k (1+ex)(1+€enk)

olt (€n), cng+ st la suite définie & la question 1.

14 > Justifier que, pour tout t € [a, b] :

\/ pqgn? L ot 1+e, )
kn, (t) (n —ky (t)) n—+oo (1 + Ekn(t))(l + 6nfkn(t)) n—stoo

15 > Montrer que pour tout n € N* et pour tout k& € [0,n] tels que

max{ﬂ/nip,,/n%} X | T <1

p* g _ oS (/) —nag (= /Ty k)
k n—~r

(ByF (netyn®

k

16 > Démontrer que :

() gn—hn(® -
(M)kn(t) (n*kn(t))n—kn(t) n—4o0

S




17 > En conclure que :
Vi€ [avb]a fn(t) — (I)(t),

n—-+0o
puis que :
b b
/ Fot)dt —— [ B(t)dt.

n—+oo J,

18 > Déduire de tout ce qui précede que :

P(en(a) <Y, <en(b) —— b(I)(t)dt,

n—-4o0o a
puis que :

b
Pa<Y,<b) —— [ o)t

n—-+o0o a

Applications

19 > Montrer que :

T 1
VT € R, [TQ(t)dt >1- 7,
+o0
puis en déduire la valeur de / O (t)dt.

20 > Les suites (P(Y, <)), -
ciser les limites éventuelles.

et (P(Y, > a)) sont-elles convergentes ? En pré-

neN*

Généralisation

Soit ¢ une fonction de R dans R, de classe C! et telle que ¢’ ne s’annule pas sur R.
Pour tout n € N*, on note Z, = poY,,.

21 > Montrer que, si p(R) = R, il existe une unique fonction ¥ continue sur R telle

que :

_ B
pour tout («a, ) € R2, sia<p, alors Pla<Z,<f) —— / U(t)dt,

n—-+0o a
ou R désigne I’ensemble constitué des réels, de —oo et de 4o0.
Que dire si I'on ne suppose plus ¢(R) =R?

FIN DU PROBLEME
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Théoréme de stabilité de Liapounov

Dans tout le probléme, n désigne un entier naturel non nul. On note (.|.) le produit scalaire usuel
de K", K pouvant étre R ou C, et |.| la norme euclidienne associée.
Si u et v sont deux applications linéaires pour lesquelles la notation u o v a un sens, alors on note
uv ’application u o v. De plus, si u est un endomorphisme d’un espace vectoriel F et k est un entier
naturel non nul, u* désigne I’application uo- - -ou, ol u apparait k fois dans I’écriture. Par convention
ud = idp.

On s’intéresse au systéme différentiel suivant :

{ Yy = o)
y(0) = =z

avec Tg € R™ et ¢ est une application de classe C! de R™ & valeurs dans R™, telle que ¢(0) = 0. Cela
entraine que si xg = 0, alors la solution de ce systéme est la fonction nulle, et donc 0 est un point
d’équilibre. Notons dy(0) 'application différentielle de ¢ en 0. L’objectif de ce probléme est d’établir
une condition suffisante sur le spectre de dyp(0) pour assurer la stabilité de 1’équilibre en ce point, et
d’obtenir des informations quant & la dynamique des solutions au voisinage de ce point d’équilibre.
Plus précisément, on établit le résultat suivant :

Théoréme de Liapounov :
Soit le systéme différentiel suivant :

avec Tgp € R" et ¢ est une application de classe C! de R™ & valeurs dans R™, telle que ¢(0) = 0 et
telle que toutes les valeurs propres complexes de dg(0) aient une partie réelle strictement négative.
Alors il existe trois constantes &, C et § strictement positives telles que :

Vag € B(0,a), Vte Ry, |fu(t)] < Ce g,

ou fz, est 'unique solution du systéme différentiel et B(0, &) désigne la boule ouverte, pour la norme
|.|l, de centre O et de rayon a.

Dans une premiére partie, on étudie une norme sur les endomorphismes des sous-espaces vecto-
riels de K". Dans la seconde partie, on établit des résultats sur le systéme différentiel linéaire, en se
servant des résultats de la partie A. Enfin, la troisiéme partie est consacrée & la démonstration du
théoréme de Liapounov. Cette derniére partie est trés largement indépendante des deux premiéres,
a 'exception du résultat obtenu a la fin de la partie B.

A.. Etude d'une norme sur L(FE)

Soit E un sous-espace vectoriel de K". Soit u un endomorphisme de FE.

1 > Aprés avoir justifié 'existence des bornes supérieures, montrer que :

u\x
N Lol WO
xeF H-TH xeF
x#0 [x]=1



2 = On note ||ul| = supHu(x)H

el ]
z#0

. Montrer que |[.|| est une norme sur L£(E).

3 > Montrer qu’il s’agit d’'une norme sous-multiplicative, c’est-a-dire que :
¥(u,v) € LE)?, [luvll < [lull-[lo]l,

et en déduire une majoration de ||[u¥||, pour tout entier naturel k, en fonction de ||u|| et de
Ientier k.

B.. Etude de la stabilité en 0 du systeme linéaire

Dans cette partie, a désigne un endomorphisme de C™.

4 > Montrer qu’il existe un entier naturel non nul r, des nombres complexes distincts A1, Ao, ...,

Ar, ainsi que des entiers naturels non nuls mq, mao, ..., m,, tels que :
T
n —_— .
o=@ n.
i=1

ou pour i € [1;7], E; = Ker(a — A\jidgn)™.

D’apres la question précédente, si x est un élément de C™, il existe un unique r-uplet (z1,...,x,) €
T
Ei x---x E, tel que x = Z x;. Fixons a présent 7 € [1;7]. On définit alors les endomorphismes :
i=1
cn - Ez Ez - cn
Di: et ¢ :

Par ailleurs, on note ||.||; la norme sur £(F;) introduite a la partie A, a savoir

u(zx
Vue L(E;), ||ull; = sup [ )H
o ]
x#0

On utilisera la notation |[|.||. pour £(C"™). Enfin, on notera a; I’endomorphisme p;ag;.

5 = Montrer que, pour tout i € [1;7], il existe une constante C; > 0 telle que :

Yue L(E;), ||gupille < Cillulls

6 = Montrer que, pour i € [1;7], E; est stable par a.



T
7 = Soient (i,7) € [1;7]?. Exprimer p;g; puis Z q;pi en fonction des endomorphimes idcn et idpg;.
i=1

-
8 > Montrer que : a = Z Qi p;-
i=1

9 > En déduire que :

T
VteR, %= Z gie'%ip;.
i=1

10 > Montrer par ailleurs que :
Al

vie[lir], VteR, (e[l <le™] ) S-llai — iidg |IF.
k=0

11 = En déduire l'existence d’un polynéome P & coefficients réels tel que :
T
Vie R, [le"]|. < P(t]) D] e,
i=1

ou Re(z) désigne la partie réelle d’un nombre complexe z.

12 > Pour toute matrice A € .#,(R), on notera u, l’endomorphisme canoniquement associé & A
dans R" et v, I'’endomorphisme de C" canoniquement associé a A, vue comme une matrice de
Mp(C) . On conservera la notation ||.[|. pour la norme introduite & la partie A sur £(C") et
on utilisera [|.[|, sur £(R™). Montrer qu'il existe C' > 0 telle que :

VAe My(R), VtER, [le"al, < Clle" ..

Dans la suite de cette partie, on considére u un endomorphisme de R", et A € ., (R) sa matrice
dans la base canonique. On notera par ailleurs, Sp(A) le spectre complexe de A. Notons g, 1'unique
solution de classe C' sur R, de :

13 = Montrer que :

Vzg e R, tligloo lgzo ()| =0 <= Sp(A) < R* +iR.

14 = On se place dans cette question dans le cas ol toutes les valeurs propres de A ont une partie
réelle strictement négative. Montrer alors qu’il existe deux constantes Cy et « strictement

positives telles que :
Vte Ry, [l < Coe™,

et en déduire une majoration de ||gx,(t)| pour ¢t € R.



C.. Démonstration du théoréme de Liapounov

On considére dans cette partie une application ¢ de R"™ dans R" de classe C! telle que ((0) = 0,
et en notant a = dp(0), telle que toutes les valeurs propres de a aient une partie réelle strictement
négative.

Soit g € R™. On s’intéresse au systéme différentiel suivant :

{ Y = ey
y(0) = w0

On admettra l'existence d’une solution de ce systéme définie sur R4, que I'on notera f,.

15 = Montrer que la fonction
R"xR" — R
+00
@) = | @l )

est bien définie et qu’elle définit un produit scalaire sur R™.

On notera ¢ la forme quadratique associée a b, c’est-a-dire que pour tout z € R", q(z) = b(zx, x).

16 = Démontrer alors que :

Ve e R", dq(z)(a(z)) = 2b(z, a(x)) = —[z|*.

Pour toute fonction y définie sur R, on associe la fonction &(y) définie par :
R, —- R”
e(y) :
WA o) - alw)
17 = Vérifier ’égalité

Ve € Ry q(fag) (8) = [ fag (0% + 2b(fay (1), €(fi (1))

18 = Prouver 'existence de deux nombres réels « et [ strictement positifs tels que, pour tout ¢t € R,
on ait :

0(foo () S @ = [ fuo (O] + 26(fug (£), (f20) (1) < =Ba(fuo (t))-

On fixe un tel couple («, 3) pour la suite de ce probléme.

19 = Montrer alors que :

q(zo) <a = V=0, q(fs)t) < e Plg(x).



20 > En déduire l'existence de trois constantes &, C et (8 strictement positives telles que :
~ _B
Vag € B(0,@), Vte Ry, |fu(t)] < Ce 2 aol,

ou B(0, &) désigne la boule ouverte, pour la norme |||, de centre 0 et de rayon a.

FIN DU PROBLEME
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Généralisation d’une intégrale de Dirichlet et application

Le but de ce sujet est de calculer I'intégrale de Dirichlet généralisée

/+oo 1-— (Cos(t))2p+1 "

t2

et d’utiliser ce calcul pour évaluer une espérance.

Partie | : Calcul d’une intégrale

Dans tout ce qui suit, x est un élément de |0; 1] fixé.

1 > Montrer que pour tout § €]—m; 7[, la fonction f définie par

f:]0;+o0[ — C

z—1
s ———
1+ tel?

est définie et intégrable sur |0; 4-o0].
Soit 7 la fonction définie par
r:]—m;n[— C
+00 tl’—l
o [t
o 1+4te

2 > Montrer que la fonction r est de classe C! sur |—7 ;7| et que :

/ - too t*
V@ E]—7T,7T[, T(@):—lee/o mdt

Indication : soit 3 €]0; [, montrer que pour tout § € [—f; 3] et t € [0, 4+00],
11+ te?)? > |1 + te®|? = (t + cos(B))? + (sin(B))%.

Soit g la fonction définie par

g :|—mn[— C
+00 tz—l

— dt
1+ te?

0 eix& /
0



3 > Montrer que la fonction g est de classe C! sur | —7; 7| et que pour tout 6 €] — ;[

. +o00
J(0) = iei®? / R(1) dt,
0
ol h est la fonction définie par

h :]0; 400 — C

t.’L’
t —_—
T 1t
Calculer h(0) et
lim h(t).
t——+o00

En déduire que la fonction g est constante sur | — m; 7[.

4 > Montrer que pour tout 6 €]0; 7|,

1 t*

9(6) sin(at) = 7 (9(=0)e™" — g(6)e™") = sin(6) /0+OO P 1 2tcos(d) 110

5 > En déduire que :

+oo (u sin(f) — COS(H))QC

9 €)o; 6) sin(6z) = / du,
v 6]0771-[7 g( )Sln( x) cotan(0) 1 +u2 “
ou cotan(f) = C?SEZ)).
sin

6 > Montrer, en utilisant le théoréeme de convergence dominée, que :
+oo du
lim g(6)sin(zf) = / -
Am g(0)sin(z0) = | 13

7 > En déduire que

+oo o1 T
/ dt = ——.
o 1+t sin(mz)

Partie Il : Une expression (utile) de la fonction sinus

On rappelle que z est un élément de ]0; 1] fixé.

8 > Montrer que

400 tx—l 1 tx—l =
e[ e
/0 I+t o \1+t¢ * I+t



9 > Montrer que :

1tx1 +oo _1k
o 1+1 ikt

10 > Etablir identité

/+oo o= 1 Z n +Zoo (_1)71
o 1+ B + r ‘Zn+l-x
11 > En déduire que l'on a
T 1 X2(-1)"=
- =

sin(rz) x ‘g oni-x

12 > En déduire enfin que :

g’f 2(=1)"ysin(y) _ | sin(y)

Yy €l0; x|,
) ] ﬂ—[ — y2—n27r2 y

Partie I1l : Calcul d’une intégrale de Dirichlet généralisée

13 > Montrer que l'intégrale

2p+1
+00 1 — ( cos(t
/ (cos(t)) "
0 12
converge et que :

/+oo 1- (cos(t)

t?

2p+1
) 2 sin(t)

t

dt = (2p+ 1) /0+oo (cos(t)) dt.

14 > Montrer que pour tout n € N* :

/2+mr (cos(t))zp sin(t) dt = /05 (cos(t))zp w dt.

SH(n—1)m t 2 — n?n?

15 > En déduire que :

™ o) 201 [ ) (£ 20

2
n—1 n=m

16 > En déduire que :

™

[ Ceost)” 5 i [ (con)”

Dans le cas p = 0, cette intégrale est communément appelée “Intégrale de Dirichlet”




17 > Montrer que :

(cos(t))? = 2; ((2;) + 2172:3 <2/f> cos(2(p — k:)t)) .

it pe—it )QP

Indication : On pourra développer ( 5

18 > En déduire que :

2p+1
/+oo 1-— (COS(t)) . g (2p+1)!
0 2 -2 2% (pl)2

Partie IV : Calcul de E(\SnD

Toutes les variables aléatoires sont définies sur un méme espace probabilisé (€2, .4, P).

Soient (X )ren+ des variables aléatoires indépendantes, de méme loi donnée par :

P(X,=-1)=P(X;=1)= -

n
Pour tout n € N*, on note S,, = > Xj.
k=1

19 > Déterminer, pour tout n € N*, E(S,,) et V(S,,).

Soient S et T' deux variables aléatoires indépendantes prenant toutes deux un nombre
fini de valeurs réelles. On suppose que T et —T suivent la méme loi.

20 > Montrer que :
E(COS(S + T)) = E(COS(S)) E(cos(T)).

21 > En déduire que pour tout n € N*, et pour tout t € R :

E( cos(tSn)> = <COS(t)>n.



22 > Soient a,b € R tels que a # 0 et |[b] < |a|. Montrer que
|+ b| = |a] + signe(a) b
ou signe(z) = x/|z| pour z réel non nul. En déduire que :

¥n e N*,  E(|S2l) = E(|S20-1).

23 > Montrer que pour tout s € R

/+°° 1 — cos(st) g7
0 t2 2

24 > En déduire que pour tout n € N* :

2
B(1S.]) = ;/0 e

25 > Conclure que :

(2n —1)!

¥n € N*,  E(|Sn]) = E(|Som1]) =

5"

22n2((n —1)!)

FIN DU PROBLEME
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Inégalités de Khintchine

Notations et résultats admis

— Dans tout le sujet, n est un entier naturel fixé non nul.

— Dans tout le sujet, (2, P(2), P) est un espace probabilisé fini.

— On note L°(Q) le R-espace vectoriel des variables aléatoires réelles definies sur
Q. On notera que si X € L), X(Q2) est une partie finie de R. On confondra
systématiquement variable aléatoire nulle et variable aléatoire presque stirement
nulle.

— Si X € L%Q), on note E(X) son espérance.

— Une variable aléatoire X € L°(Q) suit une loi de Rademacher si :

X(@)={-L1} e P(X=1)=P(X=-1)=.

— Sip € [l,+o0f et X € L%Q), on note [|X]|, = (E(|X|P))"?. On admet que
Papplication X > [|X||, est alors une norme sur L°(€2).

— Sim € N*, p € [1,+o0[et (x1,...,2,) € R™, on définit la quantité ||(z, . .. ,a:m)||§m
par :
R m 1/p
sl = (Slai)
i=1
On admet que l'application (z1,...,z,) € R™ — |[(x1,...,2) ||;lm est une norme
sur R™.

— On note R™ T'ensemble des suites de R nulles & partir d'un certain rang. On
admet alors que I'application (-,-) définie par

+o00
Vu,v € RN (u,0) = > w;
i=0

est un produit scalaire sur RM).



Inégalité de Holder

1 1
Soient p, q €]1, +o00] tels que — + — = 1. Soient X,Y € L) que 'on suppose toutes
p 4q

les deux positives.

1 > Montrer que
Ve,ye Ry, oy < — 4+ =.
p q

2 > En déduire I'inégalité suivante (inégalité de Holder) :
E(XY) < (E(X7)"" (B (Y)"".

On pourra commencer par traiter le cas ou E(X?) =E (YY) = 1.

3 > Quelle inégalité retrouve-t-on lorsque p = ¢ = 27 En donner alors une preuve
directe.

Une inégalité de déviation

de Rademacher.

] une suite de variables aléatoires indépendantes suivant toutes une loi

4 > Montrer que
2
VteR, ch(t) <e/?.

5 > Montrer que : pour tout ¢t > 0, pour tout (cy,...,c,) € R",
n t? n
E (exp (thin)) < exp (2 Zc?) )
i=1 i=1

6 > En déduire que : pour tout ¢t > 0, pour tout x > 0 et pour tout (cy,...,c,) € R™,

2 n 2
P <exp (:U ) > etx> <2e ™exp (9625:162> )

n
Z ci X
=1
On pourra utiliser linégalité de Markov.

7 > Montrer que : pour tout ¢t > 0 et pour tout (cq,...,¢,) € R"™ non nul,

n t2
P Xl >t <2 - .
(5 e]>1) =200 (52)




Inégalités de Khintchine

Soit p € [1, +ool. Soit (X;);c[; ) une suite de variables aléatoires indépendantes suivant
toutes une loi de Rademacher. Soit (¢1,...,¢,) € R™.

8 > Soit X une variable aléatoire réelle positive et finie. Soit F'x la fonction définie
pour tout ¢t > 0, par
Fx(t)=P (X >1).

+oo
Montrer que 'intégrale / tP~ 1 Fx (t) dt converge, puis que
0

+oo
E(X?) =p / "1 Fy (t) dt.
J0

n +00
9 > On suppose dans cette question que Z ¢ = 1. Montrer que I'intégrale / 324t
i=1 0

n 4 400
E ((Z ciXi> ) <3 / 3 "/2q¢,
i=1 0

E ((é cZ-Xi>2) = iz:cf.

11 > En déduire qu’il existe un réel 3, > 0 tel que

=(Sox]) " <nm(§) )

12 > On suppose p > 2. Montrer que
P) 1/p

. o\ 1/2
i=1 '
Dans les questions numérotées de 13 > a 15 >, on suppose 1 < p < 2.

converge, puis que

10 > Montrer que

. 1/2

Z CiXi

i=1

n
>_ X
i=1

1-0

1 0
13 > Justifier qu'il existe 6 € |0, 1] tel que 3 o + 1
p



14 > Montrer que

() ) = =

p\ 20/p
) E
15 > Montrer qu’il existe a, > 0 tel que

(8] ol

n

Z i X

=1

n

ZCiXi

i=1

4) (1-6)/2

p) 1/p

n
Z ci X
=1

16 > En déduire qu’il existe un réel oy, tel que
. o\ 1/2
B ((Z CiXi) ) <E (
i=1

Une premiere conséquence

n

Z CiX,L'

i=1

p) 1/p

Soit (X;)i;en une suite de variables aléatoires indépendantes qui suivent toutes une loi
de Rademacher.

17 > Montrer que Papplication ¢ définie sur (L°(2))* par
VX,Y € L°(Q), ¢(X,Y)=E(XY)

est un produit scalaire sur L°((2).

+o0
18 > Soit I'application ¢ : u € RM™ Z u; X;. Montrer que ¢ prend ses valeurs dans
i=0
L°(Q), puis que 9 conserve le produit scalaire.

19 > On note R = v (R(N))_ Montrer que pour tous p, q € [1,+0o0], les normes |||, et
-] , sont équivalentes sur R.

Une deuxieme conséquence

Dans cette partie, on suppose que n est une puissance de 2 : on écrit n = 2F avec
k € N*.



20 > Soit (ay,...,a;) € RE. Montrer que

k RE
Zfz’ai ||2

=1

k
Oéln”(al""?ak)H? < Z
(e1,.ep)E{—1,1}F

< B (ar,..., a)

On pourra utiliser les questions 11 et 16.

21 > En déduire qu’il existe un sous-espace vectoriel I’ de dimension k& de R" tel que :

vre F, anvnlelly” <zl < AVl

n

771 7 k o\ . . *7
En ordonnant les n éléments de {—1,1}" de maniére arbitraire, on pourra utiliser

k
Uapplication T définie sur R* par T(ay, ..., ax) = <Z aiez)
i=1

(51,...,6]\3)6{*1,1}}6

FIN DU PROBLEME
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Sous-groupes compacts du groupe linéaire

Soit E un espace vectoriel euclidien de dimension n > 0 dont le produit scalaire
est noté (, ) et la norme euclidienne associée est notée || ||. On note L(E) I'espace
vectoriel des endomorphismes de E et GL(FE) le groupe des automorphismes de E.
Pour tout endomorphisme u de E, on note u’ 'endomorphisme wow o ---ow (i
fois) avec la convention u’ = Idg (identité). L’ensemble vide est noté &.

On rappelle qu’un sous-ensemble C' de E est convezxe si pour tous x,y dans C
et tout A € [0,1], on a Az + (1 — X\)y € C. De plus, pour toute famille ay, ..., a,
d’éléments de C' convexe et tous nombres réels positifs ou nuls Aq,....; A, dont la

p
somme égale 1, on a Z Aa; € C.
i=1
Si F' est un sous-ensemble quelconque de E, on appelle enveloppe convezxe de
F, et on note Conv(F), le plus petit sous-ensemble convexe de E (au sens de

I'inclusion) contenant F. On note H l'ensemble des (A, ..., A1) € (RT)"F tels
n+1

que > \; =1 et on admet que Conv(F') est 'ensemble des combinaisons linéaires
=1 n+1

de la forme Z N OU 1, ..., Tpi1 € F et (A, .o, Apy1) € H.

=1

L’espace vectoriel des matrices a coefficients réels ayant n lignes et m colonnes
est noté M, ,(R). On notera en particulier M, (R) = M, ,(R). La matrice trans-
posée d’une matrice A A coefficients réels est notée AT. La trace de A € M, (R)
est notée Tr(A).

On note GL,(R) le groupe linéaire des matrices de M,,(R) inversibles et O, (R)
le groupe orthogonal d’ordre n.

Les parties A, B et C sont indépendantes.

A Préliminaires sur les matrices symétriques

On note S,(R) le sous-espace vectoriel de M, (R) formé des matrices symé-
triques. Une matrice S € S, (R) est dite définie positive si et seulement si pour
tout X € M,1(R) non nul, on a XTSX > 0. On note S (R) 'ensemble des
matrices symétriques définies positives.

1. Montrer qu'une matrice symétrique S € S, (R) est définie positive si et seule-
ment si son spectre est contenu dans R**.

2. En déduire que pour tout S € SH(R), il existe R € GL,(R) tel que S =
RT R. Réciproquement montrer que pour tout R € GL,(R), R'R € S/ (R).

1 TSVP



3. Montrer que I'ensemble S;F(R) est convexe.

B Autres préliminaires

Les trois questions de cette partie sont mutuellement indépendantes.

4. Soit K un sous-ensemble compact de E et Conv(K) son enveloppe convexe.
On rappelle que H est I'ensemble des (Ai,...,A\py1) € (RT)™ tels que
Sl \; = 1. Définir une application ¢ de R**! x E"*! dans E telle que
Conv(K) = ¢(H x K™). En déduire que Conv(K) est un sous-ensemble
compact de F.

5. On désigne par g un endomorphisme de E tel que pour tous z,y dans FE,
(z,y) = 0 implique (g(z), g(y)) = 0.

Montrer qu’il existe un nombre réel positif k£ tel que pour tout x € FE,
lg(x)|| = k||z||. (On pourra utiliser une base orthonormée (ey, eq, ..., €,) de
E et considérer les vecteurs e; + ¢; et e; —e; pour i € {2,...,n}.)

En déduire que g est la composée d'une homothétie et d'un endomorphisme
orthogonal.

6. On se place dans l'espace vectoriel euclidien M,,(R) muni du produit scalaire
défini par (A, B) = Tr(ATB). (On ne demande pas de vérifier que c’est bien
un produit scalaire.)

Montrer que le groupe orthogonal O,(R) est un sous-groupe compact du
groupe linéaire GL,(R).

C Quelques propriétés de la compacité

Soit (2, )nen une suite d’éléments de E pour laquelle il existe un réel € > 0 tel
que pour tous entiers naturels n # p, on ait ||z, — z,| > ¢.

7. Montrer que cette suite n’admet aucune suite extraite convergente.

Soit K un sous-ensemble compact de E. On note B(z, ) la boule ouverte de centre
xr € FE et de rayon r.

8. Montrer que pour tout réel e > 0, il existe un entier p > 0 et z,..., 7,

p
éléments de E tels que K C | J B(z;,¢). (On pourra raisonner par I'absurde.)
i=1

On considere une famille (£2;);e; de sous-ensembles ouverts de £, I étant un en-

2



semble quelconque, telle que K C U Q;.
iel
9. Montrer qu’il existe un réel o > 0 tel que pour tout x € K, il existe i € I tel
que B(z, ) soit contenue dans l'ouvert ;. (On pourra raisonner par l’ab-
surde pour construire une suite d’éléments de K n’ayant aucune suite extraite
convergente.) En déduire qu'il existe une sous-famille finie (€2;,,....Q;,) de la

p
famille (€2;);es telle que K C U Q.

k=1

Soit (F})ier une famille de fermés de E contenus dans K et d’intersection vide :
ﬂiel F,=g.

10. Montrer qu'il existe une sous-famille finie (£}, ...., F;,) de la famille (F});e;
telle que ,_, Fi, = 2.

D Théoreme du point fixe de Markov-Kakutani

Soit G un sous-groupe compact de GL(E) et K un sous-ensemble non vide,
compact et convezre de E. Pour tout x € E, on pose Ng(z) = sup ||u(z)]|.
ucQG

11. Montrer que N¢ est bien définie, et que c¢’est une norme sur E.

12. Montrer en outre que Ng vérifie les deux propriétés suivantes :
e pour tous u € G et v € E, Ng(u(x)) = Ng(z) ;

e pour tous z,y dans E avec x non nul, Ng(z + y) = Ng(x) + Ng(y) si
et seulement si Ax =y ou A € R,

Pour la deuxiéme propriété on pourra utiliser le fait que si z € E, I'applica-
tion qui & u € G associe ||u(z)]| est continue.

On considére un élément u de L(FE) et on suppose que K est stable par u, c’est-

a~dire que u(K) est inclus dans K. Pour tout =z € K et n € N* on pose x, =
1 n—1

— > u'(z). Enfin, on appelle diamétre de K le nombre réel §(K) = sup |z — y|
n =0 z,yeK

quiiest bien défini car K est borné.

13. Montrer que la suite (x,)nen+ est a valeurs dans K et en déduire qu’il en
existe une suite extraite convergente vers un élément a de K. Montrer par

0(K)

ailleurs que pour tout n € N*, |lu(z,)—2,| < ——. En déduire que I'élément
n

a de K est un point fixe de u.

3 TSVP



On suppose maintenant que le compact non vide convexe K est stable par tous les

1 T
éléments de G. Soit r un entier > 1, uy, ug, ...., u, des éléments de G et u = — Z U
r =1
14. Montrer que K est stable par u et en déduire I'existence d’un élément a € K

15.

16.

17.

18.

E

tel que u(a) = a.

1< 1<

Montrer que Ng<f Zuz(a)> =-> Ng (uz(a)) En déduire que pour tout
"z "zt

je{l,...,r}, ona Ng <uj(a) + Zu&a)) = NG’(UJ'(G/)) + Ng<2ui(a)>.

7 =
En déduire, pour tout j € {1,...,r}, Pexistence d'un nombre réel A\; > 0 tel
Aj+1
que u(a) = u;(a).

Déduire de la question précédente que a est un point fixe de tous les endo-
morphismes u; oui € {1,...,7}.

En utilisant le résultat de la question 10, montrer qu’il existe a € K tel que
pour tout u € G, u(a) = a.

Sous-groupes compacts de GL,(R

On se place a nouveau dans 'espace vectoriel euclidien M, (R) muni du produit

scalaire défini par (A, B) = Tr(ATB). On rappelle que GL, (R) désigne le groupe
linéaire et O,(R) le groupe orthogonal d’ordre n.

Soit G un sous-groupe compact de GL,(R). Si A € G, on définit application
pa de M, (R) dans lui-méme par la formule p4 (M) = AT M A. On vérifie facilement,
et on 'admet, que pour tout M € M, (R), 'application qui a A € G associe pa(M)
est continue.

Onnote H={ps | A€ G}, A={ATA| Ae G} et K = Conv(A).

19.

20.

21.

Montrer que ps € GL(M,(R)) et que H est un sous-groupe compact de
GL(M,(R)).

Montrer que A est un compact contenu dans S+ et que K est un sous-
ensemble compact de ST (R) qui est stable par tous les éléments de H.

Montrer qu’il existe M € K tel que pour tout A € G, pa(M) = M. En
déduire l'existence de N € GL,(R) tel que pour tout A € G, NAN™! €
O,(R). En déduire enfin qu’il existe un sous-groupe G; de O,(R) tel que
G=N"'G,N={N"'BN: BeG}.

4



Soit K un sous-groupe compact de GL,(R) qui contient O,(R), et N € GL,(R)
tel que NKN~! C O,(R). On désigne par g 'automorphisme de R™ de matrice N
dans la base canonique de R", par P un hyperplan de R" et par op la symétrie
orthogonale par rapport a P.

22. Montrer que go g, 0 g~! est une symétrie, puis que c’est un endomorphisme
orthogonal de R". En déduire que goopog™' = 0,4(p). Montrer que g conserve
I'orthogonalité et en déduire K.

FIN DU PROBLEME
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Racines carrées de matrices complexes : existence et calcul numérique

Dans ce probleme, on étudie I'existence de racines carrées d'une matrice
complexe, puis on introduit I'algorithme de Newton pour calculer numérique-
ment I'une de ces racines carrées, avec des considérations sur la convergence et
la stabilité de I'algorithme.

Soit n un entier supérieur ou égal a 2. On note .#,(C) 'ensemble des ma-
trices carrées d’ordre n a coefficients complexes. La matrice identité de .4, (C)
est notée I,,. On appelle racine carrée de A € 4, (C) toute matrice X € .4, (C)
solution de I'équation X? = A.

On note C I'ensemble des nombres complexes non nuls qui ne sont pas des
nombres réels négatifs.

A. Quelques exemples

1) Montrer que la matrice A = I, admet une infinité de racines carrées (on
pourra utiliser la notion de symétrie). Lesquelles sont des polynémes

en A?
0 0 1
2) Montrer que A= [0 0 0| admet une infinité de racines carrées et
00O

qu’aucune d’entre elles n'est un polynome en A.
Dans la question suivante, A € .4, (R) est une matrice symétrique réelle qui est
définie positive, c’est-a-dire que ses valeurs propres sont strictement positives.

3) Montrer que A admet une unique racine carrée symétrique réelle définie
positive.
(On pourra montrer que deux racines carrées de ce type posseédent les
meémes valeurs et sous-espaces propres.)

B. Existence et calcul d’'une racine carrée
Dans cette partie A € .#,,(C) désigne une matrice inversible quelconque.

4) Soit T = (t;j)1<i,j<n €t U= (U; j)1<i j<n € M»(C) deux matrices com-
plexes triangulaires supérieures. On suppose que T est inversible. Mon-



5)

trer que 'équation U? = T est équivalente au systéme d’équations sui-
vant :

uZ =t (1<i<n)

j-1
(uj;+ uj,j)ul-,j =1ij— Z Ui k Uk, j (I<si<js<n).
k=i+1
Montrer que T étant donnée, on peut résoudre ce systeme en choisissant
une solution U telle que u;; + u; ; # 0 pour tous i, j € {1,2,...,n}. (On
pourra considérer les parties réelles et imaginaires des u; ;.)
En déduire que A admet une racine carrée. Si en outre, les valeurs propres

de A appartiennent 4 C, montrer que A admet une racine carrée dont les
valeurs propres sont de partie réelle strictement positive.

On admet qu'une telle racine carrée est unique et on la notera /A dans
toute la suite du probleme.

C. Algorithme de Newton

Pour tout A = (a;,j)1<i,j<n € #,(C) on pose

n n
TAN=1/>. > lai I
i=1j=1

et on admet que | - || définit une norme sur .4, (C). On note B(X, r) et B(X, 1) les
boules, respectivement ouverte et fermée, de centre X € .4, (C) et de rayon r.
Soit A et B deux matrices quelconques de .4, (C).

6)

Montrer que [|AB| < Al | B]|.

On note m4 le polynd6me minimal de A.

7)

8)

Montrer que la matrice m4(B) est inversible si et seulement si A et B
n’ont aucune valeur propre commune.

En déduire que s’il existe une matrice M € .4, (C) non nulle telle que
AM = MB, alors A et B ont au moins une valeur propre commune.

Réciproquement, si A et B ont au moins une valeur propre commune,
montrer qu’il existe une matrice M € .4, (C) non nulle telle que AM =
MB.

(On pourra considérer une matrice de la forme XY 7 o1 X et Y sont deux
matrices colonnes bien choisies).



Soit F : M, (C) — ,,(C) 'application définie par la formule F(X) = X? — A.

9) Montrer que la différentielle dFx de F en X € .#,(C) est donnée par
VHe #,C), dFx(H =XH+HX.

Déduire des deux questions précédentes une condition nécessaire et
suffisante pour que dFx soit inversible. Montrer que cette condition
implique que X est inversible.

Dans toute la suite du probleme, A désigne une matrice inversible de 4, (C) dont
les valeurs propres appartiennent a C. On pose X* = v/A (la matrice VA a été
définie a la question 5).

On définit, sous réserve d’existence, une suite (Xi) ey d'éléments de .4, (C)
par:
N) Xo € M, (C)
VkeN, Xpp =X —(dFx) H(F(Xp).

Dans les questions suivantes, on étudie I'existence et la convergence de la suite
(Xk) ken-

10) Montrer que dFx- est inversible et qu'il existe r > 0 tel que dFx soit
inversible pour tout X € B(X*, r).

Pour tout Y € B(X*,r) on pose G(Y) = Y — (dFy) }(F(Y)).
11) Calculer G(X™) et montrer que pour tout H € B(0, ),

G(X* + H) - G(X*) = (dFx++p) "' (H?)

(dFx++p) ™" = (Id + (dFx-) " odFy) " o (dFx+) .

12) En déduire qu’il existe une constante C > 0 telle que pour tout X de
B(X*,1), |G(X) - X*|| < C|| X — X*|?. (On pourra utiliser le résultat de la
question 6.)

13) Montrer qu’il existe p > 0 tel que pour tout X, € B(X™, p) la suite (Xi) xen
soit bien définie et vérifie, pour tout k e N,

2k
1Xe— X < @

Que peut-on en conclure ?



D. Forme équivalente

Dans cette partie, on étudie deux algorithmes équivalents a celui de Newton.
On rappelle que A désigne une matrice inversible de .#,,(C) dont les valeurs
propres appartiennent a C. Soit Uy et V, deux matrices de .4, (C). Sous réserve
d’existence, on note (Uy) ke la suite de matrices de ., (C) définie par

Uy e M, (C)
(D Ugs1 = Uy + Hy. ou Hy € M, (C) vérifie
UrHi + H Uy = A-U;, pour tout k=0

et (Vi) ren la suite de matrices de ., (C) définie par

(D) VO € '/%n ©
Vie1=3(Ve+V1A) pourtout k = 0.

14) Sila suite (X)ren est bien définie par (N) et Uy = Xy, montrer que la suite
(Ui ken est bien définie par (I) et égale a (Xi)ren- REciproquement si
la suite (Ug) ken est bien définie par (I) et Xy = Uy, montrer que la suite
(X%) ken est bien définie par (N) et égale a (Uy) ken-

On suppose dorénavant ces conditions vérifiées.

15) On suppose que Uy =V commute avec A. Montrer que la suite (Vi) gen
est bien définie par (II) et que pour tout k € N, Uy = V. commute avec A.
(On pourra d’abord montrer que U est inversible pour tout k € N et
considérer la matrice Gy = (U, ' A— Ug).)

On rappelle qu'une matrice symétrique réelle est définie positive si ses valeurs
propres sont strictement positives, et qu'une telle matrice admet une unique
racine carrée définie positive (question 3).

Dans la suite du probleme, A désigne une matrice symétrique réelle définie positive.

On considere la suite (Vi) ren définie par la relation (II) avec Vy = ulj, et
@ > 0. On fixe une matrice orthogonale P de sorte que A = PDPT o1 D est
une matrice diagonale dont les éléments diagonaux sont les valeurs propres
A1,...,A, de A, ordonnées par ordre croissant. On note ey,..., e, les vecteurs
propres correspondants.

Soit ke Net ¢ €{],...,n} quelconques.

16) Montrer que V. est symétrique réelle définie positive de mémes vecteurs
propres ey, ..., e, que Adont on notera Ag,..., A , les valeurs propres
correspondantes. Trouver une relation entre Ay ¢ et Ao .



17) Montrer que
2k+l

1k+1,z—\/ﬂ_é: (ﬂ—\//l_f)
Aesre+ Ve \p+vAe

18) Déterminer la limite de la suite (Vi) gen.

E. Stabilité

On considere la suite (Vi) ren définie par la relation (II) avec Vp = V/A. Soit
e>0eti,jdeuxindices distincts de {1,...,n}. On note Cy, ..., C,, les colonnes de
la matrice orthogonale P définie dans la partie précédente et on pose A = €C; C].T.

Soit T/B =V + A. La matrice V; est calculée par la relation (II) a partir de T/B
et on pose A} = V] — V. Ensuite V5 est calculé a partir de V; par la relation (II),
puis V3, V,... de la méme maniere.

19) Montrer les relations suivantes :

{(VO +A) =V - vtAys!
—1 -1 -1
A =3 (A-Vy AV TA).

20) Déterminer la valeur de n € R telle que pour tout k € N,
T/\k =VA+ nk A.

21) On appelle conditionnement de A le rapport entre sa plus grande valeur
propre et sa plus petite. Que doit vérifier le conditionnement de A pour

que la suite (V) x>0 converge ?

FIN DU PROBLEME
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Fonctions de matrices symétriques, continuité et convexité

Dans ce probléme, on propose de définir la notion d’image d’une matrice réelle symétrique
par une fonction d’une variable réelle, puis d’étudier quelques propriétés de cette notion
(en particulier, relativement & la continuité et & la convexité). Ces notions présentent un
intérét en sciences physiques (statistique ou quantique).

Notations

Dans tout le probleme :

n désigne un entier naturel non nul;

si p et ¢ sont des entiers naturels, I’ensemble des entiers k tels que p < k < ¢ est
noté [p, qf ;

si ¢ et j sont des entiers naturels, alors d; ; = 1 si i = j et d; ; = 0 sinon;
B, désigne I'ensemble des bijections de [1,n] dans lui-méme;

I est un intervalle de R qui n’est ni vide ni réduit a un singleton ;
C%(I,R) désigne I’ensemble des fonctions continues de I dans R ;

une fonction ¢ de I dans R est dite polynomiale s’il existe P un polynome réel tel
que, pour tout x € I, p(x) = P(z);

M, (R) (respectivement D,,(R), resp. S,(R), resp. O, (R)), désigne I’ensemble des
matrices carrées (resp. diagonales, resp. symétriques, resp. orthogonales) d’ordre n
a coefficients réels, et on confond un élément de M1 (R) avec son unique coefficient ;

on note Tr l'application trace définie sur M, (R);

si M € M,(R), on note ‘M sa transposée, on note Sp(M) son spectre réel, et si
(i,7) € [1,n]?, [M];; est le coefficient de M situé & la i-eme ligne et j-eme colonne ;

on munit M, (R) de sa norme infinie, notée || - || et définie par :

VM € My(R), ||M]| = max {|[M];j].1<i.j <n} ;

Sp(I) désigne 'ensemble des matrices de S, (R) dont le spectre réel est inclus
dans I ;



— si u = (ui)1<i<n € R", on dit que ce n-uplet est croissant si pour tout (i,j) €
2
[1,n]",
(i <Jj) = (wi < uyj) ;

— si ip € [1,n], on appelle nombre d’occurrences de w;, dans u le cardinal de 'en-
semble {i € [1,n] ; u; = u;,};

— enfin Diag((u;)i1<i<n) désigne 'élément D de D, (R) tel que :
Vie ﬂl,n]] s [D]Z,l = U;

on pourra noter cet élément en extension D = Diag(uy, ..., un).

Matrices de permutations

Le but de cette partie est d’étudier ’action sur les matrices diagonales de la conjugai-
son par des matrices de permutations. On considere 'application w de B,, dans M, (R)
définie par :

Vo € By, V(i,5) € [Lin]*, [w(0)]ij = 0i0()-

1 > Démontrer que pour tout (o,0") € B2, w(o o0o’) = w(o)w(a’).
2 > Démontrer que w(By,) C O,(R).
3 > Soit 0 € By, et (d;)1<i<n € R". Vérifier que :
Diag((d;)1<i<n) w(0) = w(0) Diag((dy(;))1<i<n).
4 > En déduire 1’équivalence suivante concernant deux éléments D et D' de D,(R),

i) D et D’ ont le méme ensemble de coefficients diagonaux, chacun ayant le
méme nombre d’occurrences dans D et D’.

ii) il existe M € w(B,,) telle que D' = ‘M DM.

Fonctions de matrices symétriques

Cette partie a pour objectif de définir une correspondance entre 1’espace des fonctions
de I dans R et I'espace des fonctions de S, (I) dans S, (R), puis d’en démontrer quelques
propriétés. Dans cette partie, f est une fonction de I dans R.



5 > Soit S € Sy, (I). Justifier 'existence de 2 € O, (R) et de (s;)1<i<n € I" tels que :

S = tQ Diag((si)1§i§n> Q.

6 > Pour tout (s;)i1<i<n € I™, justifier 'existence d’un élément P de R[X] tel que :

Vie[l,n], P(si) = f(s:).

Soit S € S, (I). On suppose que l'on dispose des deux écritures :
S = tQ Diag((si)lgign) Q et S= tQ/ Diag((s;)lgign) Q/,

avec Q, Q' € On(R) et (si)1<i<n, (57)1<i<n € I™.

7 > Montrer que l'on a alors :
tQ/ Dlag((f(si))lglgr) Q/ = tQ Diag((f(si))lgign) Q’

puis que ‘Q Diag((f(si))lgi§n> Qe S, (R).

Dans la suite du probléme, on note u 'application qui, & toute fonction ¢ de I dans
R, associe u(yp) la fonction de S, (I) dans S, (R) définie par :

VS e Su(I), u(p)(S) ="'Q Diag((@(si))lsz‘Sn) 2,

ol S = 0 Diag((si)lgign) Q, avec ) € On(R) et (Sz’)lgign cI™.

Cette fonction est bien définie puisque, d’apres la question précédente, u(y)(S) ne
dépend pas du choix des matrices 2 € O,(R) et D = Diag((s;)1<i<n) avec (8;)1<i<n €
I" tel que S = QD).

Enfin, on désigne par v 'application Tr ou.

8 > Vérifier que u et v sont linéaires, puis calculer, pour toute fonction ¢ de I dans R
et pour tout = € I, u(p)(xly).
9 > Etudier linjectivité et la surjectivité de u.

10 > On suppose que f est polynomiale; montrer qu’il existe P € R[X] tel que pour
tout S € S, (1), u(f)(S) = P(S).

Réciproquement, est-il vrai que, s’il existe P € R[X] tel que pour tout S € S, (1),
u(f)(S) = P(S), alors f est polynomiale ?



11 > Démontrer que, si (¢k)ren est une suite de fonctions de I dans R qui converge
simplement sur I vers une fonction ¢, alors les suites (u(¢x)),on €t (V(0r))en
convergent simplement sur Sy, (I).

Y a-t-il convergence uniforme sur S,(I) si l'on suppose que (¢x)reNn converge
uniformément sur 17

Norme et convexité

L’objectif de cette partie est de munir S,,(R) d’une nouvelle norme qui permettra de
compléter I'étude des fonctions de matrices symétriques.

12 > On note X = {X EMp1(R); 'X X = 1}. Démontrer que si S € S,,(R) on a :

min (Sp(S)) = min { X S X; X € 2} et max (Sp(S)) = max {'X SX; X € X}.

13 > Montrer finalement que S, (I) est une partie convexe de S, (R) et que I'application
p, de Sp(R) dans R, qui & toute matrice M € S,,(R) associe

max { [A] ; A € Sp(M)},

est une norme sur S, (R).

Continuité des fonctions de matrices symétriques

Dans cette partie, a I’aide de la norme précédemment introduite, on démontre quelques
résultats relatifs a la continuité des fonctions de matrices symétriques. On suppose dé-
sormais S,(R) muni de la norme p et on appelle y l'application de S,(R) dans R[X]
qui, a tout élément de S, (R), associe son polynéme caractéristique.

On définit aussi I'application, notée Sp;, qui & toute matrice S € S, (R), associe son
spectre croissant (c’est-a-dire le n-uplet croissant des valeurs propres de S dans lequel le
nombre d’occurrences de chaque valeur propre coincide avec son ordre de multiplicité).

14 > Démontrer que x est continue.

On souhaite maintenant prouver que SpT est continue. A cet effet, on introduit un
élément M de S,(R) et une suite (My)ren a valeurs dans S,(R) qui converge vers M.
Si k € N, on note Ay = Spy(Mp).

15 > Démontrer que la suite (Ag)ren admet une valeur d’adhérence croissante.



16 > Montrer que, si « est une application strictement croissante de N dans N telle que
la suite (Aqy(x))ren converge, alors @ Ay ) —— Spy(M).
k——+o0

17 > En déduire que Sp; est continue.
18 > Démontrer que O,(R) est une partie compacte de M, (R).

19 > Démontrer que, si ¢ € C°(I,R), alors u(p) et v(¢p) sont continues.

Convexité des fonctions de matrices symétriques

On démontre maintenant quelques résultats relatifs a la convexité des fonctions de
matrices symétriques. Dans cette partie, f est une fonction de I dans R.

20 > On suppose ici que f est convexe sur I et que S € S,(I). On note

Us ={'2SQ; Q€ O,(R)}.

Justifier que pour tout U € Uy, pour tout k € [1,n], [Ulxx € 1.

Démontrer alors que :

max {z F(Ulkr): U € US} — u(/)(S).
k=1

21 > En déduire que, si f est convexe sur I, pour tout (4, B) € S,(I)?, pour tout
t€[0,1], on a :

V(A=) A+1B) < (1=t v(f)(A) +tv(f)(B).

On dit qu’une fonction ¢ de S, (I) dans R est convexe sur S, (I) si elle vérifie la
relation :

V(A,B) € S,(I)% Vt€[0,1], ¥((1—t)A+tB) < (1 —t)p(A) + tb(B).

22 > Démontrer finalement que la fonction v(f) est convexe sur S,(I) si, et seulement
si, f est convexe sur I.

FIN DU PROBLEME



A2023 - MATH II MP

Cm

Concours commun

Mines-Ponts

ECOLE DES PONTS PARISTECH,
ISAE-SUPAERO, ENSTA PARIS,
TELECOM PARIS, MINES PARIS,
MINES SAINT-ETIENNE, MINES NANCY,
IMT ATLANTIQUE, ENSAE PARIS,
CHIMIE PARISTECH - PSL.

Concours Mines-Télécom,
Concours Centrale-Supélec (Cycle International).

CONCOURS 2023
DEUXIEME EPREUVE DE MATHEMATIQUES

Durée de 1’épreuve : 4 heures

L’usage de la calculatrice ou de tout dispositif électronique est interdit.

Les candidats sont priés de mentionner de facon apparente
sur la premiére page de la copie :

MATHEMATIQUES II - MP

L’énoncé de cette épreuve comporte 5 pages de texte.

Si, au cours de I'épreuve, un candidat repére ce qui lui semble étre une erreur d’énoncé, il le
signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu’il est
amené a prendre.

Les sujets sont la propriété du GIP CCMP. Ils sont publiés sous les termes de la licence
Creative Commons Attribution - Pas d’Utilisation Commerciale - Pas de Modification 3.0 France.
Tout autre usage est soumis & une autorisation préalable du Concours commun Mines Ponts.




Fonction de Wallis

Préliminaires

Dans tout le sujet, 'intervalle | — 1, +oo[ de R est appelé I et o et f sont les fonctions,
de R dans R, définies par :

et

w/2
fla) = / (sin(1))® d.
0
On se propose, dans cette épreuve, d’étudier f (domaine de définition, régularité, varia-

tions, convexité, développement éventuel en série entiere,...) puis, dans la derniére partie,
de montrer qu’elle est la seule fonction numérique a vérifier certaines propriétés.

1 Calcul de (1)

1 > Déterminer le domaine de définition de ¢ puis justifier que o est continue sur
celui-ci.

2 > Exhiber deux nombres réels « et 3 tels que :

n?’

™ 1
Vn € N¥, / (at? + Bt) cos(nt) dt = —
0

puis vérifier que si t €]0, 7], alors :

. & B sin (W) 1
Vn € N¥, kz::lcos(k:t) = (é) -5

3 > Justifier que, si ¢ est une application de classe C! de [0, 7] dans R, alors

™

lim @(t) sin(zt) dt = 0,

rz——+00 Jo



et en conclure que

2 Equivalents
4 > Déterminer le domaine de définition de f puis vérifier que
Veel, (z+1)f(x) = (x+2)f(x+2). (1)
5 > Justifier que f est de classe C2, décroissante et convexe sur I.
6 > Donner un équivalent simple de f(z) lorsque x tend vers —1.

7 > Montrer que pour tout entier naturel n,

T
f(n)f(n+1) = 2t 1)
puis que :
s
f(z) oo 2%

8 > Représenter graphiquement f en exploitant au mieux les résultats précédents.

3 Développement en série entiere

w/2
Sin € N, on note D, I'intégrale généralisée / (In(sin(t)))"™ dt.
0

9 > Justifier que, si n € N, l'intégrale généralisée D,, est convergente, puis montrer que

= " In(cos(t)) dt.

10 > Calculer f'(0) et f'(1).



11 > Vérifier que si n € N*, alors

puis que
D, ~ (=1)"n!

n—-+o0o

12 > Démontrer que f est développable en série entiere sur | — 1, 1].

4 Convergence de suite de fonctions

On se propose dans cette partie de calculer f”(0). Dans ce but, on considere deux
nombres réels strictement positifs a et b, et on pose
b— a
b+a

p =

On appelle ¥ 'application de R dans R définie par :

Vz € R, ¥(z) = In(a® cos* z + b*sin? z).

13 > Montrer que ¥ est de classe C! sur R, puis que pour tout = € R,

+o0
U'(z) =4 p¥sin(2kz).
k=1

14 > En déduire que pour tout z € R,

_22

“+o00
¥(z) = 21n (a + b) cos( 2k:x

15 > En conclure que

/0” U(z)’dr = 4r (m (a ‘; b>>2 + 20 ().



On définit les suites réelles (a,)nens €t (by)nen+ par

1
et b, = "

Vn € N*, a, = .
" “ n+1 n+1

16 > Etablir la convergence simple de la suite d’applications (¥,,),en-, de ]0, 7] dans R,
définie par :

Vn € N*, Vt €]0, 7], ¥, (t) = In(a? cos®*t + b2 sint).

En déduire f”(0).

5 Convexité logarithmique

Une application A d'un intervalle non trivial J de R dans R est dite In-convexe si, et
seulement si, elle est a valeurs dans R et Inoh est convexe sur J.

17 > Vérifier que f est une application de I dans R In-convexe.

On souhaite désormais déterminer toutes les applications de I dans R qui sont In-
convexes et qui vérifient la propriété (1), voir question 4.
On appelle f I'application de R, dans R, définie par :

Vo € RT, f(z) = In(f(2z)).
18 > Montrer que

p—1
. . o 20 + 2k + 1
Vp € N Vz € Ry, f(z +p) —J”(ﬂf/‘)*kz:%ln <2x+2k+2>

19 > On suppose ici que x € R%, (n,p) € (N*)? et 2 < p. Vérifier que

F) = fn—1) < LO D =) _ Fn+p) = ()

et que (f(n+ x) — f(n)) admet une limite lorsque n tend vers 4-oc.



20 > En conclure que f est la seule application de I dans R, qui soit In-convexe, qui
vérifie (1) et telle que

21 > Plus généralement, déterminer, si 7" € R, toutes les applications g de | — T, +00[
dans R, In-convexes et vérifiant

Vte| =T, 400, (t+T)g(t) = (t+27)g(t+ 27).

22 > Existe-t-il une application h, de R dans R et In-convexe, vérifiant

Vt € R, (t + T)h(t) = (t + 2T)h(t + 2T)?
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Phénomenes de seuil dans les graphes

Dans ce probleme, n désigne un entier supérieur a 1.

On désigne par [1,n] 'ensemble des entiers compris entre 1 et n.

Le groupe symétrique des permutations de [1,n] est noté S,.

L’ensemble des matrices carrées d’ordre n a coefficients réels est noté M, (R).
Le cardinal d’un ensemble fini E sera noté card(F) ou |E|.

Un graphe G est un couple (S, A) ou :

— S désigne un ensemble fini non vide d’éléments appelés sommets du graphe G

— A désigne un ensemble éventuellement vide d’éléments appelés arétes du graphe
GG, une aréte étant un ensemble {s, s’ } ou s et s’ sont des sommets distincts de S.

Un sommet n’appartenant a aucune aréte est dit isolé.
Par convention, le graphe vide est le couple d’ensembles vides (&, &).

On peut représenter un graphe non vide dans un plan a l'aide :

— de disques schématisant les sommets du graphe

— de segments reliant ces disques pour les arétes du graphe.

Par exemple, on a représenté sur la FIGURE 1, le graphe G = (S, A) avec :

S=T[1,9] et A:{{1,2},{1,5},{1,6},{2,3},{2,9},{2,8}}

FIGURE 1 — un graphe a 9 sommets et 6 arétes

On remarquera que les arétes sont constituées de deux sommets distincts, ce qui
interdit la présence de «boucles» reliant un sommet a lui-méme.
De plus, une méme aréte ne peut étre présente plusieurs fois dans un graphe.



Un type de graphe utilisé dans ce probleme est 1’étoile.
Une étoile de centre s et a d branches avec d entier naturel non nul, est un graphe
(S,A)ou S = {s, 51,89, ..., sd} est de cardinal d + 1, et A est du type

A= {{susih s o))

On a représenté FIGURE 2 une étoile de centre 4 & 5 branches avec S = {1, 3,4,5,6, 8}.

FIGURE 2 — une étoile & 5 branches

Soient G = (S, A) et G' = (9, A") deux graphes; on dit que :

— G estinclusdans Gsi S"C Set A/ C A
— (' est une copie de G s'il existe une bijection o de S’ dans S telle que :

V(s t)eS xS {dt}ed e {o(s)0(t)} A

Par exemple, le graphe de la FIGURE 1 contient plusieurs copies d’étoiles a une branche
(correspondant aux segments), plusieurs copies d’étoiles a deux branches, mais aussi une
copie d’une étoile a 3 branches (de centre 1) et une copie d’une étoile & 4 branches (de

centre 2).

Dans une premiere partie, on étudie quelques propriétés algébriques des matrices d’ad-

jacence.
On introduit ensuite la notion de fonction de seuil en probabilité des graphes aléatoires.

Les deux parties qui suivent la premiere partie sont indépendantes de celle-ci, et sont
consacrées a 1’étude de deux exemples.



Partie I - Quelques propriétés algébriques des
matrices d’adjacence

Soit G = (S, A) un graphe non vide ou |S| = n. Indexer arbitrairement les sommets
de 1 a n revient a choisir une bijection (appelée aussi indexation) o entre [1,n] et S.

On pourra alors noter :
S ={o(1),0(2),...,0(n)}

ou o(7) est le sommet d’index i.

Une indexation o étant choisie, on définit la matrice d’adjacence Mg, du graphe G
associée & o comme étant la matrice de M,,(R) dont le coefficient situé sur la ¢ ligne
et la j¢ colonne est :

1 si{o(i),o(j)} € A

0 sinon

(Mao)ij = {

On remarquera d’'une part que la matrice Mg, est toujours symétrique (car pour tous
1 et j entiers, {z’, j} = { j,z’}) et d’autre part que les termes de la diagonale sont tous

nuls (pas de boucle dans un graphe).
Voici par exemple la matrice d’adjacence Mg iq du graphe G représenté sur la FI-
GURE 1 :

010011000
101000011
010000000
000000000
Mgia= 1100000000
’ 100000000
000000000
010000000
010000000
Soit p une permutation du groupe symétrique S, et M = (m; ;)1<i j<n une matrice de

M, (R).
1 > Montrer que les matrices M et (m,@),p(j))1<i,j<n SOnt semblables.
En déduire que si G = (S, A) est un graphe non vide, et si o et ¢’ sont deux
indexations de S, alors Mg, et Mg, sont semblables.
2 > Justifier qu'une matrice d’adjacence d’un graphe non vide est diagonalisable.

3 > Montrer qu’'une matrice d’adjacence d’un graphe non vide n’est jamais de rang 1.

4 > Montrer qu'une matrice d’adjacence d’un graphe dont les sommets non isolés
forment un graphe de type étoile est de rang 2 et représenter un exemple de graphe
dont la matrice d’adjacence est de rang 2 et qui n’est pas du type précédent.

Si G = (S, A) est un graphe non vide et si o et ¢’ sont des indexations de S, comme
les matrices Mg, et Mg sont semblables, elles ont méme polyndme caractéristique (ce
que I'on ne demande pas de démontrer).



On notera x¢ ce polynéme caractéristique commun et on dira que ¢ est le polynéme
caractéristique du graphe G.

Par convention, le polynome caractéristique du graphe vide est le polynéme constant
égal a 1.

5 > Soit G un graphe et G’ une copie de G. Justifier que xg = x¢-

n—1
6 > Soit G = (S, A) un graphe avec |S| = n > 2. On note xg(X) = X" + > ap X"
k=0

Donner la valeur de a,_1 et exprimer a, o a l'aide de |A|.

7 > En déduire le polynome caractéristique d’un graphe a n sommets dont les sommets
non isolés forment une étoile a d branches avec 1 < d <n — 1.

Déterminer alors les valeurs et vecteurs propres d'une matrice d’adjacence de ce
graphe.

Si G = (S, A) est un graphe non vide et si s appartient a S, on définit le graphe G \ s
comme étant le graphe dont I'ensemble des sommets est S\ {s} et 'ensemble des arétes
est constitué des arétes de A qui ne contiennent pas s. Voici par exemple FIGURE 3 un

graphe G et le graphe G \ 2 :

(a) Un graphe G (b) Le graphe G'\ 2

FIGURE 3 — un graphe G, et le graphe G \ 2

Soient G = (51, A1) et Go = (Ss, Ag) deux graphes non vides tels que S et Sy soient
disjoints, c’est-a-dire tels que S; N Sy = @. Soit s1 € 57 et soit s9 € 5.

On définit le graphe G = (S, A) avec S =S USy et A=A U AU {{31, 32}}.



8 > Montrer que :
XG = XG1 X XG2 — XGi\s1 X XG2\s2

9 > Déterminer le polynéme caractéristique de la double étoile a d; + dy + 2 sommets,
constituée respectivement de deux étoiles disjointes a d; et dy branches, a qui 'on
a ajouté une aréte supplémentaire reliant les deux centres des deux étoiles.

Quel est le rang de la matrice d’adjacence de cette double étoile ?

Dans toute la suite de ce probleme, on suppose que n est supérieur a 2 et on notera :

— N Dentier <n> = M
2 2

— Q, 'ensemble des graphes de sommets S = [1,7]

— pp un réel dépendant de n appartenant a l'intervalle |0, 1] et ¢, = 1 — p,,.

Pour tous 7 et j appartenant a .S = [1,n] avec i # j, on note Xy, j; I'application de
Q, dans {0, 1} telle que pour tout G € Q,, avec G = (S, A) :

1 si{z’,j}eA
0 si{ijj¢A

Ainsi, (X 5y =1) = {G € Q, | Xup(G) = 1} est ’ensemble des graphes de €2, dont

{z’, j} est une aréte. Réciproquement, on remarquera aussi que pour G = (S, A), on peut

{Gi= () Kup=1 N Xuz=0). (1)

{igteA {ig}¢A

Xup(G) = {

On admet l'existence d’une probabilité P sur SQ”’P(Q")> telle que les applications
X{i;y soient des variables aléatoires de Bernoulli de parametre p,, et indépendantes. On
note &, = (Qn, P(Q,), P) I’espace probabilisé ainsi construit.

Autrement dit, pour un graphe G donné appartenant a €2,, la probabilité qu’une
aréte {z’, J } soit contenue dans G est p,, et les arétes apparaissent dans G de fagon
indépendante.

10 > Soit G = (5, A) € Q,,. Déterminer la probabilité P({G}) de I'événement élémen-
taire {G} en fonction de p,, gn, N et a = card(A).

Retrouver alors le fait que P(£2,) = 1.



Dans la suite du probleme on étudie la notion de fonction de seuil pour une propriété
P, vérifiée sur une partie des graphes de €,,.

Une fonction de seuil pour la propriété P, est une suite (tx)r>2 de réels strictement
positifs tels que :

— si p, = o(t,) alors la limite, lorsque n tend vers +o0, de la probabilité pour que la

propriété P, soit réalisée vaut 0

— sit, = o(p,) alors la limite, lorsque n tend vers +o0, de la probabilité pour que la
propriété P, soit réalisée vaut 1.

Partie II - Une premiére fonction de seuil

Section A - Deux inégalités
Soit X une variable aléatoire définie sur un espace probabilisé (2, A, P) a valeurs dans
N et admettant une espérance E(X) et une variance V(X).

11 > Montrer que P(X > 0) < E(X).

12 > Montrer que si E(X) # 0, alors P(X =0) < ———-

Indication : on remarquera que (X =0) C <|X -E(X)| > E(X))

Section B - Une fonction de seuil
13 > Quelle est la loi suivie par la variable aléatoire A,, représentant le nombre d’arétes
d’un graphe de €2, 7

1
14 > Montrer que si p, = o(—;) au voisinage de +oo, alors 1_1}111 P(A, >0)=0.
n n——+00

1
15 > Montrer que si — = o(p,) au voisinage de +o0, alors lim P(4, > 0) = 1.
n

n—-+00

16 > En déduire une propriété P, et sa fonction de seuil associée.



Partie III - Fonction de seuil de la copie d’un
graphe

Si G = (S, A) est un graphe, on note sg (resp. ag) le cardinal de S (resp. A).

Soit Go = (Sp, Ag) un graphe particulier fixé. Par commodité d’écriture, on note
So = Sg, le cardinal de Sy, ay = ag, le cardinal de A, et on suppose que sy > 2 et que
Qo Z 1.

On va étudier la fonction de seuil de la propriété P, : «contenir une copie de Gg».

On note X? la variable aléatoire réelle discréte définie sur I'espace probabilisé &, telle
que pour G € Q,,, I'entier X°(G) est égal au nombre de copies de G contenues dans G.
On introduit :

— Pensemble Cy des copies de G dont les sommets sont inclus dans [1,7n] :
Co = {H | H est une copie de Gy et H = (Sg, An) avec Sy C ﬂl,n]]}
— pour un graphe H = (Sy, Ag) avec Sy C [1,n], la variable aléatoire suivant une
loi de Bernoulli X définie par :

1 siHCG

0 sinon

VG eQ, XplG) = {

— le réel wqy défini par :

. SH
wo = min —
CLHZ{) aH
17 > Montrer que
E(Xu) =py".

18 > Soit 5§ un ensemble fizé de cardinal sy. On note ¢y le nombre des graphes dont
I'ensemble des sommets est S et qui sont des copies de Gy.

Exprimer le cardinal de Cy a I'aide de ¢y et en utilisant un majorant simple de ¢y,
justifier que le cardinal de Cy est inférieur a n®.

19 > Exprimer X? & I'aide de variables aléatoires du type Xp, et montrer que :
E(X)) = Y P(H CG) <n*p.

HeCy

20 > En déduire que si p, = o(n™%°), alors lim P(X? > 0) = 0.

n—-+o0o

Indication : on pourra introduire Hy C G réalisant le minimum donnant wy.



, : wo -
On suppose dorénavant que nl_lgloo (n pn> = 4-00.

21 > Montrer que I'espérance E((XS)Q) vérifie :

B((X)?) = ¥ PHUH CG= Y ploumr,

(H,H")eC? (H,H")eC?

Pour k € [0, so]], on note :

k= Y. PHUH CQ).
(H,H")eC?
Sanma =k

22 > Montrer que %y < (E(Xg))%

23 > Soit k € [1, s0] ; montrer que :

S n—s L
e et

HeCy

24 > Justifier que pour tous entiers naturels ¢ et r vérifiant 1 < ¢ <r, on a:

(=35
q q! q

2
et en déduire que pour k € [1,s0], on a ¥y = 0<<E(X2) ) lorsque n tend vers
—+00.

V(X))

25 > Montrer que lim 5 =0 ot V(X?) désigne la variance de XP.

26 > Montrer alors que la suite (k7“°);>2 est une fonction de seuil pour la propriété P,,.

27 > Retrouver le résultat de la question 16 > et déterminer une fonction de seuil pour la
propriété «contenir une copie de ’étoile a d branches» avec d entier fixé supérieur
a l.

FIN DU PROBLEME
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Critére de Schur-Cohn et généralisation au cas non inversible

Notations et objectifs du probleme

Dans tout le probleme :

n désigne un entier naturel non nul et 'ensemble {1,2,...,n} est noté [1,n].
M, (R) (respectivement S,(R), resp. D,(R), resp. GL,(R)), désigne I'ensemble
des matrices carrées (resp. symétriques, resp. diagonales, resp. inversibles) réelles

de taille n, et on confond un élément de M;(R) avec son unique coefficient ;

si M € M,(R), on note M'" sa transposée et pour tout (i,7) € [1,n]? on note
M; ; le coefficient de M situé a la i-eme ligne et la j-eme colonne;

on note w(M) le nombre de valeurs propres réelles strictement positives de M
comptées avec leur multiplicité, ainsi par exemple 7([,,) = n;

si (ug,...,u,) € R™ on note Diag(uy,...,u,) la matrice D € D,(R) telle que
D;; = u; pour tout i € [1,n];

si f et g sont deux polynémes non simultanément nuls, on note f A g leur PGCD ;
si f est un polyndéme, on note également f sa fonction polynomiale associée;

on note o(f) le nombre de racines réelles de f appartenant a Uintervalle | — 1;1],
comptées avec leur multiplicité, ainsi par exemple o(X?(X — 1)(X + 1)) = 2;

on dit que le réel a est une racine stable de f si a # 0 et f(a) = f(a™!) =0;
si f est un polynoéme de degré m € N et s’écrit
f=ap X"+ am X"+ b X +ag= i ap X",
k=0
on note fp son polynoéme réciproque, défini par

fo=a X"+ X"+ a1 X Fam = ap X5
k=0

onnote U = (1 0 --- 0)" la matrice colonne de taille n dont le premier
coefficient est égal a 1 et les autres a 0;



— on note S la matrice de M,,(R) dont tous les coefficients sont nuls sauf les n — 1
coefficients situés juste au-dessus de la diagonale, égaux a 1 :

V(i,j) € [1,n]* Si; = &iy1,; (symbole de Kronecker);

— pour tout polynéme réel f on définit la matrice J(f) € S,(R) par
J(f) = fo(S)" fo(S) = F(S)TF(S).

Dans ce probleme p désigne un polyndéme a coefficients réels, scindé sur R de degré n,

p=aX"+a, 1 X"+ taX+a =Y aX"  a,#0,
k=0

et on note a; < --- < a, ses racines toutes réelles, comptées avec leurs multiplicités.

L’objectif du probleme est d’établir I’égalité o(p) = 7(J(p)) (critere de Schur-Cohn)
dans le cas ou J(p) est inversible, puis de proposer une démarche générale permettant
de compter les racines de p dans | — 1; 1], lorsque la matrice J(p) n’est pas inversible.

Ces résultats, généralisables aux polynomes a coefficients complexes, sont utiles dans
I’étude de la stabilité de certains systemes dynamiques.

A. Propriétés du polynéme p, et stabilité des racines
1 > Montrer que pg, le polynéme réciproque de p, vérifie
Ve e R" po(x) = 2"p(1/x)

et en déduire que

7=1

2 > Montrer que p A pg = 1 si et seulement si p ne possede pas de racine stable.

Jusqu’a la fin de la partie A. on suppose que toutes les racines de p sont stables et
d’ordre de multiplicité 1.

3 > Justifier qu'il existe A € {—1, 1} tel que p = Apy.

Soit, i le polynome de degré n défini par h(X) = Xp/, ou p’ est le polynéme dérivé de p.
On note hg et (p')o les polyndmes réciproques respectifs de h et p'.



4 > Montrer que h = np — A(p')o, puis que hg = A(np — Xp').

5 > Vérifier que p’ est scindé sur R puis montrer que h A by = 1 et en déduire que p’
n’admet pas de racine stable.

B. Liberté d’une famille de polynomes

Pour tout entier j € [1,n], on note f; le polynéme

fi=a,(1—0,X) - (1= X)(X—ajq) - (X—q) =a, ﬁ (1—ayX) [ (X —ag)

<.
|

k=j+1 k=1
n 0
avec, selon les conventions habituelles, ] (1 —axX) = [[(X —ax) = 1.
k=n-+1 k=1

6 > Montrer que s’il existe deux entiers 7, k tels que 1 <i < k < n et o = 1, alors
a; est racine de chaque polynéme f;, ou j € [1,n], et que la famille (fi,..., f,)
est liée.

Jusqu’a la fin de la partie B. on suppose qu’aucune racine de p n’est stable.

On note E le sous-espace vectoriel des fractions rationnelles a coefficients réels dont les
éventuels poles sont des inverses de racines de p (on ne demande pas de justifier que
FE est un espace vectoriel). Les éléments de E sont donc les fractions rationnelles dont

le dénominateur peut s’écrire comme produit fini, éventuellement égal a 1, de facteurs
(1-—a;X)oul<i<n,.

Pour tout j € [1,n], on définit la fraction rationnelle g; € E par

B fi
9= w

i=1

et I'application P;, qui a une fraction rationnelle f € E associe la fraction rationnelle

(I - X)f = (1 —af)foy)
i(f) = X—a :

7 > Montrer que pour tout j € [1,n], 'application P; est un endomorphisme de E et
déterminer son noyau.



8 > Pour tout j € [1,n] et tout g € E, calculer P; (

o)

9 > En déduire que la famille (fi,..., f,) est libre.

C. Expression de la matrice J(p)

10 > Montrer que la famille ((ST){U)o<i<n_1 est une base de M, ;(R). Les matrices S
et U ont été définies dans la partie préliminaire du probleme.

Pour tout entier j € [1,n], on définit les matrices

Bj:S—O./jIn et Cj:In—O./j S.
11 > Démontrer que

T0) = 3 1(8)T(CTC; — BT B F(S),

Les polynémes f,..., f, ont été définis dans le préambule de la partie B.
12 > Soit j € [1,n]. Montrer que C} C; — B] B; = (1 —a3)UU .

13 > On note D la matrice diagonale de taille n :
D = Diag((1 — a;*)1<j<n)

et V€ M,(R) la matrice telle que pour tout j € [1,n], la j-éme colonne de V'
est V; = f;(ST) U. Montrer que

J(p) =VDV'.

14 > En déduire, a l'aide de la question 6, que si p possede une racine stable alors J(p)
n’est pas inversible.

D. Cas ou J(p) est inversible : critere de Schur-Cohn

On rappelle que si M € M, (R) alors m(M) désigne le cardinal de I'ensemble de ses
valeurs propres strictement positives, comptées avec leurs multiplicités.

On munit M,,;(R) de sa structure euclidienne canonique. On dit qu'un sous-espace
vectoriel F de M, ;(R) vérifie la condition (Cps) quand

VX € F\{0,.} X'MX >0.



On note d(M) la dimension maximale d'un sous-espace vectoriel F' de M,, 1(R) véri-
fiant la condition (Cps), c’est-a-dire :

d(M) = max{dim F' | F s.e.v de M,,1(R) vérifiant (Cps)}.

15 > Soit deux matrices A, B € M, (R) telles qu’il existe une matrice P € GL,(R)
vérifiant A = PTBP. Montrer que d(B) > d(A) puis que d(B) = d(A).

16 > Pour toute matrice M € S, (R) construire un sous-espace vectoriel Fi; de M, 1(R)
de dimension 7(M) vérifiant la condition (Cp). On a donc d(M) > w(M).

17 > On veut montrer que pour toute matrice M € S,(R) on a (M) = d(M). Par
I'absurde, en supposant l'existence d’un sous-espace vectoriel G de M, ;(R) de
dimension dim G > 7(M) vérifiant la condition (Cy), montrer dim(F; NG) > 1,
en déduire une contradiction et conclure.

18 > Démontrer le critére de Schur-Cohn :

Si J(p) est inversible alors p ne possede aucune racine stable et o(p) = 7(J(p)).

E. Condition nécessaire et suffisante d’inversibilité

19 > Montrer, a I'aide des questions 9 et 13, que si p n’admet pas de racine stable et si
J(p) n’est pas inversible alors il existe un polynéme ¢ non nul a coefficients réels
de degré au plus n — 1 tel que ¢(ST)U = 0,,;.

20 > En déduire que la matrice J(p) est inversible si et seulement si p n’admet aucune
racine stable.

F. Un cas particulier

On suppose dans cette partie, comme on 'a fait aux questions 3 a 5, que toutes les
racines de p sont stables et de multiplicité 1 et on note h = Xp' (ou p’ est le polynéme
dérivé de p) et hy le polynéme réciproque de h. On rappelle que, d’apres la question 3,
il existe un réel A € {—1,1} tel que p = Apy.

21 > Montrer que J(h) est inversible.

22 > Montrer qu'il existe un réel n > 0 tel que pour tout r €]1—n; 1[, le polynéme p(rX)



est scindé, admet exactement o(p) racines a 'intérieur de 'intervalle | —1; 1] et ne
possede aucune racine stable.

Pour tout réel r > 0, on note F(r) = J(p(rX)).

23 > Montrer que

lim 7 <2(n)F(r)> —n—o(p).

r—1- r—1

24 > Justifier que I'application F': R% — S,(R) est dérivable et que

F'(1) = 2n(p(S)) "p(S) — 28" (1 (5)) "p(S) = 2(p(5)) "P'(S)S.

25 > En déduire, a I'aide des résultats de la question 4, que

n

mF(r) = J(h) + o(1).

r—1

On admet que Papplication définie sur S, (R) & valeurs dans R™ qui & une matrice symé-
trique associe le n-uplet de ses valeurs propres réelles comptées avec leurs multiplicités,
rangées dans 'ordre décroissant, est continue.

26 > En déduire que o(p) =n—1—n(J(p')).

G. Méthode générale.

On se place dans le cas général, sans disposer d’information sur la stabilité et la multi-

plicité des racines de p, et on cherche a calculer o(p).

On construit les deux polynomes f et g vérifiant f = p A pg et p = fg.

27 > Montrer que o(g) = w(J(g))-

28 > Proposer une méthode permettant de construire un nombre fini (éventuellement
nul) de polynémes gy, . .., gs, dont les racines sont stables et de multiplicité 1, tels

que f = g1g2 - - - go. Exprimer o(p) a l'aide de n,deg g, 7(J(g)), ¢, 7(J(g)) ainsi que
ﬂ-(‘](gl))7 s 77T(J(g€))

FIN DU PROBLEME
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Formule asymptotique de Hardy et Ramanujan

L’objectif de ce probleme est ’étude asymptotique du nombre de partitions d’un entier
naturel n, ¢’est-a-dire du nombre de décompositions de n en somme d’entiers naturels non
nuls (sans tenir compte de 'ordre des termes). Une définition rigoureuse de ce nombre,
noté p,, est donnée en début de partie B. Dans la partie A, on introduit une fonction P
de variable complexe ; dans la fin de la partie B on démontre qu’il s’agit de la somme, sur
le disque unité ouvert de C, de la série entiere >, - p,2". L’étude de P au voisinage de
1 permet alors, dans les parties suivantes, de progresser vers I'obtention d’un équivalent
simple de la suite (p,)nen (formule asymptotique de Hardy et Ramanujan).

Tout au long du probleme, le disque unité ouvert de C sera noté

D={z€C: |z| <1}

Dans tout I’énoncé, on utilisera la dénomination « variable aléatoire réelle » pour signifier
« variable aléatoire discrete réelle ».
On admettra aussi les deux identités classiques suivantes :

+o0 1 2 w2
E —2:% et / e 2 du = V2.
—n R

A. Fonctions L et P

Z’I’L
1 > Soit z € D. Montrer la convergence de la série Z— Préciser la valeur de sa
n>1
somme lorsque z € |—1, 1[. On notera

2 > Soit z € D. Montrer que la fonction t € [0,1] — L(tz) est dérivable et donner une
expression simple de sa dérivée. En déduire que ¢ + (1 — t2) e"(*?) est constante

sur [0, 1] et conclure que
1

1—2.

exp(L(2)) =

3 > Montrer que |L(z)| < —In(1 — |z|) pour tout z dans D. En déduire la convergence

de la série > L(z") pour tout z dans D. Dans la suite, on notera, pour z dans D,
n>1

P(z) == exp Ei L(z”)} .

On remarque, en vertu de la question précédente et des propriétés de 'exponen-
tielle, que

Vze D, P(z) #0 et P(z)= lim H

N—too 0 1 — o




B. Développement de P en série entiére

Pour (n, N) € N x N*, on note P, y 'ensemble des listes (ai,...,ay) € NV telles

N
que Y kap = n. Si cet ensemble est fini, on note p, y son cardinal.
k=1

4 > Soit n € N. Montrer que P, x est fini pour tout N € N*, que la suite (p, n)n>1
est croissante et qu’elle est constante & partir du rang max(n, 1).

Dans toute la suite, on notera p, la valeur finale de (p,, n)n>1.

5 > Montrer par récurrence que

N 1 “+00
VN € N*, Vz € D, Hik:anNz“.
oL — 2 0

6 > Soit z € D. On convient que p, o = 0 pour tout n € N. En examinant la somma-
bilité de la famille ((pn,n41 — Pn,n)2") (n,n)enz, démontrer que

+oo
P(z) =Y pn2".
n=0
En déduire le rayon de convergence de la série entiere > p,z".
n

7 > Soit n € N. Montrer que pour tout réel ¢t > 0,
A t+i6
= e " Pe”"™) db,
P 2T /—TI’ ( )

si bien que

—inf

o € Pl dé. (1)

entp(e—t) /ﬂ P(e—t—i-i@)
pn = _—

Dans le reste du probleme, ’objectif est d’obtenir un équivalent du nombre p,, lorsque
n tend vers +oo. Cet équivalent sera obtenu via un choix approprié de ¢ en fonction de
n dans la formule (1).



C. Controle de P

8 > Soit x € [0, 1] et # € R. En utilisant la fonction L, montrer que
1—=z

T oot < exp(—(l — cosf) x)

En déduire que pour tout x € [0, 1] et tout réel 6,
P(xe® 1 1
0 (- e )
l—x 1 — ze®

P(x)
9 > Soit x € [%, 1{ et 0 € R. Montrer que

1 x(1 — cos )
1—z Re(l — xew) = (1-— x)((l —x)2 4 22(1 - cos@))

En déduire que

< 1 —cosé P(ze'?)
exp| ———— | ouque

=P\ T6(1 =) b P(z)

D. Intermeéde : quelques estimations de sommes

On fixe dans cette partie un réel a > 0 et un entier n > 1. Sous réserve d’existence,

on pose
+0o0o kne—ktoz

Snal(t) = Z m.

k=1
On introduit aussi la fonction

n,—oxr

xTre

ha TERT s ——
SD, x + (l_e—z)n

qui est évidemment de classe C*.

10 > Montrer que @p, et ¢, , sont intégrables sur |0, +-o0l.

11 > Montrer, pour tout réel ¢t > 0, l'existence de S, (1), sa positivité stricte, et I'iden-
tité
+00 . 100 ,(k+1)t
/0 Ono(r)de =t"T1S, (1) — Z /kt (z = kt) ¢y, () da.
k=0

En déduire que

1 +00 n,—azr 1
Sn.alt) /0 ( re ) dx + O(t") quand t — 0.

= tn—i—l 1 — ez)n



12 > Démontrer, sans utiliser ce qui précede, que

400 - 2
/ xre dr = l
o l—e* 6

Dans le reste du probléme, nous admettrons le résultat suivant (il peut étre démontré
par une méthode similaire) :

too  glew T
e g ="
/0 I—e=2 "~ 3

E. Controle des fonctions caractéristiques

Etant donné une variable aléatoire réelle X sur un espace probabilisé (Q, A, P), ainsi
qu'un réel 0, les variables aléatoires réelles cos(0X) et sin(AX) sont d’espérance finie
puisque bornées : on introduit alors le nombre complexe

Oy (0) := E(cos(0X)) + i E(sin(6X)).
13 > Soit X une variable aléatoire réelle. Montrer que |®x ()] < 1 pour tout réel 6.

Dans les questions 14 > & 18 >, on se donne une variable aléatoire réelle X suivant une
loi géométrique, de parametre p € |0, 1] arbitraire. On pose ¢ =1 — p.

14 > Montrer que pour tout (a,b) € R? et tout réel 0,
i(a+b)0
pe
o, 0)="——-
X+b( ) 1 _ qe’m’e
15 > Montrer que pour tout & € N, la variable aléatoire X* est d’espérance finie. Mon-
trer que ®x est de classe C* sur R et que ¢§§)(0) = *E(X*) pour tout k € N.

16 > Montrer qu’il existe une suite (Py)ren de polyndémes a coefficients dans C, indé-
pendante de p, telle que

Pi(ge”)

(k) _ sk i

et Pk(O) =1.



17 > En déduire qu’il existe une suite (Cy )ren de réels strictement positifs, indépendante
de p, telle que

Crq

< —

mxﬂ-i— )

Vk € N, e

18 > En déduire qu’il existe un réel K > 0 indépendant de p tel que

< Ka,

E((X - B(X))) <

Dans les questions 19 > a 21 >, on se donne une variable aléatoire réelle centrée Y telle
que Y* soit d’espérance finie.

19 > Montrer successivement que Y? et |Y|* sont d’espérance finie, et que

E(Y?) < (B(Y)Y? puis E(YP) < (B)™"

20 > Montrer, pour tout réel u, 'inégalité

2 3
ei“—l—iu%—? §&-

6

En déduire que pour tout réel 6,

E(Y?) 62

| < '%'3 (BO™)

‘®ﬂ®—1+

21 > Conclure que pour tout réel 6,

E<Y;) 92)' < o (B

‘(I)Y(e) - exp(— 3

F. Convergence vers une gaussienne
Etant donné un réel ¢ > 0, on pose, suivant les notations de la partie C,
my = S11(t) et op:=1/521(t).

Etant donné des réels t > 0 et 6, on pose

. P (e—teiﬁ)
h(t,0) = e 94?@37-



Etant donné des réels t > 0 et u, on pose

2

C(t,u) = exp (zu (mt - W)) et j(t,u) = ((t,u) h(t, u)

¢ 6t2 ¢

22 > Soit n € N* ainsi que des complexes z1, ..., 2,, U1, . . ., U, tous de module inférieur
ou égal a 1. Montrer que

n

n
I
k=1 k

=1

n
<Nz — gl
k=1

23 > Soit 0 € R et t € R7. On considere, pour tout k& € N*, une variable aléatoire Z,
suivant la loi G(1 — e7*), et on pose Y = k(Zy — E(Z;)). Démontrer que

n—-+00

h(t,0) = lim [] @y, ().
k=1
En déduire, a I'aide en particulier de la question 21 >, I'inégalité

h(t,0) — e~ "3 | < K340 Sysa(t) + K 0* S (). 2)
3/ ;

On rappelle que la constante K a été introduite a la question 18 >, les quantités
Sn.a(t) dans la partie D.

24 > Montrer que o; ~ ﬁ quand t tend vers 07. En déduire, pour tout réel u, que

2
i(tu) — e /2,
j( 7u) taO‘Fe

25 > Montrer qu’il existe un réel a > 0 tel que
VO € [—m, 7], 1 —cosf > ab?
A Paide de la question 9 >, en déduire qu'il existe trois réels ty > 0, 5> 0 et v > 0
tels que, pour tout t € |0,to| et tout 6 € [—m, 7],
2/3

[A(t,0)] < e PO ou |h(t,0)] < eI

26 > Conclure que

/Mt Jj(t,u)du — V2.

— ot t*)0+



G. La conclusion

t 2
Dans cette derniére partie, on admet que P(e™") ~ \/ 5. &XP <6t> quand t tend vers
s

0t.

27 > En appliquant la formule (1) a ¢t = &+ démontrer que

o (%)

formule découverte par Hardy et Ramanujan en 1918.

quand n — 00,

FIN DU PROBLEME
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Autour des exponentielles de matrices

Dans tout le sujet, le corps K sera R ou C, et n est un entier naturel supérieur
ou égal a 2.

On note || - || une norme sur I’espace vectoriel M,,(K), vérifiant les propriétés
Hnll =1 (V1)

2
V(4,B) € (Mn(K))"  AB|| < [|A] [|B] - (IV2)

On rappelle que exponentielle d’une matrice A de M,,(K) est la matrice, notée

e, ou bien exp(A), définie par

k=0
On rappelle que, pour tout A € M,,(K), 'application
fa:R = Mu(K), trs fa(t)=e
est de classe C! sur R, avec

VieR  fit)=Aet=¢e4 A,

On admettra que, si A et B sont deux matrices semblables de M,,(K), plus
précisément si on a B = P71AP avec P € GL,(K), alors

eB=plet P
Si A et B sont deux matrices de M,,(K), on définit leur crochet de Lie par
[A,B]| = AB — BA.

La partie 4 du probléme est indépendante des parties 2 et 3.

1 Questions préliminaires

On se donne deux matrices A et B dans M, (K). On suppose dans les
questions 1) et 2) que A et B commutent.

1 > Montrer que les matrices A et e? commutent.



On définit une application
g : R — M,(K)
t— g(t) = e A+B) o—tB

2 > Montrer que I'application g, et 'application f4 définie en préambule, sont
solutions d’un méme probléeme de Cauchy. En déduire une démonstration

de la relation
Vie R ATE) = tetB | (1)

3 > Réciproquement, on suppose la relation (1) satisfaite. En dérivant deux fois
cette relation par rapport a la variable réelle ¢, montrer que les matrices
A et B commutent.

4 > Pour toute matrice A € M,,(K), prouver la relation [|e| < el4ll,

5 > Montrer que det(ed) = et™(4).

2 Formule de Trotter-Kato

Dans cette partie, on note A et B deux matrices quelconques de M, (K).
L’objectif est de prouver la relation

A B\ A B\\"
i Tek | =eAtB i = 2Z)) =
kggloo <e e > e ou kgrfoo <exp ( k:) exp ( z )) exp(A+B) . (2)

Pour tout k£ entier naturel non nul, on pose

X =exp (%) exp (%) et Y. =exp (A—;;B)

6 > Prouver les majorations

1AL+ [ B]

1Al + HBH>
; :

vk N [1X;] < exp( ;

) et [Vl < exp (

On introduit la fonction

h:R— My(K)

t— h(t) = etAetB — HA+E)

[\



7 > Montrer que
1
X, —Y, = O(ﬁ) lorsque k — 400 .

8 > Vérifier la relation
Yk_ZXk — Y)Y

En déduire la relation (2).

3 Vers les algebres de Lie

Dans cette partie, K = R. Pour tout n entier naturel, n > 2, on introduit
I’ensemble, dit groupe spécial linéaire :

SL,(R) = {M € M,(R) | det(M) =1} .
Si G est un sous-groupe fermé de GL,,(R), on introduit son algébre de Lie :
Ag={MeM,R)|VtcR M ecqG}.

L’ensemble SL,(R), ainsi que le groupe orthogonal O, (R), sont bien des sous-
groupes fermés de GL,(R). On ne demande pas de le démontrer.

9 > Déterminer Ag lorsque G = SL,(R).

10 > Si G = O,(R), montrer que Ag = A, (R), ensemble des matrices antisy-
métriques.

Dans les questions 11) a 14), G est un sous-groupe fermé quelconque
de GL,(R).

11 > En utilisant la partie 2, montrer que A¢g est un sous-espace vectoriel de
M, (R).
12 > Soient A € Ag et B € Ag. Montrer que I'application
u:R — M,(R)
t—u(t)=e? . B.e ™t

est & valeurs dans Ag.



13 > En déduire que Ag est stable par le crochet de Lie, i.e.
VA€ Ag, VB € Ag, [A,B] € Ag .

On rappelle que, si M est une matrice de M,,(R), on dit que M est tangente
a G en I, s'il existe ¢ > 0 et une application v :] — ¢,e[— G, dérivable, telle
que v(0) = I, et 7/(0) = M. L’ensemble des matrices tangentes & G en I, est
appelé espace tangent a G en I, et noté 77 (G).

On rappelle aussi que 'application det : M,,(R) — R est différentiable en
tout point, par exemple parce qu’elle est polynomiale.

14 > Prouver linclusion Ag C 77, (G).
15 > Soit M € M,(R), que l'on pourra aussi considérer comme matrice
complexe, soit application dy; : R — R, t +— dp(t) = det(I, + tM).

En utilisant un développement limité a ’ordre 1, montrer que dys est
dérivable en 0 et calculer §%,(0).

16 > Montrer que la différentielle au point I,, de 'application det : M, (R) = R
est la forme linéaire “trace”.

17 > Montrer que, dans les cas particuliers G = SL,(R) et G =0O,(R), on a
71, (G) = Ac.

4 Comportement asymptotique

Etude d’un exemple

On considere deux nombres complexes distincts o et 5. On suppose qu’une
matrice A € M3(C) admet « pour valeur propre simple, 5 pour valeur propre
double.

18 > Montrer que A est semblable & une matrice de la forme

a 0 0
T=10 5 a
0 0 p

ol a est un certain nombre complexe. Calculer T™ pour n entier naturel,
puis e'T pour t réel. En déduire une condition nécessaire et suffisante sur
a et 8 pour que 'on ait lim; 4 oo et4 = 0.



Cas général

Dans tout ce qui suit, K = C. On pose E = C". L’espace vectoriel F, identifié
a M, 1(C), peut étre muni d’une quelconque norme notée || - || g, on rappelle
qu’elles sont toutes équivalentes. On se donne A € M,,(C) une matrice carrée
a coefficients complexes, et on note u I’endomorphisme de C™ canoniquement
associé a cette matrice. On s’intéresse au comportement asymptotique de la
fonction f4 introduite dans le préambule, et & celui des fonctions vectorielles
solutions du systeme différentiel linéaire & coefficients constants X’ = AX. Pour
tout ¢ réel et pour (4,5) € [1,n]?, on notera v; ;(¢) le coefficient d’indices (i, )
de la matrice e!4. Ainsi,

vteR  fa(t) =" = (vij(1),; e, € Ma(C) .

Pour toute valeur propre A de la matrice A, on note m) sa multiplicité, et on
introduit le sous-espace vectoriel

F\ =Ker ((A— X,)™) = Ker ((u— AIdg)™) .

On posera aussi a = maxyegp(a) Re(N).

19 > Montrer que, si limy_, o fa(t) = 0,, alors a < 0.
20 > Montrer que C" = @yegp(a) Fr-

21 > En déduire l'existence de trois matrices P, D et N dans M, (C) telles
que :

P est inversible,
D est diagonale,
N est nilpotente,

ND = DN,
A=P(D+N)P !,
XA = XD-

22 > En déduire qu’il existe un entier naturel p tel que, pour tout (i, ) € [1,n]?,
on ait
v; () = O(t* eo‘t) lorsque ¢ — 400 .



23 > Etudier la réciproque de la question 19).

24 > On suppose, dans cette question seulement, que les valeurs propres de la
matrice A ont toutes des parties réelles positives ou nulles. Montrer que,
si X eC" ona

lim ¢4X =0 < X=0.
t——+o00

Dans les questions qui suivent, on introduit les polynémes suivants :

P(X)= [ (x=x™,
AESp(A)
Re(\)<0

Pi(X) = H (X — )™,
AeSp(A)
Re(X)>0

Pu(X)= [ (X-xnm,
AESP(A)
Re(A\)=0

et les sous-espaces E; = Ker (Ps(A)), E; = Ker (P;i(A)) et E,, = Ker (P,(A))
de E = C". Les indices s, i, n signifient respectivement stable, instable et neutre.

25 > Apres avoir justifié que E = FE; ® E; ® E,,, montrer que
Es={XcE| lim 4X =0}.
t—+o00

On prowverait de méme, mais ce n’est pas demandé, que
E={XcE| tiignooe“‘x =0}.
26 > Montrer que
E,={X€cE|3CeR: peN VtcR |["X]|p<C(1+[t)"}.

E,, est donc l’ensemble des vecteurs X de C™ tels que la fonction vectorielle
t— e X ait un comportement polynomial en —oo et +00.

FIN DU PROBLEME
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Théoréme de stabilité de Liapounov

Dans tout le probléme, n désigne un entier naturel non nul. On note (.|.) le produit scalaire usuel
de K", K pouvant étre R ou C, et |.| la norme euclidienne associée.
Si u et v sont deux applications linéaires pour lesquelles la notation u o v a un sens, alors on note
uv ’application u o v. De plus, si u est un endomorphisme d’un espace vectoriel F et k est un entier
naturel non nul, u* désigne I’application uo- - -ou, ol u apparait k fois dans I’écriture. Par convention
ud = idp.

On s’intéresse au systéme différentiel suivant :

{ Yy = o)
y(0) = =z

avec Tg € R™ et ¢ est une application de classe C! de R™ & valeurs dans R™, telle que ¢(0) = 0. Cela
entraine que si xg = 0, alors la solution de ce systéme est la fonction nulle, et donc 0 est un point
d’équilibre. Notons dy(0) 'application différentielle de ¢ en 0. L’objectif de ce probléme est d’établir
une condition suffisante sur le spectre de dyp(0) pour assurer la stabilité de 1’équilibre en ce point, et
d’obtenir des informations quant & la dynamique des solutions au voisinage de ce point d’équilibre.
Plus précisément, on établit le résultat suivant :

Théoréme de Liapounov :
Soit le systéme différentiel suivant :

avec Tgp € R" et ¢ est une application de classe C! de R™ & valeurs dans R™, telle que ¢(0) = 0 et
telle que toutes les valeurs propres complexes de dg(0) aient une partie réelle strictement négative.
Alors il existe trois constantes &, C et § strictement positives telles que :

Vag € B(0,a), Vte Ry, |fu(t)] < Ce g,

ou fz, est 'unique solution du systéme différentiel et B(0, &) désigne la boule ouverte, pour la norme
|.|l, de centre O et de rayon a.

Dans une premiére partie, on étudie une norme sur les endomorphismes des sous-espaces vecto-
riels de K™. Dans la seconde partie, on établit des résultats sur le systéme différentiel linéaire, en se
servant des résultats de la partie A. Enfin, la troisiéme partie est consacrée & la démonstration du
théoréme de Liapounov. Cette derniére partie est trés largement indépendante des deux premiéres,
a 'exception du résultat obtenu a la fin de la partie B.

A.. Etude d'une norme sur L(FE)

Soit E un sous-espace vectoriel de K". Soit u un endomorphisme de FE.

1 > Aprés avoir justifié 'existence des bornes supérieures, montrer que :

u\x
N Lol WO
xeF H-TH xeF
x#0 [x]=1



2 = On note ||ul| = supHu(x)H

el ]
z#0

. Montrer que |[.|| est une norme sur L£(E).

3 > Montrer qu’il s’agit d’'une norme sous-multiplicative, c’est-a-dire que :
¥(u,v) € L(E)?, [luvl| < [lull-llofl,

et en déduire une majoration de ||[u¥||, pour tout entier naturel k, en fonction de ||u|| et de
Ientier k.

B.. Etude de la stabilité en 0 du systeme linéaire

Dans cette partie, a désigne un endomorphisme de C™.

4 > Montrer qu’il existe un entier naturel non nul r, des nombres complexes distincts A1, Ao, ...,

Ar, ainsi que des entiers naturels non nuls mq, mao, ..., m,, tels que :
T
n —_— .
o=@ n.
i=1

ou pour i € [1;7], E; = Ker(a — A\jidgn)™.

D’apres la question précédente, si x est un élément de C™, il existe un unique r-uplet (z1,...,x,) €
T
Ei x---x E, tel que x = Z x;. Fixons a présent 7 € [1;7]. On définit alors les endomorphismes :
i=1
cn - Ez Ez - cn
Di: et ¢ :

Par ailleurs, on note ||.||; la norme sur £(F;) introduite a la partie A, a savoir

u(zx
Vue L(E;), ||ull; = sup [ )H
o ]
x#0

On utilisera la notation |[|.||. pour £(C"™). Enfin, on notera a; I’endomorphisme p;ag;.

5 = Montrer que, pour tout i € [1;7], il existe une constante C; > 0 telle que :

Yue L(E;), ||gupille < Cillulls

6 = Montrer que, pour i € [1;7], E; est stable par a.



T
7 = Soient (i,7) € [1;7]?. Exprimer p;g; puis Z q;pi en fonction des endomorphimes idcn et idpg;.
i=1

-
8 > Montrer que : a = Z Qi p;-
i=1

9 > En déduire que :

T
VteR, %= Z gie'%ip;.
i=1

10 > Montrer par ailleurs que :
Al

vie[lir], VteR, (e[l <le™] ) S-llai — iidg |IF.
k=0

11 = En déduire l'existence d’un polynéome P & coefficients réels tel que :
T
Vie R, [le"]|. < P(t]) D] e,
i=1

ou Re(z) désigne la partie réelle d’un nombre complexe z.

12 > Pour toute matrice A € .#,(R), on notera u, l’endomorphisme canoniquement associé & A
dans R" et v, I'’endomorphisme de C" canoniquement associé a A, vue comme une matrice de
Mp(C) . On conservera la notation ||.[|. pour la norme introduite & la partie A sur £(C") et
on utilisera [|.[|, sur £(R™). Montrer qu'il existe C' > 0 telle que :

VAe My(R), VtER, [le"al, < Clle" ..

Dans la suite de cette partie, on considére u un endomorphisme de R", et A € ., (R) sa matrice
dans la base canonique. On notera par ailleurs, Sp(A) le spectre complexe de A. Notons g, 1'unique
solution de classe C' sur R, de :

13 = Montrer que :

Vzg e R, tligloo lgzo ()| =0 <= Sp(A) < R* +iR.

14 = On se place dans cette question dans le cas ol toutes les valeurs propres de A ont une partie
réelle strictement négative. Montrer alors qu’il existe deux constantes Cy et « strictement

positives telles que :
Vte Ry, [l < Coe™,

et en déduire une majoration de ||gx,(t)| pour ¢t € R.



C.. Démonstration du théoréme de Liapounov

On considére dans cette partie une application ¢ de R"™ dans R" de classe C! telle que ((0) = 0,
et en notant a = dp(0), telle que toutes les valeurs propres de a aient une partie réelle strictement
négative.

Soit g € R™. On s’intéresse au systéme différentiel suivant :

{ Y = ey
y(0) = w0

On admettra l'existence d’une solution de ce systéme définie sur R4, que I'on notera f,.

15 = Montrer que la fonction
R"xR" — R
+00
@) = | @l )

est bien définie et qu’elle définit un produit scalaire sur R™.

On notera ¢ la forme quadratique associée a b, c’est-a-dire que pour tout z € R", q(z) = b(zx, x).

16 = Démontrer alors que :

Ve e R", dq(z)(a(z)) = 2b(z, a(x)) = —[z|*.

Pour toute fonction y définie sur R, on associe la fonction &(y) définie par :
R, —- R”
e(y) :
WA o) - alw)
17 = Vérifier ’égalité

Ve € Ry q(fag) (8) = [ fag (017 + 2b(fay (1), €(fi (1))

18 = Prouver 'existence de deux nombres réels « et [ strictement positifs tels que, pour tout ¢t € R,
on ait :

0(foo () S @ = [ fao (] + 26(fug (£), (f20) (1) < =Ba(fuo (1))-

On fixe un tel couple («, 3) pour la suite de ce probléme.

19 = Montrer alors que :

q(zo) <a = V=0, q(fs)t) < e Plg(x).



20 > En déduire l'existence de trois constantes &, C et (8 strictement positives telles que :
~ _B
Vag € B(0,@), Vte Ry, |fu(t)] < Ce 2 aol,

ou B(0, &) désigne la boule ouverte, pour la norme |||, de centre 0 et de rayon a.

FIN DU PROBLEME
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Généralisation d’une intégrale de Dirichlet et application

Le but de ce sujet est de calculer I'intégrale de Dirichlet généralisée

/+oo 1-— (Cos(t))2p+1 "

t2

et d’utiliser ce calcul pour évaluer une espérance.

Partie | : Calcul d’une intégrale

Dans tout ce qui suit, x est un élément de |0; 1] fixé.

1 > Montrer que pour tout § €]—m; 7[, la fonction f définie par

f:]0;+o0[ — C

z—1
s ———
1+ tel?

est définie et intégrable sur |0; 4-o0].
Soit 7 la fonction définie par
r:]—m;n[— C
+00 tl’—l
o [t
o 1+4te

2 > Montrer que la fonction r est de classe C! sur |—7 ;7| et que :

/ - too t*
V@ E]—7T,7T[, T(@):—lee/o mdt

Indication : soit 3 €]0; [, montrer que pour tout § € [—f; 3] et t € [0, 4+00],
11+ te?)? > |1 + te®|? = (t + cos(B))? + (sin(B))%.

Soit g la fonction définie par

g :|—mn[— C
+00 tz—l

— dt
1+ te?

0 eix& /
0



3 > Montrer que la fonction g est de classe C! sur | —7; 7| et que pour tout 6 €] — ;[

. +o00
J(0) = iei®? / R(1) dt,
0
ol h est la fonction définie par

h :]0; 400 — C

t.’L’
t —_—
T 1t
Calculer h(0) et
lim h(t).
t——+o00

En déduire que la fonction g est constante sur | — m; 7[.

4 > Montrer que pour tout 6 €]0; 7|,

1 t*

9(6) sin(at) = 7 (9(=0)e™" — g(6)e™") = sin(6) /0+OO P 1 2tcos(d) 110

5 > En déduire que :

+oo (u sin(f) — COS(H))QC

9 €)o; 6) sin(6z) = / du,
v 6]0771-[7 g( )Sln( x) cotan(0) 1 +u2 “
ou cotan(f) = C?SEZ)).
sin

6 > Montrer, en utilisant le théoréeme de convergence dominée, que :
+oo du
lim g(6)sin(zf) = / -
Am g(0)sin(z0) = | 13

7 > En déduire que

+oo o1 T
/ dt = ——.
o 1+t sin(mz)

Partie Il : Une expression (utile) de la fonction sinus

On rappelle que z est un élément de ]0; 1] fixé.

8 > Montrer que

400 tx—l 1 tx—l =
e[ e
/0 I+t o \1+t¢ * I+t



9 > Montrer que :

1tx1 +oo _1k
o 1+1 ikt

10 > Etablir identité

/+oo o= 1 Z n +Zoo (_1)71
o 1+ B + r ‘Zn+l-x
11 > En déduire que l'on a
T 1 X2(-1)"=
- =

sin(rz) x ‘g oni-x

12 > En déduire enfin que :

g’f 2(=1)"ysin(y) _ | sin(y)

Yy €l0; x|,
) ] ﬂ—[ — y2—n27r2 y

Partie I1l : Calcul d’une intégrale de Dirichlet généralisée

13 > Montrer que l'intégrale

2p+1
+00 1 — ( cos(t
/ (cos(t)) "
0 12
converge et que :

/+oo 1- (cos(t)

t?

2p+1
) 2 sin(t)

t

dt = (2p+ 1) /0+oo (cos(t)) dt.

14 > Montrer que pour tout n € N* :

/2+mr (cos(t))zp sin(t) dt = /05 (cos(t))zp w dt.

SH(n—1)m t 2 — n?n?

15 > En déduire que :

™ o) 201 [ ) (£ 20

2
n—1 n=m

16 > En déduire que :

™

[ Ceost)” 5 i [ (con)”

Dans le cas p = 0, cette intégrale est communément appelée “Intégrale de Dirichlet”




17 > Montrer que :

(cos(t))? = 2; ((2;) + 2172:3 <2/f> cos(2(p — k:)t)) .

it pe—it )QP

Indication : On pourra développer ( 5

18 > En déduire que :

2p+1
/+oo 1-— (COS(t)) . g (2p+1)!
0 2 -2 2% (pl)2

Partie IV : Calcul de E(\SnD

Toutes les variables aléatoires sont définies sur un méme espace probabilisé (€2, .4, P).

Soient (X )ren+ des variables aléatoires indépendantes, de méme loi donnée par :

P(X,=-1)=P(X;=1)= -

n
Pour tout n € N*, on note S,, = > Xj.
k=1

19 > Déterminer, pour tout n € N*, E(S,,) et V(S,,).

Soient S et T' deux variables aléatoires indépendantes prenant toutes deux un nombre
fini de valeurs réelles. On suppose que T et —T suivent la méme loi.

20 > Montrer que :
E(COS(S + T)) = E(COS(S)) E(cos(T)).

21 > En déduire que pour tout n € N*, et pour tout t € R :

E( cos(tSn)> = <COS(t)>n.



22 > Soient a,b € R tels que a # 0 et |[b] < |a|. Montrer que
|+ b| = |a] + signe(a) b
ou signe(z) = x/|z| pour z réel non nul. En déduire que :

¥n e N*,  E(|S2l) = E(|S20-1).

23 > Montrer que pour tout s € R

/+°° 1 — cos(st) g7
0 t2 2

24 > En déduire que pour tout n € N* :

2
B(1S.]) = ;/0 e

25 > Conclure que :

(2n —1)!

¥n € N*,  E(|Sn]) = E(|Som1]) =

5"

22n2((n —1)!)

FIN DU PROBLEME
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Inégalités de Khintchine

Notations et résultats admis

— Dans tout le sujet, n est un entier naturel fixé non nul.

— Dans tout le sujet, (2, P(2), P) est un espace probabilisé fini.

— On note L°(Q) le R-espace vectoriel des variables aléatoires réelles definies sur
Q. On notera que si X € L), X(Q2) est une partie finie de R. On confondra
systématiquement variable aléatoire nulle et variable aléatoire presque stirement
nulle.

— Si X € L%Q), on note E(X) son espérance.

— Une variable aléatoire X € L°(Q) suit une loi de Rademacher si :

X(@)={-L1} e P(X=1)=P(X=-1)=.

— Sip € [l,+o0f et X € L%Q), on note [|X]|, = (E(|X|P))"?. On admet que
Papplication X > [|X||, est alors une norme sur L°(€2).

— Sim € N*, p € [1,+o0[et (x1,...,2,) € R™, on définit la quantité ||(z, . .. ,a:m)||§m
par :
R m 1/p
sl = (Slai)
i=1
On admet que l'application (z1,...,z,) € R™ — |[(x1,...,2) ||;lm est une norme
sur R™.

— On note R™ T'ensemble des suites de R nulles & partir d'un certain rang. On
admet alors que I'application (-,-) définie par

+o00
Vu,v € RN (u,0) = > w;
i=0

est un produit scalaire sur RM).



Inégalité de Holder

1 1
Soient p, q €]1, +o00] tels que — + — = 1. Soient X,Y € L) que 'on suppose toutes
p 4q

les deux positives.

1 > Montrer que
Ve,ye Ry, oy < — 4+ =.
p q

2 > En déduire I'inégalité suivante (inégalité de Holder) :
E(XY) < (E(X7)"" (B (Y)"".

On pourra commencer par traiter le cas ou E(X?) =E (YY) = 1.

3 > Quelle inégalité retrouve-t-on lorsque p = ¢ = 27 En donner alors une preuve
directe.

Une inégalité de déviation

de Rademacher.

] une suite de variables aléatoires indépendantes suivant toutes une loi

4 > Montrer que
2
VteR, ch(t) <e/?.

5 > Montrer que : pour tout ¢t > 0, pour tout (cy,...,c,) € R",
n t? n
E (exp (thin)) < exp (2 Zc?) )
i=1 i=1

6 > En déduire que : pour tout ¢t > 0, pour tout x > 0 et pour tout (cy,...,c,) € R™,

2 n 2
P <exp (:U ) > etx> <2e ™exp (9625:162> )

n
Z ci X
=1
On pourra utiliser linégalité de Markov.

7 > Montrer que : pour tout ¢t > 0 et pour tout (cq,...,¢,) € R"™ non nul,

n t2
P Xl >t <2 - .
(5 e]>1) =200 (52)




Inégalités de Khintchine

Soit p € [1, +ool. Soit (X;);c[; ) une suite de variables aléatoires indépendantes suivant
toutes une loi de Rademacher. Soit (¢1,...,¢,) € R™.

8 > Soit X une variable aléatoire réelle positive et finie. Soit F'x la fonction définie
pour tout ¢t > 0, par
Fx(t)=P (X >1).

+oo
Montrer que 'intégrale / tP~ 1 Fx (t) dt converge, puis que
0

+oo
E(X?) =p / "1 Fy (t) dt.
J0

n +00
9 > On suppose dans cette question que Z ¢ = 1. Montrer que I'intégrale / 324t
i=1 0

n 4 400
E ((Z ciXi> ) <3 / 3 "/2q¢,
i=1 0

E ((é cZ-Xi>2) = iz:cf.

11 > En déduire qu’il existe un réel 3, > 0 tel que

=(Sox]) " <nm(§) )

12 > On suppose p > 2. Montrer que
P) 1/p

. o\ 1/2
i=1 '
Dans les questions numérotées de 13 > a 15 >, on suppose 1 < p < 2.

converge, puis que

10 > Montrer que

. 1/2

Z CiXi

i=1

n
>_ X
i=1

1-0

1 0
13 > Justifier qu'il existe 6 € |0, 1] tel que 3 o + 1
p



14 > Montrer que

() ) = =

p\ 20/p
) E
15 > Montrer qu’il existe a, > 0 tel que

(8] ol

n

Z i X

=1

n

ZCiXi

i=1

4) (1-6)/2

p) 1/p

n
Z ci X
=1

16 > En déduire qu’il existe un réel oy, tel que
. o\ 1/2
B ((Z CiXi) ) <E (
i=1

Une premiere conséquence

n

Z CiX,L'

i=1

p) 1/p

Soit (X;)i;en une suite de variables aléatoires indépendantes qui suivent toutes une loi
de Rademacher.

17 > Montrer que Papplication ¢ définie sur (L°(2))* par
VX,Y € L°(Q), ¢(X,Y)=E(XY)

est un produit scalaire sur L°((2).

+o0
18 > Soit I'application ¢ : u € RM™ Z u; X;. Montrer que ¢ prend ses valeurs dans
i=0
L°(Q), puis que 9 conserve le produit scalaire.

19 > On note R = v (R(N))_ Montrer que pour tous p, q € [1,+0o0], les normes |||, et
-] , sont équivalentes sur R.

Une deuxieme conséquence

Dans cette partie, on suppose que n est une puissance de 2 : on écrit n = 2F avec
k € N*.



20 > Soit (ay,...,a;) € RE. Montrer que

k RE
Zfz’ai ||2

=1

k
Oéln”(al""?ak)H? < Z
(e1,.ep)E{—1,1}F

< B (ar,..., a)

On pourra utiliser les questions 11 et 16.

21 > En déduire qu’il existe un sous-espace vectoriel I’ de dimension k& de R" tel que :

vre F, anvnlelly” <zl < AVl

n

771 7 k o\ . . *7
En ordonnant les n éléments de {—1,1}" de maniére arbitraire, on pourra utiliser

k
Uapplication T définie sur R* par T(ay, ..., ax) = <Z aiez)
i=1

(51,...,6]\3)6{*1,1}}6

FIN DU PROBLEME
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Fonction de Wallis

Préliminaires

Dans tout le sujet, 'intervalle | — 1, +oo[ de R est appelé I et o et f sont les fonctions,
de R dans R, définies par :

et

w/2
fla) = / (sin(1))® d.
0
On se propose, dans cette épreuve, d’étudier f (domaine de définition, régularité, varia-

tions, convexité, développement éventuel en série entiere,...) puis, dans la derniére partie,
de montrer qu’elle est la seule fonction numérique a vérifier certaines propriétés.

1 Calcul de (1)

1 > Déterminer le domaine de définition de ¢ puis justifier que o est continue sur
celui-ci.

2 > Exhiber deux nombres réels « et 3 tels que :

n?’

™ 1
Vn € N¥, / (at? + Bt) cos(nt) dt = —
0

puis vérifier que si t €]0, 7], alors :

. & B sin (W) 1
Vn € N¥, kz::lcos(k:t) = (é) -5

3 > Justifier que, si ¢ est une application de classe C! de [0, 7] dans R, alors

™

lim @(t) sin(zt) dt = 0,

rz——+00 Jo



et en conclure que

2 Equivalents
4 > Déterminer le domaine de définition de f puis vérifier que
Veel, (z+1)f(x) = (x+2)f(x+2). (1)
5 > Justifier que f est de classe C2, décroissante et convexe sur I.
6 > Donner un équivalent simple de f(z) lorsque x tend vers —1.

7 > Montrer que pour tout entier naturel n,

T
f(n)f(n+1) = 2t 1)
puis que :
s
f(z) oo 2%

8 > Représenter graphiquement f en exploitant au mieux les résultats précédents.

3 Développement en série entiere

w/2
Sin € N, on note D, I'intégrale généralisée / (In(sin(t)))"™ dt.
0

9 > Justifier que, si n € N, l'intégrale généralisée D,, est convergente, puis montrer que

= " In(cos(t)) dt.

10 > Calculer f'(0) et f'(1).



11 > Vérifier que si n € N*, alors

puis que
D, ~ (=1)"n!

n—-+o0o

12 > Démontrer que f est développable en série entiere sur | — 1, 1].

4 Convergence de suite de fonctions

On se propose dans cette partie de calculer f”(0). Dans ce but, on considere deux
nombres réels strictement positifs a et b, et on pose
b— a
b+a

p =

On appelle ¥ 'application de R dans R définie par :

Vz € R, ¥(z) = In(a® cos* z + b*sin? z).

13 > Montrer que ¥ est de classe C! sur R, puis que pour tout = € R,

+o0
U'(z) =4 p¥sin(2kz).
k=1

14 > En déduire que pour tout z € R,

_22

“+o00
¥(z) = 21n (a + b) cos( 2k:x

15 > En conclure que

/0” U(z)’dr = 4r (m (a ‘; b>>2 + 20 ().



On définit les suites réelles (a,)nens €t (by)nen+ par

1
et b, = "

Vn € N*, a, = .
" “ n+1 n+1

16 > Etablir la convergence simple de la suite d’applications (¥,,),en-, de ]0, 7] dans R,
définie par :

Vn € N*, Vt €]0, 7], ¥, (t) = In(a? cos®*t + b2 sint).

En déduire f”(0).

5 Convexité logarithmique

Une application A d'un intervalle non trivial J de R dans R est dite In-convexe si, et
seulement si, elle est a valeurs dans R et Inoh est convexe sur J.

17 > Vérifier que f est une application de I dans R In-convexe.

On souhaite désormais déterminer toutes les applications de I dans R qui sont In-
convexes et qui vérifient la propriété (1), voir question 4.
On appelle f I'application de R, dans R, définie par :

Vo € RT, f(z) = In(f(2z)).
18 > Montrer que

p—1
. . o 20 + 2k + 1
Vp € N Vz € Ry, f(z +p) —J”(ﬂf/‘)*kz:%ln <2x+2k+2>

19 > On suppose ici que x € R%, (n,p) € (N*)? et 2 < p. Vérifier que

F) = fn—1) < LO D =) _ Fn+p) = ()

et que (f(n+ x) — f(n)) admet une limite lorsque n tend vers 4-oc.



20 > En conclure que f est la seule application de I dans R, qui soit In-convexe, qui
vérifie (1) et telle que

21 > Plus généralement, déterminer, si 7" € R, toutes les applications g de | — T, +00[
dans R, In-convexes et vérifiant

Vte| =T, 400, (t+T)g(t) = (t+27)g(t+ 27).

22 > Existe-t-il une application h, de R dans R et In-convexe, vérifiant

Vt € R, (t + T)h(t) = (t + 2T)h(t + 2T)?
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Phénomenes de seuil dans les graphes

Dans ce probleme, n désigne un entier supérieur a 1.

On désigne par [1,n] 'ensemble des entiers compris entre 1 et n.

Le groupe symétrique des permutations de [1,n] est noté S,.

L’ensemble des matrices carrées d’ordre n a coefficients réels est noté M, (R).
Le cardinal d’un ensemble fini E sera noté card(F) ou |E|.

Un graphe G est un couple (S, A) ou :

— S désigne un ensemble fini non vide d’éléments appelés sommets du graphe G

— A désigne un ensemble éventuellement vide d’éléments appelés arétes du graphe
GG, une aréte étant un ensemble {s, s’ } ou s et s’ sont des sommets distincts de S.

Un sommet n’appartenant a aucune aréte est dit isolé.
Par convention, le graphe vide est le couple d’ensembles vides (&, &).

On peut représenter un graphe non vide dans un plan a l'aide :

— de disques schématisant les sommets du graphe

— de segments reliant ces disques pour les arétes du graphe.

Par exemple, on a représenté sur la FIGURE 1, le graphe G = (S, A) avec :

S=T[1,9] et A:{{1,2},{1,5},{1,6},{2,3},{2,9},{2,8}}

FIGURE 1 — un graphe a 9 sommets et 6 arétes

On remarquera que les arétes sont constituées de deux sommets distincts, ce qui
interdit la présence de «boucles» reliant un sommet a lui-méme.
De plus, une méme aréte ne peut étre présente plusieurs fois dans un graphe.



Un type de graphe utilisé dans ce probleme est 1’étoile.
Une étoile de centre s et a d branches avec d entier naturel non nul, est un graphe
(S,A)ou S = {s, 51,59, ..., sd} est de cardinal d + 1, et A est du type

A= {{susih s forsa))

On a représenté FIGURE 2 une étoile de centre 4 & 5 branches avec S = {1, 3,4,5,6, 8}.

FIGURE 2 — une étoile & 5 branches

Soient G = (S, A) et G' = (5, A") deux graphes; on dit que :

— G estinclusdans Gsi " C Set A/ C A
— (' est une copie de G s'il existe une bijection o de S’ dans S telle que :

V(s t)eS xS {dt}ed e {o(s)0(t)} A

Par exemple, le graphe de la FIGURE 1 contient plusieurs copies d’étoiles a une branche
(correspondant aux segments), plusieurs copies d’étoiles a deux branches, mais aussi une
copie d'une étoile a 3 branches (de centre 1) et une copie d’une étoile & 4 branches (de

centre 2).

Dans une premiere partie, on étudie quelques propriétés algébriques des matrices d’ad-

jacence.
On introduit ensuite la notion de fonction de seuil en probabilité des graphes aléatoires.

Les deux parties qui suivent la premiere partie sont indépendantes de celle-ci, et sont
consacrées a 1’étude de deux exemples.



Partie I - Quelques propriétés algébriques des
matrices d’adjacence

Soit G = (S, A) un graphe non vide ou |S| = n. Indexer arbitrairement les sommets
de 1 a n revient a choisir une bijection (appelée aussi indexation) o entre [1,n] et S.

On pourra alors noter :
S ={o(1),0(2),...,0(n)}

ou o(7) est le sommet d’index i.

Une indexation o étant choisie, on définit la matrice d’adjacence Mg, du graphe G
associée & o comme étant la matrice de M,,(R) dont le coefficient situé sur la ¢ ligne
et la j¢ colonne est :

1 si{o(i),o(j)} € A

0 sinon

(Ma,o)ij = {

On remarquera d’'une part que la matrice Mg, est toujours symétrique (car pour tous
1 et j entiers, {z’, j} = { j,z’}) et d’autre part que les termes de la diagonale sont tous

nuls (pas de boucle dans un graphe).
Voici par exemple la matrice d’adjacence Mg iq du graphe G représenté sur la FI-
GURE 1 :

010011000
101000011
010000000
000000000
Mgia=|100000000
’ 100000000
000000000
010000000
010000000
Soit p une permutation du groupe symétrique S, et M = (m; ;)1<i j<n une matrice de

M, (R).
1 > Montrer que les matrices M et (M) p(j))1<i,j<n sONt semblables.
En déduire que si G = (S, A) est un graphe non vide, et si o et ¢’ sont deux
indexations de S, alors Mg, et Mg, sont semblables.
2 > Justifier qu'une matrice d’adjacence d’un graphe non vide est diagonalisable.

3 > Montrer qu’'une matrice d’adjacence d’un graphe non vide n’est jamais de rang 1.

4 > Montrer qu'une matrice d’adjacence d’un graphe dont les sommets non isolés
forment un graphe de type étoile est de rang 2 et représenter un exemple de graphe
dont la matrice d’adjacence est de rang 2 et qui n’est pas du type précédent.

Si G = (S, A) est un graphe non vide et si o et ¢’ sont des indexations de S, comme
les matrices Mg, et Mg sont semblables, elles ont méme polyndme caractéristique (ce
que I'on ne demande pas de démontrer).



On notera x¢ ce polynéme caractéristique commun et on dira que ¢ est le polynéme
caractéristique du graphe G.

Par convention, le polynome caractéristique du graphe vide est le polynéme constant
égal a 1.

5 > Soit G un graphe et G’ une copie de G. Justifier que xg = x¢-

n—1
6 > Soit G = (S, A) un graphe avec |S| = n > 2. On note xg(X) = X" + > ap X"
k=0

Donner la valeur de a,_1 et exprimer a, o a I'aide de |A|.

7 > En déduire le polynome caractéristique d’un graphe a n sommets dont les sommets
non isolés forment une étoile a d branches avec 1 < d <n — 1.

Déterminer alors les valeurs et vecteurs propres d'une matrice d’adjacence de ce
graphe.

Si G = (S, A) est un graphe non vide et si s appartient a S, on définit le graphe G \ s
comme étant le graphe dont I'ensemble des sommets est S\ {s} et 'ensemble des arétes
est constitué des arétes de A qui ne contiennent pas s. Voici par exemple FIGURE 3 un

graphe G et le graphe G \ 2 :

(a) Un graphe G (b) Le graphe G\ 2

FIGURE 3 — un graphe G, et le graphe G \ 2

Soient G = (51, A1) et Go = (Ss, Ag) deux graphes non vides tels que Sy et Sy soient
disjoints, c’est-a-dire tels que S; N Sy = @. Soit s1 € 57 et soit s9 € 5.

On définit le graphe G = (S, A) avec S =S U Sy et A=A U AU {{31, 32}}.



8 > Montrer que :
XG = XG1 X XG2 — XGi\s1 X XG2\s2

9 > Déterminer le polynéme caractéristique de la double étoile a d; + dy + 2 sommets,
constituée respectivement de deux étoiles disjointes a d; et dy branches, a qui 'on
a ajouté une aréte supplémentaire reliant les deux centres des deux étoiles.

Quel est le rang de la matrice d’adjacence de cette double étoile ?

Dans toute la suite de ce probleme, on suppose que n est supérieur a 2 et on notera :

— N Dentier <n> = M
2 2

— Q,, I'ensemble des graphes de sommets S = [1,7]

— pp un réel dépendant de n appartenant a l'intervalle |0, 1] et ¢, = 1 — p,.

Pour tous 7 et j appartenant a .S = [1,n] avec i # j, on note Xy; j; I'application de
Q, dans {0, 1} telle que pour tout G € Q,, avec G = (S, A) :

1 si{z’,j}eA
0 si{ijj¢A

Ainsi, (Xpp =1) = {G € Q, | Xup(G) = 1} est ’ensemble des graphes de €2, dont

{z’, j} est une aréte. Réciproquement, on remarquera aussi que pour G = (S, A), on peut

{Gi= () Kup=1 N Xuzn=0). (1)

{igteA {ig}¢A

Xup(G) = {

On admet l'existence d’une probabilité P sur SQ”’P(Q")> telle que les applications
X{i;y soient des variables aléatoires de Bernoulli de parametre p,, et indépendantes. On
note &,, = (Qn, P(Q,), P) I’espace probabilisé ainsi construit.

Autrement dit, pour un graphe G donné appartenant a €2,, la probabilité qu’une
aréte {z’, J } soit contenue dans G est p,, et les arétes apparaissent dans G de fagon
indépendante.

10 > Soit G = (5, A) € Q,,. Déterminer la probabilité P({G}) de I'événement élémen-
taire {G} en fonction de p,, gn, N et a = card(A).

Retrouver alors le fait que P(£2,) = 1.



Dans la suite du probleme on étudie la notion de fonction de seuil pour une propriété
P, vérifiée sur une partie des graphes de €,,.

Une fonction de seuil pour la propriété P, est une suite (tx)r>2 de réels strictement
positifs tels que :

— si p, = o(t,) alors la limite, lorsque n tend vers +o0, de la probabilité pour que la

propriété P, soit réalisée vaut 0

— sit, = o(p,) alors la limite, lorsque n tend vers +o0, de la probabilité pour que la
propriété P, soit réalisée vaut 1.

Partie II - Une premiére fonction de seuil

Section A - Deux inégalités
Soit X une variable aléatoire définie sur un espace probabilisé (2, A, P) a valeurs dans
N et admettant une espérance E(X) et une variance V(X).

11 > Montrer que P(X > 0) < E(X).

12 > Montrer que si E(X) # 0, alors P(X =0) < ———-

Indication : on remarquera que (X =0) C <|X -E(X)| > E(X))

Section B - Une fonction de seuil
13 > Quelle est la loi suivie par la variable aléatoire A,, représentant le nombre d’arétes
d’'un graphe de €2, 7

1
14 > Montrer que si p, = o(—;) au voisinage de +oo, alors 1_1}111 P(A, >0)=0.
n n——+00

1
15 > Montrer que si — = o(p,) au voisinage de +o0, alors lim P(4, > 0) = 1.
n

n—-+00

16 > En déduire une propriété P, et sa fonction de seuil associée.



Partie III - Fonction de seuil de la copie d’un
graphe

Si G = (S, A) est un graphe, on note sg (resp. ag) le cardinal de S (resp. A).

Soit Go = (Sp, Ag) un graphe particulier fixé. Par commodité d’écriture, on note
So = Sg, le cardinal de Sy, ay = ag, le cardinal de A, et on suppose que sy > 2 et que
ao Z 1.

On va étudier la fonction de seuil de la propriété P, : «contenir une copie de Gg».

On note X? la variable aléatoire réelle discréte définie sur I'espace probabilisé &, telle
que pour G € Q,,, I'entier X°(G) est égal au nombre de copies de G contenues dans G.
On introduit :

— Pensemble Cy des copies de Gy dont les sommets sont inclus dans [1,7n] :
Co = {H | H est une copie de Gy et H = (Sg, Ap) avec Sy C ﬂl,n]]}
— pour un graphe H = (Sy, Ag) avec Sy C [1,n], la variable aléatoire suivant une
loi de Bernoulli X définie par :

1 siHCG

0 sinon

VG eQ, XplG) = {

— le réel wy défini par :

. SH
wo = min —
CLHZ{) aH
17 > Montrer que
E(Xu) =py".

18 > Soit 5§ un ensemble fizé de cardinal sy. On note ¢y le nombre des graphes dont
I'ensemble des sommets est S et qui sont des copies de Gy.

Exprimer le cardinal de Cy a I'aide de ¢y et en utilisant un majorant simple de ¢y,
justifier que le cardinal de Cy est inférieur a n®.

19 > Exprimer X? & I'aide de variables aléatoires du type Xp, et montrer que :
E(X)) = Y P(H CG) <n*p.

HeCy

20 > En déduire que si p, = o(n™%°), alors lim P(X? > 0) = 0.

n—-+o0o

Indication : on pourra introduire Hy C G réalisant le minimum donnant wy.



, : wo -
On suppose dorénavant que nl_lgloo (n pn> = 4-00.

21 > Montrer que I'espérance E((XS)Q) vérifie :

B((X)?) = Y PHUH CG= Y ploumm,

(H,H")eC? (H,H")eC?

Pour k € [0, so]], on note :

k= Y. PHUH CQ).
(H,H")eC?
Sanma' =k

22 > Montrer que %y < (E(Xg))%

23 > Soit k € [1, s0] ; montrer que :

S n—s L
g et

HeCy

24 > Justifier que pour tous entiers naturels ¢ et r vérifiant 1 < ¢ <r, on a:

(=35
q q! q

2
et en déduire que pour k € [1,s0], on a ¥y = 0<<E(X2) ) lorsque n tend vers
+00.

V(X))

25 > Montrer que lim 5 =0 ot V(X?) désigne la variance de XP.

26 > Montrer alors que la suite (k7“°)x>2 est une fonction de seuil pour la propriété P,,.

27 > Retrouver le résultat de la question 16 > et déterminer une fonction de seuil pour la
propriété «contenir une copie de ’étoile a d branches» avec d entier fixé supérieur
a l.

FIN DU PROBLEME



Proposition de corrigé

1 > Soit u 'endomorphisme de R"™ canoniquement associé a M ; en notant (eq, es, ..., €,)

la base canonique de R"™, on a :
n

pour tout j € [1,n], u(e;) =Y m;je; et donc u(eyj me
=1
Si on effectue le changement d’ mdlce correspondant a la permutatlon p, on obtient :

pour tout j € [1,n], u(ey) Zmp (6),0) Ep(i)-
i=1
Or, la famille (e,@))i<i<n forme une base de R™ dans laquelle la matrice de u est

(Mp(0)p(5) )10 <0
Ainsi, |les matrices M = (m;;)1<ij<n €t (M) p(j))1<ij<n SONt semblables |

Si maintenant o et o’ sont deux indexations de S et si (i,5) € [1,n]? en notant
p=(0)tooeS,:

(Mgo)ij =1 = {o(i),0(j)} € A<= {o'(p(i)), o' (p(j))} € A;

soit (MG,a)i,j =1« (Mc;’g/)p(i)’p(j) = 1.

Comme les seules valeurs prises par une matrice du type Mg, sont 1 et 0, on en déduit

que les matrices M¢, et (<MG"")”(i)’p(j)>1<m<n sont égales et comme cette derniere

matrice est semblable & la matrice Mg+ d’aprés 'encadré précédent :

les matrices Mg, et M¢ , sont semblables |.

2 > D’apres la question précédente, le caractere diagonalisable est indépendant de 1'in-
dexation choisie. Dans tous les cas, en tant que matrice symétrique réelle :
une matrice d’adjacence d’un graphe non vide est diagonalisable |.

3 > La encore, d’apres la question 77, deux matrice semblables ayant méme rang, le rang
d’une matrice d’adjacence ne dépend pas de l'indexation choisie.

Si une matrice d’adjacence M appartenant & M,,(R) avec n > 1 est non nulle, alors
n > 2 (car les termes diagonaux de M sont nuls) et il existe (i,7) € [1,n]? avec i # j
tel que m;; = 1. Comme M est symétrique, m;; = 1 alors que m;; = 0; les colonnes
d’indices i et j de M ne sont pas liées et rg(M) > 2 :

‘une matrice d’adjacence d’un graphe non vide n’est jamais de rang 1 ‘

4 > Soit M la matrice d’adjacence d'un graphe G = ([1,n], A) dont ses sommets non
isolés forment le graphe de centre i et de branches {z’, T30, 02055310, jd}, alors les
seules colonnes non nulles sont d’une part la colonne C; d’indice ¢ ayant d + 1 chiffres 1
et les colonnes d’indices j1, ja, . . ., jq toutes identiques avec un seul terme non nul situé
en ligne 7 ; ces colonnes sont libres avec la colonne C; si bien que Im(M) = vect(C;, C},)
et donc :



une matrice d’adjacence d’un graphe dont ses sommets non isolés forment un

graphe de type étoile est de rang 2.

est de rang 2|, représente un carré et

La matrice | M =

o~ o
[ e R e R
[ e R e R
o~ K~ O

n’est pas du type précédent.

51> On note G = (S, A) et G' = (5', A’). Soit o une indexation de S. Comme G’ est une
copie de G, il existe une bijection ¢’ de S dans S’ telle que :

V(s t) € 8% (s,t) € A<= (d'(s),0'(t)) € A’. Alors :

(Mgp)iy = 1 4= {o(i), a(j)} € A = {0’ (o)), 0" (o))} € A';

soit (MG,a)i,j =1« (ngg/)g(i)ﬁ(j) =1.

Comme les seules valeurs prises par une matrice du type Mg, sont 1 et 0, on en

déduit que les matrices M¢, et ((MG,U/)U(Z-)J@DK, - sont égales et ont donc méme
_Zij_n

polynome caractéristique ; mais d’apres 77, les matrices ((Mgﬁg/)o.(i)’a(j))

sont semblables, elles ont donc méme polynome caractéristique :

si G’ est une copie de G, alors xg = x¢ ‘

6 > On sait que a,_1 = —tr(M) ou M est la matrice d’adjacence du graphe considéré.

Comme les coefficients de la diagonale de M sont nuls, .

Lorsqu’on développe le déterminant x¢(X) par la formule

xa(X) = Z €(U)a1,o(1)a2,a(2) ©r Ono(n)
geSy,

pour obtenir le coefficient de X"~ 2 il est nécessaire de choisir une permutation o telle
que n — 2 valeurs de k donnent o(k) = k (pour obtenir les n — 2 termes «en X») et deux
valeurs de k telles que o(k) # k. Ceci correspond obligatoirement a une transposition
7i,; et le coefficient correspondant de X"~ est alors —a;ja;; = —a;; (le «<—» étant la
signature de la transposition).

Le coefficient aij est non nul (et vaut donc 1) si et seulement si a; ; = 1 i.e. {i,j} €A

et donc |a,—o2 = —|A]|

7> Soit G = (S, A) une telle étoile et M sa matrice d’adjacence. On sait que rg(M) = 2
et donc xg(X) est de la forme yg(X) = X" 3( X2 + aX + ).

Or, a, 1 =0et donca=0et b=a, o= —|A] = —d si bien que :

xo(X) = X""23(X%—d))|

10



Si I'étoile étudiée est de centre j (en indexant les sommets par [1,n]), en notant
i1, 12, .. .,1q les sommets correspondant aux extrémités de 1'étoile, la colonne C; d’indice
j de M est nulle sauf les termes d’indices 1, 9, . . ., ig valant 1.

Comme M est diagonalisable (symétrique réelle), on a dim (Ker(M )) =n—2.

D’ailleurs, en notant (ej,es,...,e,) la base canonique de R", Ker(M) est engendré
d’une part par les vecteurs ey tels que le colonnes C), de M soient nulles et d’autre part
par les vecteurs e;, — e;;, pour j € [2,d].

Les vecteurs propres associés a des valeurs propres non nulles étant dans

Im (M) = vect(C}, e;), ces vecteurs sont de la forme AC; + pe; et on trouve facilement
que C} +5\/c_iej est un vecteur propre associé a ev/d. Comme les espaces propres associés
a £v/d sont de dimension 1, on obtient finalement :

Les valeurs propres de M sont :

— 0 d’espace propre associé vect(€;)ic[1,n]\{i1,iz,...is} U Vect(€i, — €i;)je[2,q]

— v/d d’espace propre associé vect(Cj + \/Eej)

— —V/d d’espace propre associé vect(Cj — \/Eej)

8 > On note ng = |Sg| pour 1 < k < 2 et quitte a utiliser une indexation, on peut
supposer que les ny (resp. ny) premiers (resp. derniers) sommets de G sont ceux de S;
(resp. S2) et que le n;° (resp. (n; + 1)) sommet est s; (resp. sq).

En notant M; (resp. M) la matrice d’adjacence du graphe G (resp. Gz), on a :

0 0 -- 0
(XD =M} | 0
; O . [XITLQ MQ]
0 0 0

Par multilinéarité, on obtient :

11



0 0 0 00 0 0
[X]nl _Ml] 0 0 0 [ {] 0l 0 0 0
10 0 0 -1 0 0
0 0 0 10 0 —1
0 0 0 0 0 0
DY X, — M) D0 IXTL, — M)
0 0 0 0 0 0

Le premier déterminant est triangulaire par blocs et donne x s, Xas, €t M7 est obtenue a
partir de X [,,, — M; en supprimant sa derniere colonne ; on utilise encore la multilinéarité
pour le second déterminant :

Xe(X) =
0 (0O 0 00 O 0
[ ﬂ 010 0 0 [ ﬂ 0,0 O 0
0l0 0 --- 0 0 -10 0
XMy XMy + 0O --- 0 —1 + 0O --- 0 -1 0
0 0 0 0 0 010
: Do [XInQ M2] : Do : [Mé]
0 --- 0 0 O --- 0 00

Cette fois, M}, est obtenue a partir de X 1,,, — M5 en supprimant sa premiere colonne.

Le premier déterminant triangulaire par blocs donne 0 car le déterminant supérieur
gauche est nul (une colonne de 0). On développe finalement le dernier déterminant par
rapport a la n;° colonne puis encore par rapport a la n;® colonne ((n; + 1) colonne
initiale) :

0 O 0 0 --- 0
AN M
Xe(X) = xan X+ —1 0 - 0/ =xmXs—5
0 - 0] 0 . . "
: s [MY : M)
0 --- 0|0 0 -0

ou M7 et MY sont les matrices d’adjacence de Gy \ s1 et de Gy \ s2 respectivement.
Finalement : XG (X) = XGy (X)XGQ (X) - XG1\31 (X)XG2\32 (X) .

12



9 > On utilise la formule de la question précédente avec s; et sy les centres des deux
étoiles :

Ya(X) = X1 (X2 — d)) X2 1(X2 — dy) — X4 X% (pour une étoile & d branches
privée de son centre, il n’y a plus d’arétes et son polyndme caractéristique est X9).

On obtient xo(X) = X4 +e-2((X2 — d))(X? - dy) — X?) :

Xg(X) = Xdl+d2_2<X4 — (dl 4+ dy + 1)X2 + d1d2> .

Comme la matrice d’adjacence est symétrique réelle donc diagonalisable,
on a «mgy = do» donc la dimension du noyau de cette matrice est d; + dy — 2 (car
dldg 7é 0) .
le rang de la matrice d’adjacence de la double étoile étudiée est :
di+dy+2—dy+dy —2=4.

10 > Comme G possede a arétes, et donc que les N — a autres arétes sont inexistantes,

ona:|{G}= ﬂ (X{i,j} =1) ﬂ (X{i,j} =0)|et | P({G}) = quéV*“ .
{i,j}eA {i,j}¢A

OnaP(Q,) = > P{G}).
GeQy,
Si on partitionne €2, par la famille Q%*) des graphes ayant k arétes, on obtient, d’aprés

I’encadré précédent :

N

N

P(Q,) =) (k) p*gN 7% (le coefficient (JZ ) correspondant aux possibilités de choix
k=0

des k arétes parmi les N arétes potentielles).

Par la formule du bindme, on obtient : |P(Q,) = (p, + ¢,)Y = 1V =1|.

11 > Comme X est a valeurs dans N, par l'inégalité de Markov :

P(X >0)=P(X >1) <EX)]

12 > L’événement (X = 0) est inclus dans I'événement <|X —-E(X)| > E(X)) et donc :
V(X)

N2

(B()

P(X =0) < P(|X -E(X)| > E(X)> < par Bienaymé-Tchebychev.

13 > | A, suit une loi binomiale B(N,p,)|.

—1 1
14 > D’apres la question 11>, 0 < P(A,, > 0) < E(A,) = Np, = Mp ~ —n’p,

qui a pour limite 0. Par encadrement, 1_131 P(A,>0)=0|

13



15 > D’apres la question 12 >, (on a bien E(A4,) = Np, #0) :
(Ba))’ N nln—Dp, oS iy,

a pour limite 0. Par encadrement, 1_1£1 P(A,>0)=1|

16 > D’apres les deux questions précédentes :

. . . A
la propriété «posséder au moins une aréte» a pour fonction de seuil (k‘2> .
k>2

17 > Comme Xy suit une loi de Bernoulli, E(Xy) =P(Xy =1)=P(H C G);
or, HCG)= ()] (Xq, =1) et par indépendance des Xy; ,
{iaj}eAH
EXuy) = I PXup=1=p"|
{Z'vj}EAH

n
18 > On a |card(Cy) = < )co car apres avoir choisi les sp sommets d'un élément de Cy,
S0

il suffit d’en faire des copies pour obtenir les éléments de Cy associés a ces sommets.
Une copie de Gy menant avant tout a une bijection de Sy dans un ensemble de sommets
de méme cardinal, et comme il y a sg! telles bijections :
il y a au plus sg! copies isomorphes a Gy : ¢y < sq! ‘

n
Comme il y a < ) choix possibles d’ensemble de sommets pour tout graphe dans Cy,
S0

n

on a donc : card(Cp) < ( >50! =n(n—1)---(n—sy+ 1) et donc |[card(Cy) < n* |

S0

19 > On a tout simplement | X? = > Xyl
HeCy

Comme Xy suit une loi de Bernoulli, E(Xy) =P(Xy =1) =P(H C G) et donc :
B(X) = Y E(Xu)= Y. P(HCG)|

HeCy HeCy

On obtient, d’apres la question 17 & : |E(X?) = Z pio = card(Co)pi> < nopl|.
HeCy

s
20 > Soit Hy C Gy tel que wg = o
am,

14



On note aussi Dy I'ensemble des copies de Hy dont les sommets sont inclus dans [[1, n],
et V)0 la variable aléatoire égale au nombre de copies de Hy contenus dans G
Puisqu’une copie de Gy donne a fortiori une copie de Hy, on a X? < Y9 et donc

E(X)) <E(Y))
D’aprés les questions 11 > et 19 b, |P(X? > 0) < E(X?) < E(Y)?) < n#op,
On a n*#op,™ = (n*0p, ) = o(1) Comme 0 < P(X? > 0) < n®Hop,™, il en résulte

par encadrement que | lim P(X? > 0)=0|

n—-+00

21 > D’aprés la question 19 >, X? = Z Xp. On a donc :

) Hely
HeCo HeCy H'eCo (H,H")eC?
Donc, E((XS)Q) = >  E(XpXy).
(H,H")eC?

Or, Xy Xg suit une loi de Bernoulli de parametre :
PXyp=1,Xp=1)=PHCG,H CG)=P(HUH' CG) et donc :

E(XpXp)=P(HUH' CG)sibien que: | E((X))?) = > PHUH CG)|
(H,H")eC?
Mais P(H U H' C G) = ppiiv’ = pp’® "0 car ay = ay = ag si H et H' sont dans

Cy. Finalement : E((Xg)Q) = Z p2a0 AHNH |
(H,H") 66’2

22 > Si sgnpr = 0, les événements H C G et H' C G sont indépendants

(P(H C G,H' C G) =p’» =prp =P(H C G)P(H' C G) si H et H' sont dans C
avec agnp = 0).

On obtient : 3o = Y P(H C G)P(H' C G) et donc :

(H,H"ec?
sgnm’=0
S0 < Y, PHCGPH CG) = (ZPHCG)(ZP(H'CG)) soit
(H,H’)ecg HeCy H'eCy

5o < (B(XY)’

23>0naX,= ) > PHUH CG)

HeCy H'eCy
Spna =k

Or, P(HUH' C G) = pi® *1n" car H et H' sont dans Cp.

SHNH'

Par définition de wy, on a wy < si H et H' sont dans Cy avec agngr > 1.

QgnH'

15



On obtient P(HU H' C G) <pn S =, % si sgnp = k.

HeCy H’GC2
Sgna' =k

Mais, card({H’ € C2 | spnm = k " SO

I en résulte que Xj < > pn wo)

So —

En effet, on choisit £ sommets parmi les 30 sommets de H pour former l'intersection
H N H', puis les ng — k autres sommets de H’ parmi les sommets n’appartenant pas a
H et on effectue toutes les copies de G avec les sommets obtenus.

— apg——— ao— -
Finalement : | X, < Z <?> <Z Slz>copi o < Z (k)( S;)%'pi e |
0 —

HeCy HeCy

1 (r= 1 1(1 —1)...(1 — =L
s o (M)ca T =D (=gt 1) 1= (-l
q riq! q!

k —1 -1
Or,siogkgq—l,—gq §q car r > q.

r r q

1 -1\
On obtient <r>r_q > — <1 - q) )
q q! q

Notons &, = n~“p-': donc on a lime, = 0. On a alors :

s n—s 2a9— X S n—s L
0<¥ < card(CO)<k?> <SO B k()) CoPn W00 C&I‘d(Co) ( k?) (80 B k()) copiao n° nk.
k

On obtient : 0 < %, < ¢; card(Co)p2n®0Fcyen 2l nk ol ¢; est une constante indépen-
dante de n.
On a vu a la question 19 > que E(X?) = card(CO)prO

On obtient : 0 < Xy < ¢ E(X?)plonoc, 5‘”( 0

D’apres la question 24 >, n® < ¢y ou ¢y est une constante. On obtient :
S0
Kk

k
0 <3 < clcgE(Xg)pgoc(](n)eﬁ(GO) = c16E(X2)p™ card(Cy)en® d’apres la question
S0
18 . A
2 L.
Et enfin, d’apres la question 18 >, 0 < Xj, < ¢i¢9 (E(Xg)) €n’.
Ek = Ek

Ainsi, 0 < ————— < cicen” si bien que par encadrement, lim ————— =0
(B(x0)) e (B(XY))

) = o<(E(Xg))2> .

16



les questions 22 > et 24 .

Il en résulte que V(X)) 5 E<(X2)2> - (E;XS)) <o(1)et| lim L’% =0\
(B(XY) (E(X0)) " (B(XY))

26 > D’apreés les questions 25 > et 12 > et par encadrement, on a lim P(X? =0) =0

n—-+00 n
et donc | lim P(X! >0)=1|

n—-+o0o

La question 20 > et ’encadré précédent montrent que :

(k=“0)>9 est une fonction de seuil pour la propriété P, |.

27 > 11 s’agit tout simplement de déterminer wy ou Gy est une étoile a d branches.
Si un sous-graphe H de G ne contient pas le centre de 1’étoile, on a ay = 0 et il est

S
facile de constater que si H contient le centre de 'étoile, st minimum pour H = G,.

ag
d+1
d
(k’d%l) k>2 est une fonction de seuil pour la propriété :
«contenir une copie de 1’étoile a d branches».
Remarque : pour d = 1, on retrouve bien le résultat de la question 16 > car un segment
est une étoile a une branche.

Ainsi, wy = et

17
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Critére de Schur-Cohn et généralisation au cas non inversible

Notations et objectifs du probleme

Dans tout le probleme :

n désigne un entier naturel non nul et 'ensemble {1,2,...,n} est noté [1,n].
M, (R) (respectivement S,(R), resp. D,(R), resp. GL,(R)), désigne I'ensemble
des matrices carrées (resp. symétriques, resp. diagonales, resp. inversibles) réelles

de taille n, et on confond un élément de M;(R) avec son unique coefficient ;

si M € M,(R), on note M'" sa transposée et pour tout (i,7) € [1,n]? on note
M; ; le coefficient de M situé a la i-eme ligne et la j-eme colonne;

on note w(M) le nombre de valeurs propres réelles strictement positives de M
comptées avec leur multiplicité, ainsi par exemple 7([,,) = n;

si (ug,...,u,) € R™ on note Diag(uy,...,u,) la matrice D € D,(R) telle que
D;; = u; pour tout i € [1,n];

si f et g sont deux polynémes non simultanément nuls, on note f A g leur PGCD ;
si f est un polyndéme, on note également f sa fonction polynomiale associée;

on note o(f) le nombre de racines réelles de f appartenant a Uintervalle | — 1;1],
comptées avec leur multiplicité, ainsi par exemple o(X?(X — 1)(X + 1)) = 2;

on dit que le réel a est une racine stable de f si a # 0 et f(a) = f(a™!) =0;
si f est un polynoéme de degré m € N et s’écrit
f=ap X"+ am X"+ b X +ag= i ap X",
k=0
on note fp son polynoéme réciproque, défini par

fo=a X"+ X"+ a1 X Fam = ap X5
k=0

onnote U = (1 0 --- 0)" la matrice colonne de taille n dont le premier
coefficient est égal a 1 et les autres a 0;



— on note S la matrice de M,,(R) dont tous les coefficients sont nuls sauf les n — 1
coefficients situés juste au-dessus de la diagonale, égaux a 1 :

V(i,j) € [1,n]* Si; = &iy1,; (symbole de Kronecker);

— pour tout polynéme réel f on définit la matrice J(f) € S,(R) par
J(f) = fo(S)" fo(S) = F(S)TF(S).

Dans ce probleme p désigne un polyndéme a coefficients réels, scindé sur R de degré n,

p=aX"+a, 1 X"+ taX+a =Y aX"  a,#0,
k=0

et on note a; < --- < a, ses racines toutes réelles, comptées avec leurs multiplicités.

L’objectif du probleme est d’établir I’égalité o(p) = 7(J(p)) (critere de Schur-Cohn)
dans le cas ou J(p) est inversible, puis de proposer une démarche générale permettant
de compter les racines de p dans | — 1; 1], lorsque la matrice J(p) n’est pas inversible.

Ces résultats, généralisables aux polynomes a coefficients complexes, sont utiles dans
I’étude de la stabilité de certains systemes dynamiques.

A. Propriétés du polynéme p, et stabilité des racines
1 > Montrer que pg, le polynéme réciproque de p, vérifie
Ve e R" po(x) = 2"p(1/x)

et en déduire que

7=1

2 > Montrer que p A pg = 1 si et seulement si p ne possede pas de racine stable.

Jusqu’a la fin de la partie A. on suppose que toutes les racines de p sont stables et
d’ordre de multiplicité 1.

3 > Justifier qu'il existe A € {—1, 1} tel que p = Apy.

Soit, i le polynome de degré n défini par h(X) = Xp/, ou p’ est le polynéme dérivé de p.
On note hg et (p')o les polyndmes réciproques respectifs de h et p'.



4 > Montrer que h = np — A(p')o, puis que hg = A(np — Xp').

5 > Vérifier que p’ est scindé sur R puis montrer que h A by = 1 et en déduire que p’
n’admet pas de racine stable.

B. Liberté d’une famille de polynomes

Pour tout entier j € [1,n], on note f; le polynéme

fi=a,(1—0,X) - (1= X)(X—ajq) - (X—q) =a, ﬁ (1—ayX) [ (X —ag)

<.
|

k=j+1 k=1
n 0
avec, selon les conventions habituelles, ] (1 —axX) = [[(X —ax) = 1.
k=n-+1 k=1

6 > Montrer que s’il existe deux entiers 7, k tels que 1 <i < k < n et o = 1, alors
a; est racine de chaque polynéme f;, ou j € [1,n], et que la famille (fi,..., f,)
est liée.

Jusqu’a la fin de la partie B. on suppose qu’aucune racine de p n’est stable.

On note E le sous-espace vectoriel des fractions rationnelles a coefficients réels dont les
éventuels poles sont des inverses de racines de p (on ne demande pas de justifier que
FE est un espace vectoriel). Les éléments de E sont donc les fractions rationnelles dont

le dénominateur peut s’écrire comme produit fini, éventuellement égal a 1, de facteurs
(1-—a;X)oul<i<n,.

Pour tout j € [1,n], on définit la fraction rationnelle g; € E par

B fi
9= w

i=1

et I'application P;, qui a une fraction rationnelle f € E associe la fraction rationnelle

(I - X)f = (1 —af)foy)
i(f) = X—a :

7 > Montrer que pour tout j € [1,n], 'application P; est un endomorphisme de E et
déterminer son noyau.



8 > Pour tout j € [1,n] et tout g € E, calculer P; (

o)

9 > En déduire que la famille (fi,..., f,) est libre.

C. Expression de la matrice J(p)

10 > Montrer que la famille ((ST){U)o<i<n_1 est une base de M, ;(R). Les matrices S
et U ont été définies dans la partie préliminaire du probleme.

Pour tout entier j € [1,n], on définit les matrices

Bj:S—O./jIn et Cj:In—O./j S.
11 > Démontrer que

T0) = 3 1(8)T(CTC; — BT B F(S),

Les polynémes f,..., f, ont été définis dans le préambule de la partie B.
12 > Soit j € [1,n]. Montrer que C} C; — B] B; = (1 —a3)UU .

13 > On note D la matrice diagonale de taille n :
D = Diag((1 — a;*)1<j<n)

et V€ M,(R) la matrice telle que pour tout j € [1,n], la j-éme colonne de V'
est V; = f;(ST) U. Montrer que

J(p) =VDV'.

14 > En déduire, a l'aide de la question 6, que si p possede une racine stable alors J(p)
n’est pas inversible.

D. Cas ou J(p) est inversible : critere de Schur-Cohn

On rappelle que si M € M, (R) alors m(M) désigne le cardinal de I'ensemble de ses
valeurs propres strictement positives, comptées avec leurs multiplicités.

On munit M,,;(R) de sa structure euclidienne canonique. On dit qu'un sous-espace
vectoriel F de M, ;(R) vérifie la condition (Cps) quand

VX € F\{0,.} X'MX >0.



On note d(M) la dimension maximale d'un sous-espace vectoriel F' de M,, 1(R) véri-
fiant la condition (Cps), c’est-a-dire :

d(M) = max{dim F' | F s.e.v de M,,1(R) vérifiant (Cps)}.

15 > Soit deux matrices A, B € M, (R) telles qu’il existe une matrice P € GL,(R)
vérifiant A = PTBP. Montrer que d(B) > d(A) puis que d(B) = d(A).

16 > Pour toute matrice M € S, (R) construire un sous-espace vectoriel Fi; de M, 1(R)
de dimension 7(M) vérifiant la condition (Cp). On a donc d(M) > w(M).

17 > On veut montrer que pour toute matrice M € S,(R) on a (M) = d(M). Par
I'absurde, en supposant l'existence d’un sous-espace vectoriel G de M, ;(R) de
dimension dim G > 7(M) vérifiant la condition (Cy), montrer dim(F; NG) > 1,
en déduire une contradiction et conclure.

18 > Démontrer le critére de Schur-Cohn :

Si J(p) est inversible alors p ne possede aucune racine stable et o(p) = 7(J(p)).

E. Condition nécessaire et suffisante d’inversibilité

19 > Montrer, a I'aide des questions 9 et 13, que si p n’admet pas de racine stable et si
J(p) n’est pas inversible alors il existe un polynéme ¢ non nul a coefficients réels
de degré au plus n — 1 tel que ¢(ST)U = 0,,;.

20 > En déduire que la matrice J(p) est inversible si et seulement si p n’admet aucune
racine stable.

F. Un cas particulier

On suppose dans cette partie, comme on 'a fait aux questions 3 a 5, que toutes les
racines de p sont stables et de multiplicité 1 et on note h = Xp' (ou p’ est le polynéme
dérivé de p) et hy le polynéme réciproque de h. On rappelle que, d’apres la question 3,
il existe un réel A € {—1,1} tel que p = Apy.

21 > Montrer que J(h) est inversible.

22 > Montrer qu'il existe un réel n > 0 tel que pour tout r €]1—n; 1[, le polynéme p(rX)



est scindé, admet exactement o(p) racines a 'intérieur de 'intervalle | —1; 1] et ne
possede aucune racine stable.

Pour tout réel r > 0, on note F(r) = J(p(rX)).

23 > Montrer que

lim 7 <2(n)F(r)> —n—o(p).

r—1- r—1

24 > Justifier que I'application F': R% — S,(R) est dérivable et que

F'(1) = 2n(p(S)) "p(S) — 28" (1 (5)) "p(S) = 2(p(5)) "P'(S)S.

25 > En déduire, a I'aide des résultats de la question 4, que

n

mF(r) = J(h) + o(1).

r—1

On admet que Papplication définie sur S, (R) & valeurs dans R™ qui & une matrice symé-
trique associe le n-uplet de ses valeurs propres réelles comptées avec leurs multiplicités,
rangées dans 'ordre décroissant, est continue.

26 > En déduire que o(p) =n—1—n(J(p')).

G. Méthode générale.

On se place dans le cas général, sans disposer d’information sur la stabilité et la multi-

plicité des racines de p, et on cherche a calculer o(p).

On construit les deux polynomes f et g vérifiant f = p A pg et p = fg.

27 > Montrer que o(g) = w(J(g))-

28 > Proposer une méthode permettant de construire un nombre fini (éventuellement
nul) de polynémes gy, . .., gs, dont les racines sont stables et de multiplicité 1, tels

que f = g1g2 - - - go. Exprimer o(p) a l'aide de n,deg g, 7(J(g)), ¢, 7(J(g)) ainsi que
ﬂ-(‘](gl))7 s 77T(J(g€))

FIN DU PROBLEME



